
DB2 Version 9.1 for z/OS

Administration Guide

SC18-9840-05

���





DB2 Version 9.1 for z/OS

Administration Guide

SC18-9840-05

���



Note
Before using this information and the product it supports, be sure to read the general information under “Notices” at the
end of this information.

Sixth edition (October 2009)

This edition applies to DB2 Version 9.1 for z/OS (DB2 V9.1 for z/OS), product number 5635-DB2, and to any
subsequent releases until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright International Business Machines Corporation 1982, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

About this information . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Who should read this information . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
DB2 Utilities Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Terminology and citations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii
Accessibility features for DB2 Version 9.1 for z/OS . . . . . . . . . . . . . . . . . . . . . xviii
How to send your comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
How to read syntax diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Part 1. Designing a database . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1. Database objects and relationships . . . . . . . . . . . . . . . . . . . 3
Logical database design with the entity-relationship model . . . . . . . . . . . . . . . . . . . . 3

Modeling your data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Recommendations for logical data modeling . . . . . . . . . . . . . . . . . . . . . . . . 5
Practical examples of data modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Entities for different types of relationships . . . . . . . . . . . . . . . . . . . . . . . . 5
Entity attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Entity normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Logical database design with Unified Modeling Language. . . . . . . . . . . . . . . . . . . . 13
Physical database design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Denormalization of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Views as a way to customize what data users see . . . . . . . . . . . . . . . . . . . . . 17
Indexes on table columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 2. Implementing your database design . . . . . . . . . . . . . . . . . . 19
Implementing DB2 databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Creating DB2 databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Dropping DB2 databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Implementing DB2 storage groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Advantages of storage groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Creating DB2 storage groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Enabling SMS to control DB2 storage groups . . . . . . . . . . . . . . . . . . . . . . . 22
Deferring allocation of DB2-managed data sets . . . . . . . . . . . . . . . . . . . . . . 23
How DB2 extends data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DB2 space allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Managing DB2 data sets with DFSMShsm . . . . . . . . . . . . . . . . . . . . . . . . 28
Managing your own data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Defining index space storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Creating EA-enabled table spaces and index spaces . . . . . . . . . . . . . . . . . . . . . 36

Implementing DB2 table spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Creating a table space explicitly . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Guidelines and recommendations for table spaces . . . . . . . . . . . . . . . . . . . . . 38
Examples of table space definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Implementing DB2 tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Creating base tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Guidelines for table names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Creating temporary tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Creating materialized query tables. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Creating tables that use table-controlled partitioning. . . . . . . . . . . . . . . . . . . . . 51
Creating tables that use index-controlled partitioning . . . . . . . . . . . . . . . . . . . . 54
Creating a clone table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Implementing DB2 views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Creating DB2 views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Guidelines for view names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

© Copyright IBM Corp. 1982, 2009 iii

||



How DB2 inserts and updates data through views . . . . . . . . . . . . . . . . . . . . . 57
Dropping DB2 views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Implementing DB2 indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Creating DB2 indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Guidelines for defining indexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
How DB2 implicitly creates an index . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Recommendations for index page size . . . . . . . . . . . . . . . . . . . . . . . . . 61
Index versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Compressing indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Implementing DB2 schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Creating a schema by using the schema processor . . . . . . . . . . . . . . . . . . . . . 63
Processing schema definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Loading data into DB2 tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Loading data with the LOAD utility . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Loading data by using the INSERT statement . . . . . . . . . . . . . . . . . . . . . . . 68
Loading data from DL/I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Implementing DB2 stored procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Creating stored procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Dropping stored procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Implementing DB2 user-defined functions . . . . . . . . . . . . . . . . . . . . . . . . . 73
Creating user-defined functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Deleting user-defined functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Estimating disk storage for user data . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
General approach to estimating storage . . . . . . . . . . . . . . . . . . . . . . . . . 74
Calculating the space required for a table . . . . . . . . . . . . . . . . . . . . . . . . 76
Calculating the space required for an index. . . . . . . . . . . . . . . . . . . . . . . . 79

Saving space with data compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Compressing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Calculating the space that is required for a dictionary . . . . . . . . . . . . . . . . . . . . 84

Chapter 3. Altering your database design . . . . . . . . . . . . . . . . . . . . . 87
Altering DB2 databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

ALTER DATABASE options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Altering DB2 storage groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Letting SMS manage your DB2 storage groups . . . . . . . . . . . . . . . . . . . . . . 88
Adding or removing volumes from a DB2 storage group . . . . . . . . . . . . . . . . . . . 88

Altering table spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Changing the logging attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Changing the space allocation for user-managed data sets . . . . . . . . . . . . . . . . . . . 91
Dropping, re-creating, or converting a table space . . . . . . . . . . . . . . . . . . . . . 92
Rebalancing data in partitioned table spaces . . . . . . . . . . . . . . . . . . . . . . . 93
Altering a page set to contain DB2-defined extents . . . . . . . . . . . . . . . . . . . . . 94

Altering DB2 tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Adding a new column to a table . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Specifying a default value when altering a column . . . . . . . . . . . . . . . . . . . . . 96
Altering the data type of a column . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Altering a table for referential integrity . . . . . . . . . . . . . . . . . . . . . . . . . 102
Adding or dropping table check constraints . . . . . . . . . . . . . . . . . . . . . . . 106
Adding a partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Altering partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Adding XML columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Altering materialized query tables . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Altering the assignment of a validation routine . . . . . . . . . . . . . . . . . . . . . . 118
Altering a table to capture changed data . . . . . . . . . . . . . . . . . . . . . . . . 118
Changing an edit procedure or a field procedure . . . . . . . . . . . . . . . . . . . . . 119
Altering the subtype of a string column . . . . . . . . . . . . . . . . . . . . . . . . 119
Altering the attributes of an identity column . . . . . . . . . . . . . . . . . . . . . . . 120
Changing data types by dropping and re-creating the table . . . . . . . . . . . . . . . . . . 120
Moving a table to a table space of a different page size . . . . . . . . . . . . . . . . . . . 123

Altering DB2 views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Altering views by using the INSTEAD OF trigger . . . . . . . . . . . . . . . . . . . . . 124

iv Administration Guide

||
||

||

||

||

||

||



Altering DB2 indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Adding a column to an index when you add the column to a table . . . . . . . . . . . . . . . 126
Altering how varying-length index columns are stored . . . . . . . . . . . . . . . . . . . 127
Altering the clustering of an index . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Dropping and redefining a DB2 index . . . . . . . . . . . . . . . . . . . . . . . . . 128
Reorganizing indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Recycling index version numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Altering stored procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Altering user-defined functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Altering implicitly created XML objects. . . . . . . . . . . . . . . . . . . . . . . . . . 131
Changing the high-level qualifier for DB2 data sets. . . . . . . . . . . . . . . . . . . . . . 132

Defining a new integrated catalog alias. . . . . . . . . . . . . . . . . . . . . . . . . 133
Changing the qualifier for system data sets . . . . . . . . . . . . . . . . . . . . . . . 133
Changing qualifiers for other databases and user data sets . . . . . . . . . . . . . . . . . . 136

Tools for moving DB2 data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Moving DB2 data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Moving a DB2 data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Scenario: Moving from index-controlled to table-controlled partitioning . . . . . . . . . . . . . . 143

Part 2. Security and auditing . . . . . . . . . . . . . . . . . . . . . . . . 147

Chapter 4. Getting started with DB2 security . . . . . . . . . . . . . . . . . . . 149
DB2 security solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
What’s new in DB2 Version 9.1 security? . . . . . . . . . . . . . . . . . . . . . . . . . 149
DB2 data access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

ID-based access control within DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Role-based access control within DB2 . . . . . . . . . . . . . . . . . . . . . . . . . 152
Ownership-based access control within DB2 . . . . . . . . . . . . . . . . . . . . . . . 152
Access control through multilevel security. . . . . . . . . . . . . . . . . . . . . . . . 152
Access control through exit routines . . . . . . . . . . . . . . . . . . . . . . . . . . 152

DB2 subsystem access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Managing access requests from local applications . . . . . . . . . . . . . . . . . . . . . 153
Managing access requests from remote applications . . . . . . . . . . . . . . . . . . . . 153

Data set protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
RACF for data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Data encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Scenario: Securing data access at Spiffy Computer . . . . . . . . . . . . . . . . . . . . . . 155
Determining security objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Securing manager access to employee data . . . . . . . . . . . . . . . . . . . . . . . 155
Securing access to payroll operations and management . . . . . . . . . . . . . . . . . . . 159
Managing access privileges of other authorities . . . . . . . . . . . . . . . . . . . . . . 162

Chapter 5. Managing access through authorization IDs or roles. . . . . . . . . . . 165
Authorization IDs and roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Authorization IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Roles in a trusted context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Privileges and authorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Explicit privileges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Implicit privileges through object ownership . . . . . . . . . . . . . . . . . . . . . . . 173
Administrative authorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Utility authorities for DB2 catalog and directory. . . . . . . . . . . . . . . . . . . . . . 179
Privileges by authorization ID and authority . . . . . . . . . . . . . . . . . . . . . . . 180

Managing explicit privileges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Granting privileges to a role . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Granting privileges to the PUBLIC ID . . . . . . . . . . . . . . . . . . . . . . . . . 186
Granting privileges to remote users . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Granting privileges through views . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Granting privileges with the GRANT statement . . . . . . . . . . . . . . . . . . . . . . 188
Revoking privileges with the REVOKE statement . . . . . . . . . . . . . . . . . . . . . 194

Managing implicit privileges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Contents v

||

||

||
||

||

||

||



Managing implicit privileges through object ownership . . . . . . . . . . . . . . . . . . . 202
Managing implicit privileges through plan or package ownership . . . . . . . . . . . . . . . . 205
Managing implicit privileges through routines . . . . . . . . . . . . . . . . . . . . . . 212

Retrieving privilege records in the DB2 catalog . . . . . . . . . . . . . . . . . . . . . . . 225
Catalog tables with privilege records . . . . . . . . . . . . . . . . . . . . . . . . . 225
Retrieving all authorization IDs or roles with granted privileges . . . . . . . . . . . . . . . . 226
Retrieving multiple grants of the same privilege. . . . . . . . . . . . . . . . . . . . . . 226
Retrieving all authorization IDs or roles with the DBADM authority . . . . . . . . . . . . . . . 227
Retrieving all IDs or roles with access to the same table . . . . . . . . . . . . . . . . . . . 227
Retrieving all IDs or roles with access to the same routine . . . . . . . . . . . . . . . . . . 228
Retrieving tables or views accessible by an ID . . . . . . . . . . . . . . . . . . . . . . 229
Retrieving plans or packages with access to the same table . . . . . . . . . . . . . . . . . . 229
Retrieving privilege information through views . . . . . . . . . . . . . . . . . . . . . . 230

Implementing multilevel security with DB2 . . . . . . . . . . . . . . . . . . . . . . . . 230
Multilevel security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Mandatory access checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Implementing multilevel security at the object level . . . . . . . . . . . . . . . . . . . . 236
Implementing multilevel security with row-level granularity . . . . . . . . . . . . . . . . . 237
Restricting access to the security label column . . . . . . . . . . . . . . . . . . . . . . 240
Managing data in a multilevel-secure environment . . . . . . . . . . . . . . . . . . . . . 240
Implementing multilevel security in a distributed environment . . . . . . . . . . . . . . . . . 248

Chapter 6. Managing access through RACF . . . . . . . . . . . . . . . . . . . 251
Establishing RACF protection for DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Defining DB2 resources to RACF . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Permitting RACF access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Managing authorization for stored procedures . . . . . . . . . . . . . . . . . . . . . . 261
Protecting connection requests that use the TCP/IP protocol . . . . . . . . . . . . . . . . . 270
Establishing Kerberos authentication through RACF . . . . . . . . . . . . . . . . . . . . 271

Implementing DB2 support for enterprise identity mapping . . . . . . . . . . . . . . . . . . . 272
Configuring the z/OS LDAP server . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Setting up RACF for the z/OS LDAP server . . . . . . . . . . . . . . . . . . . . . . . 274
Setting up the EIM domain controller . . . . . . . . . . . . . . . . . . . . . . . . . 274
Adding the SAF user mapping plug-in data set to LNKLIST . . . . . . . . . . . . . . . . . 276

Managing connection requests from local applications . . . . . . . . . . . . . . . . . . . . . 276
Processing of connection requests . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Using secondary IDs for connection requests . . . . . . . . . . . . . . . . . . . . . . . 278
Processing of sign-on requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Using secondary IDs for sign-on requests . . . . . . . . . . . . . . . . . . . . . . . . 281
Using sample connection and sign-on exit routines for CICS transactions . . . . . . . . . . . . . 281

Managing connection requests from remote applications . . . . . . . . . . . . . . . . . . . . 282
Security mechanisms for DRDA and SNA . . . . . . . . . . . . . . . . . . . . . . . . 282
Communications database for the server . . . . . . . . . . . . . . . . . . . . . . . . 283
Enabling change of user passwords . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Authorization failure code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Managing inbound SNA-based connection requests . . . . . . . . . . . . . . . . . . . . 286
Managing inbound TCP/IP-based connection requests . . . . . . . . . . . . . . . . . . . 293
Managing denial-of-service attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Managing outbound connection requests . . . . . . . . . . . . . . . . . . . . . . . . 296
Translating outbound IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Sending passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Chapter 7. Managing access through trusted contexts. . . . . . . . . . . . . . . 311
Trusted contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Trusted connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Defining trusted contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Creating local trusted connections . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Establishing remote trusted connections by DB2 for z/OS requesters . . . . . . . . . . . . . . . . 313
Establishing remote trusted connections to DB2 for z/OS servers . . . . . . . . . . . . . . . . . 314
Switching users of a trusted connection . . . . . . . . . . . . . . . . . . . . . . . . . 315

vi Administration Guide

||
||
||
||
||

||

||
||
||
||
||
||
||



Reusing a local trusted connection through the DSN command processor and DB2I . . . . . . . . . . 315
Reusing a remote trusted connection by DB2 for z/OS requesters . . . . . . . . . . . . . . . . 316
Reusing a remote trusted connection through DB2 for z/OS servers . . . . . . . . . . . . . . . 316
Reusing a local trusted connection through RRSAF . . . . . . . . . . . . . . . . . . . . . 316
Reusing a local trusted connection through the SQL CONNECT statement . . . . . . . . . . . . . 317

Defining external security profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Enabling users to perform actions on behalf of others . . . . . . . . . . . . . . . . . . . . . 318
Performing tasks on objects for other users . . . . . . . . . . . . . . . . . . . . . . . . 318

Chapter 8. Managing access through data definition control . . . . . . . . . . . . 321
Data definition statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Data definition control support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Registration tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Installing data definition control support . . . . . . . . . . . . . . . . . . . . . . . . . 323
Enabling data definition control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Controlling data definition by application name . . . . . . . . . . . . . . . . . . . . . . 324
Controlling data definition by application name with exceptions . . . . . . . . . . . . . . . . 325
Controlling data definition by object name . . . . . . . . . . . . . . . . . . . . . . . 327
Controlling data definition by object name with exceptions . . . . . . . . . . . . . . . . . . 328

Registering object sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Disabling data definition control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Managing registration tables and indexes . . . . . . . . . . . . . . . . . . . . . . . . . 331

Creating registration tables and indexes . . . . . . . . . . . . . . . . . . . . . . . . 331
Naming registration tables and indexes. . . . . . . . . . . . . . . . . . . . . . . . . 332
Dropping registration tables and indexes . . . . . . . . . . . . . . . . . . . . . . . . 332
Creating table spaces for registration tables . . . . . . . . . . . . . . . . . . . . . . . 332
Adding columns to registration tables . . . . . . . . . . . . . . . . . . . . . . . . . 332
Updating registration tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Chapter 9. Protecting data through encryption and RACF . . . . . . . . . . . . . 335
Encrypting your data through DB2 built-in functions . . . . . . . . . . . . . . . . . . . . . 335

Defining columns for encrypted data . . . . . . . . . . . . . . . . . . . . . . . . . 335
Defining column-level encryption . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Defining value-level encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Using predicates for encrypted data . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Optimizing performance of encrypted data . . . . . . . . . . . . . . . . . . . . . . . 339

Encrypting your data with Secure Socket Layer support . . . . . . . . . . . . . . . . . . . . 341
AT-TLS configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Configuring the DB2 server for SSL . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Configuring the DB2 requester for SSL . . . . . . . . . . . . . . . . . . . . . . . . . 343

Protecting data sets through RACF . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Adding groups to control DB2 data sets . . . . . . . . . . . . . . . . . . . . . . . . 344
Creating generic profiles for data sets . . . . . . . . . . . . . . . . . . . . . . . . . 344
Authorizing DB2 IDs to use data set profiles . . . . . . . . . . . . . . . . . . . . . . . 346
Enabling DB2 IDs to create data sets . . . . . . . . . . . . . . . . . . . . . . . . . 346

Chapter 10. Auditing access to DB2. . . . . . . . . . . . . . . . . . . . . . . 347
Determining active security measures . . . . . . . . . . . . . . . . . . . . . . . . . . 347
DB2 audit trace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

Authorization IDs traced by auditing . . . . . . . . . . . . . . . . . . . . . . . . . 348
Audit classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Audit trace reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Audit trace records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Limitations of the audit trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Starting the audit trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Stopping the audit trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Collecting audit trace records . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Formatting audit trace records. . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Auditing in a distributed data environment . . . . . . . . . . . . . . . . . . . . . . . 353

Additional sources of audit information . . . . . . . . . . . . . . . . . . . . . . . . . 353

Contents vii

||
||
||
||
||

||
||

||
||
||
||



Determining ID privileges and authorities . . . . . . . . . . . . . . . . . . . . . . . . . 354
Auditing specific IDs or roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Auditing specific tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Ensuring data accuracy and integrity . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Ensuring data presence and uniqueness . . . . . . . . . . . . . . . . . . . . . . . . 356
Protecting data integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
Tracking data changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Checking for lost and incomplete transactions . . . . . . . . . . . . . . . . . . . . . . 357

Ensuring data consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
Using referential integrity for data consistency . . . . . . . . . . . . . . . . . . . . . . 358
Using locks for data consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
Checking data consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Part 3. Operation and recovery . . . . . . . . . . . . . . . . . . . . . . . 363

Chapter 11. DB2 basic operational concepts . . . . . . . . . . . . . . . . . . . 365
Recommendations for entering commands. . . . . . . . . . . . . . . . . . . . . . . . . 365
DB2 operator commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Where DB2 commands are entered . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Where command responses go . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Authorities for DB2 commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
DB2 message identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

Unsolicited DB2 messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Operational control options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Chapter 12. Starting and stopping DB2 . . . . . . . . . . . . . . . . . . . . . 375
Starting DB2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Messages at start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Options at start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Restricting access to data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Ending the wait state at startup . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Restart options after an abend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Stopping DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Chapter 13. Submitting work to DB2 . . . . . . . . . . . . . . . . . . . . . . 379
Submitting work by using DB2I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Running TSO application programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

DSN subcommands for TSO environments . . . . . . . . . . . . . . . . . . . . . . . 380
Sources that DB2 checks to find authorization access for an application program . . . . . . . . . . . 381

Running IMS application programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Running CICS application programs. . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Running batch application programs . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Running application programs using CAF . . . . . . . . . . . . . . . . . . . . . . . . . 383
Running application programs using RRSAF . . . . . . . . . . . . . . . . . . . . . . . . 384

Chapter 14. Scheduling administrative tasks . . . . . . . . . . . . . . . . . . . 385
Interacting with the administrative task scheduler . . . . . . . . . . . . . . . . . . . . . . 385

Adding a task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Listing scheduled tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Listing the last execution status of scheduled tasks . . . . . . . . . . . . . . . . . . . . . 402
Removing a scheduled task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
Manually starting the administrative task scheduler . . . . . . . . . . . . . . . . . . . . 408
Manually stopping the administrative task scheduler . . . . . . . . . . . . . . . . . . . . 409
Synchronization between administrative task schedulers in a data sharing environment . . . . . . . . 409
Troubleshooting the administrative task scheduler . . . . . . . . . . . . . . . . . . . . . 410

Architecture of the administrative task scheduler . . . . . . . . . . . . . . . . . . . . . . 413
The lifecycle of the administrative task scheduler . . . . . . . . . . . . . . . . . . . . . 414
Task lists of the administrative task scheduler . . . . . . . . . . . . . . . . . . . . . . 416
Architecture of the administrative task scheduler in a data sharing environment . . . . . . . . . . . 416

viii Administration Guide

||

||

||
||

||
||
||
||
||
||
||
||
||
||
||
||
||
||



Security guidelines for the administrative task scheduler . . . . . . . . . . . . . . . . . . . . 417
User roles in the administrative task scheduler . . . . . . . . . . . . . . . . . . . . . . 418
Protection of the interface of the administrative task scheduler . . . . . . . . . . . . . . . . . 419
Protection of the resources of the administrative task scheduler . . . . . . . . . . . . . . . . 419
Secure execution of tasks in the administrative task scheduler . . . . . . . . . . . . . . . . . 420

Execution of scheduled tasks in the administrative task scheduler . . . . . . . . . . . . . . . . . 421
Multi-threading in the administrative task scheduler . . . . . . . . . . . . . . . . . . . . 421
Scheduling execution of a stored procedure . . . . . . . . . . . . . . . . . . . . . . . 422
How the administrative task scheduler works with Unicode. . . . . . . . . . . . . . . . . . 424
Scheduled execution of a JCL job . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Execution of scheduled tasks in a data sharing environment. . . . . . . . . . . . . . . . . . 425

Chapter 15. Monitoring and controlling DB2 and its connections . . . . . . . . . . 427
Controlling DB2 databases and buffer pools . . . . . . . . . . . . . . . . . . . . . . . . 427

Starting databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
Monitoring databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Obtaining information about application programs . . . . . . . . . . . . . . . . . . . . . 431
Obtaining information about and handling pages in error . . . . . . . . . . . . . . . . . . 433
Using the STOP DATABASE command to make objects available . . . . . . . . . . . . . . . . 436
Altering buffer pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Monitoring buffer pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Controlling user-defined functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
Starting user-defined functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
Monitoring user-defined functions . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Stopping user-defined functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Controlling DB2 utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
Starting online utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
Monitoring and changing online utilities . . . . . . . . . . . . . . . . . . . . . . . . 440
Controlling DB2 stand-alone utilities . . . . . . . . . . . . . . . . . . . . . . . . . 441

Controlling the IRLM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
z/OS commands that operate on IRLM. . . . . . . . . . . . . . . . . . . . . . . . . 443
Starting the IRLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
Stopping the IRLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Monitoring threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Types of threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
Output of the DISPLAY THREAD command . . . . . . . . . . . . . . . . . . . . . . . 446
Displaying information about threads . . . . . . . . . . . . . . . . . . . . . . . . . 447
Monitoring all DBMSs in a transaction . . . . . . . . . . . . . . . . . . . . . . . . . 451

Controlling connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
Controlling TSO connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
Controlling CICS connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
Controlling IMS connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Controlling RRS connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Controlling connections to remote systems . . . . . . . . . . . . . . . . . . . . . . . 475

Controlling traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Types of DB2 traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Diagnostic traces for attachment facilities . . . . . . . . . . . . . . . . . . . . . . . . 494
Controlling the DB2 trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
Diagnostic trace for the IRLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Controlling the resource limit facility (governor). . . . . . . . . . . . . . . . . . . . . . . 496
Changing subsystem parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . 496
Setting the priority of stored procedures . . . . . . . . . . . . . . . . . . . . . . . . . 497

Chapter 16. Managing the log and the bootstrap data set . . . . . . . . . . . . . 499
How database changes are made . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Units of recovery and points of consistency . . . . . . . . . . . . . . . . . . . . . . . 499
How DB2 rolls back work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
How the initial DB2 logging environment is established . . . . . . . . . . . . . . . . . . . 501
How DB2 creates log records . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
How DB2 writes the active log . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Contents ix

||
||
||
||
||
||
||
||
||
||
||

||
||

||

||



How DB2 writes (offloads) the archive log . . . . . . . . . . . . . . . . . . . . . . . 503
How DB2 retrieves log records . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
Managing the log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

Quiescing activity before offloading . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Archiving the log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
Dynamically changing the checkpoint frequency. . . . . . . . . . . . . . . . . . . . . . 511
Setting limits for archive log tape units . . . . . . . . . . . . . . . . . . . . . . . . . 512
Monitoring the system checkpoint . . . . . . . . . . . . . . . . . . . . . . . . . . 512
Displaying log information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

Resetting the log RBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
Log RBA range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
Resetting the log RBA value in a data sharing environment . . . . . . . . . . . . . . . . . . 514
Resetting the log RBA value in a non-data sharing environment . . . . . . . . . . . . . . . . 514

Canceling and restarting an offload . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
Displaying the status of an offload . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
Discarding archive log records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
Locating archive log data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
Management of the bootstrap data set . . . . . . . . . . . . . . . . . . . . . . . . . . 519

Restoring dual-BSDS mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
BSDS copies with archive log data sets . . . . . . . . . . . . . . . . . . . . . . . . . 520
Recommendations for changing the BSDS log inventory . . . . . . . . . . . . . . . . . . . 520

Chapter 17. Restarting DB2 after termination . . . . . . . . . . . . . . . . . . . 523
Methods of restarting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Types of termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Normal restart and recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
Automatic restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
Restart in a data sharing environment . . . . . . . . . . . . . . . . . . . . . . . . . 529
Restart implications for table spaces that are not logged . . . . . . . . . . . . . . . . . . . 529
Conditional restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

Terminating DB2 normally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
Restarting automatically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
Deferring restart processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

Deferral of restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
Performing conditional restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

Options for recovery operations after conditional restart . . . . . . . . . . . . . . . . . . . 534
Conditional restart records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534

Resolving postponed units of recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 534
RECOVER POSTPONED command . . . . . . . . . . . . . . . . . . . . . . . . . . 535
Recovering from an error during RECOVER POSTPONED processing . . . . . . . . . . . . . . 536

Chapter 18. Maintaining consistency across multiple systems . . . . . . . . . . . 537
Multiple system consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

Two-phase commit process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
Commit coordinator and multiple participants . . . . . . . . . . . . . . . . . . . . . . 539
Illustration of multi-site update . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
Termination for multiple systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
Consistency after termination or failure. . . . . . . . . . . . . . . . . . . . . . . . . 542
Normal restart and recovery for multiple systems . . . . . . . . . . . . . . . . . . . . . 543
Multiple-system restart with conditions. . . . . . . . . . . . . . . . . . . . . . . . . 544
Heuristic decisions about whether to commit or abort an indoubt thread . . . . . . . . . . . . . 544

Resolving indoubt units of recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
Resolution of IMS indoubt units of recovery . . . . . . . . . . . . . . . . . . . . . . . 545
Resolution of CICS indoubt units of recovery. . . . . . . . . . . . . . . . . . . . . . . 546
Resolution of RRS indoubt units of recovery . . . . . . . . . . . . . . . . . . . . . . . 546
Resolving WebSphere Application Server indoubt units of recovery . . . . . . . . . . . . . . . 547
Resolving remote DBMS indoubt units of recovery . . . . . . . . . . . . . . . . . . . . . 549
Determining the coordinator’s commit or abort decision . . . . . . . . . . . . . . . . . . . 550
Recovering indoubt threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
Resetting the status of an indoubt thread . . . . . . . . . . . . . . . . . . . . . . . . 551

x Administration Guide

||



Chapter 19. Backing up and recovering your data. . . . . . . . . . . . . . . . . 553
Plans for backup and recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Plans for recovery of distributed data . . . . . . . . . . . . . . . . . . . . . . . . . 553
Plans for extended recovery facility toleration . . . . . . . . . . . . . . . . . . . . . . 554
Plans for recovery of indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
Preparation for recovery: a scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 555
Events that occur during recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 556
Tips for maximizing data availability during backup and recovery . . . . . . . . . . . . . . . 561
Where to find recovery information . . . . . . . . . . . . . . . . . . . . . . . . . . 564
How to report recovery information . . . . . . . . . . . . . . . . . . . . . . . . . . 565
How to discard SYSCOPY and SYSLGRNX records. . . . . . . . . . . . . . . . . . . . . 566
Preparations for disaster recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 567
Recommendations for more effective recovery from inconsistency . . . . . . . . . . . . . . . . 569
How to recover multiple objects in parallel . . . . . . . . . . . . . . . . . . . . . . . 571
Automatic fast log apply during RECOVER . . . . . . . . . . . . . . . . . . . . . . . 572
Recovery of page sets and data sets . . . . . . . . . . . . . . . . . . . . . . . . . . 572
Recovery of data to a prior point in time . . . . . . . . . . . . . . . . . . . . . . . . 578
Preparing to recover an entire DB2 subsystem to a prior point in time using image copies or object-level
backups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
Creating essential disaster recovery elements . . . . . . . . . . . . . . . . . . . . . . . 588
Resolving problems with a user-defined work file data set . . . . . . . . . . . . . . . . . . 589
Resolving problems with DB2-managed work file data sets . . . . . . . . . . . . . . . . . . 590
Recovering error ranges for a work file table space . . . . . . . . . . . . . . . . . . . . . 590
Recovering after a conditional restart of DB2 . . . . . . . . . . . . . . . . . . . . . . . 591
Regenerating missing identity column values. . . . . . . . . . . . . . . . . . . . . . . 592
Recovering a table space and all of its indexes . . . . . . . . . . . . . . . . . . . . . . 593
Removing various pending states from LOB and XML table spaces . . . . . . . . . . . . . . . 597
Restoring data by using DSN1COPY . . . . . . . . . . . . . . . . . . . . . . . . . 597
Backing up and restoring data with non-DB2 dump and restore . . . . . . . . . . . . . . . . 598
Recovering accidentally dropped objects . . . . . . . . . . . . . . . . . . . . . . . . 598
Recovering your DB2 system to a given point in time by using the RESTORE SYSTEM utility . . . . . . 604
Recovering by using DB2 restart recovery . . . . . . . . . . . . . . . . . . . . . . . . 614
Recovering by using FlashCopy backups . . . . . . . . . . . . . . . . . . . . . . . . 614
Making catalog definitions consistent with your data after recovery to a prior point in time . . . . . . . 615
Performing remote site recovery from a disaster at a local site . . . . . . . . . . . . . . . . . 617
Backup and recovery involving clone tables . . . . . . . . . . . . . . . . . . . . . . . 619
Data restore of an entire system . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

Chapter 20. Recovering from different DB2 for z/OS problems . . . . . . . . . . . 621
Recovering from IRLM failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
Recovering from z/OS or power failure . . . . . . . . . . . . . . . . . . . . . . . . . 621
Recovering from disk failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
Recovering from application errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

Backing out incorrect application changes (with a quiesce point) . . . . . . . . . . . . . . . . 624
Backing out incorrect application changes (without a quiesce point) . . . . . . . . . . . . . . . 625

Recovering from IMS-related failures . . . . . . . . . . . . . . . . . . . . . . . . . . 625
Recovering from IMS control region failure . . . . . . . . . . . . . . . . . . . . . . . 626
Recovering from IMS indoubt units of recovery . . . . . . . . . . . . . . . . . . . . . . 626
Recovering from IMS application failure . . . . . . . . . . . . . . . . . . . . . . . . 629
Recovering from a DB2 failure in an IMS environment . . . . . . . . . . . . . . . . . . . 629

Recovering from CICS-related failure . . . . . . . . . . . . . . . . . . . . . . . . . . 630
Recovering from CICS application failures. . . . . . . . . . . . . . . . . . . . . . . . 630
Recovering DB2 when CICS is not operational . . . . . . . . . . . . . . . . . . . . . . 631
Recovering DB2 when the CICS attachment facility cannot connect to DB2 . . . . . . . . . . . . . 632
Recovering CICS indoubt units of recovery . . . . . . . . . . . . . . . . . . . . . . . 632
Recovering from CICS attachment facility failure . . . . . . . . . . . . . . . . . . . . . 635

Recovering from subsystem termination . . . . . . . . . . . . . . . . . . . . . . . . . 635
Recovering from temporary resource failure . . . . . . . . . . . . . . . . . . . . . . . . 636
Recovering from active log failures . . . . . . . . . . . . . . . . . . . . . . . . . . . 637

Recovering from being out of space in active logs . . . . . . . . . . . . . . . . . . . . . 637
Recovering from a write I/O error on an active log data set . . . . . . . . . . . . . . . . . . 638

Contents xi

||
||



Recovering from a loss of dual active logging . . . . . . . . . . . . . . . . . . . . . . 639
Recovering from I/O errors while reading the active log . . . . . . . . . . . . . . . . . . . 640

Recovering from archive log failures. . . . . . . . . . . . . . . . . . . . . . . . . . . 642
Recovering from allocation problems with the archive log . . . . . . . . . . . . . . . . . . 642
Recovering from write I/O errors during archive log offload . . . . . . . . . . . . . . . . . 642
Recovering from read I/O errors on an archive data set during recovery . . . . . . . . . . . . . 643
Recovering from insufficient disk space for offload processing . . . . . . . . . . . . . . . . . 644

Recovering from BSDS failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
Recovering from an I/O error on the BSDS . . . . . . . . . . . . . . . . . . . . . . . 645
Recovering from an error that occurs while opening the BSDS . . . . . . . . . . . . . . . . . 646
Recovering from unequal timestamps on BSDSs . . . . . . . . . . . . . . . . . . . . . . 646
Recovering the BSDS from a backup copy . . . . . . . . . . . . . . . . . . . . . . . . 647

Recovering from BSDS or log failures during restart . . . . . . . . . . . . . . . . . . . . . 650
Recovering from failure during log initialization or current status rebuild . . . . . . . . . . . . . 652
Recovering from a failure during forward log recovery . . . . . . . . . . . . . . . . . . . 663
Recovering from a failure during backward log recovery . . . . . . . . . . . . . . . . . . . 669
Recovering from a failure during a log RBA read request . . . . . . . . . . . . . . . . . . . 671
Recovering from unresolvable BSDS or log data set problem during restart. . . . . . . . . . . . . 672
Recovering from a failure resulting from total or excessive loss of log data . . . . . . . . . . . . . 675
Resolving inconsistencies resulting from a conditional restart . . . . . . . . . . . . . . . . . 679

Recovering from DB2 database failure . . . . . . . . . . . . . . . . . . . . . . . . . . 684
Recovering a DB2 subsystem to a prior point in time . . . . . . . . . . . . . . . . . . . . . 685
Recovering from a down-level page set problem. . . . . . . . . . . . . . . . . . . . . . . 686
Recovering from a problem with invalid LOBs . . . . . . . . . . . . . . . . . . . . . . . 688
Recovering from table space I/O errors. . . . . . . . . . . . . . . . . . . . . . . . . . 689
Recovering from DB2 catalog or directory I/O errors . . . . . . . . . . . . . . . . . . . . . 690
Recovering from integrated catalog facility failure . . . . . . . . . . . . . . . . . . . . . . 691

Recovering VSAM volume data sets that are out of space or destroyed . . . . . . . . . . . . . . 691
Recovering from out-of-disk-space or extent limit problems . . . . . . . . . . . . . . . . . . 692

Recovering from referential constraint violation . . . . . . . . . . . . . . . . . . . . . . . 696
Recovering from distributed data facility failure . . . . . . . . . . . . . . . . . . . . . . . 697

Recovering from conversation failure . . . . . . . . . . . . . . . . . . . . . . . . . 697
Recovering from communications database failure . . . . . . . . . . . . . . . . . . . . . 698
Recovering from database access thread failure . . . . . . . . . . . . . . . . . . . . . . 699
Recovering from VTAM failure . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
Recovering from TCP/IP failure . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
Recovering from remote logical unit failure . . . . . . . . . . . . . . . . . . . . . . . 701
Recovering from an indefinite wait condition. . . . . . . . . . . . . . . . . . . . . . . 701
Recovering database access threads after security failure . . . . . . . . . . . . . . . . . . . 702

Performing remote-site disaster recovery . . . . . . . . . . . . . . . . . . . . . . . . . 703
Recovering from a disaster by using system-level backups . . . . . . . . . . . . . . . . . . 703
Restoring data from image copies and archive logs . . . . . . . . . . . . . . . . . . . . . 704
Recovering from disasters by using a tracker site . . . . . . . . . . . . . . . . . . . . . 718
Using data mirroring for disaster recovery . . . . . . . . . . . . . . . . . . . . . . . 727

Scenarios for resolving problems with indoubt threads . . . . . . . . . . . . . . . . . . . . 733
Scenario: Recovering from communication failure . . . . . . . . . . . . . . . . . . . . . 735
Scenario: Making a heuristic decision about whether to commit or abort an indoubt thread . . . . . . . 737
Scenario: Recovering from an IMS outage that results in an IMS cold start . . . . . . . . . . . . . 739
Scenario: Recovering from a DB2 outage at a requester that results in a DB2 cold start . . . . . . . . . 740
Scenario: What happens when the wrong DB2 subsystem is cold started . . . . . . . . . . . . . 745
Scenario: Correcting damage from an incorrect heuristic decision about an indoubt thread . . . . . . . 746

Chapter 21. Reading log records . . . . . . . . . . . . . . . . . . . . . . . . 749
Contents of the log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749

Unit of recovery log records . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749
Checkpoint log records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754
Database page set control records . . . . . . . . . . . . . . . . . . . . . . . . . . 754
Other exception information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755

The physical structure of the log . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755
Physical and logical log records . . . . . . . . . . . . . . . . . . . . . . . . . . . 755
The log record header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756

xii Administration Guide

||



The log control interval definition (LCID) . . . . . . . . . . . . . . . . . . . . . . . . 757
Log record type codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759
Log record subtype codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760
Interpreting data change log records. . . . . . . . . . . . . . . . . . . . . . . . . . 761

Reading log records with IFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
Gathering active log records into a buffer . . . . . . . . . . . . . . . . . . . . . . . . 762
Reading specific log records (IFCID 0129) . . . . . . . . . . . . . . . . . . . . . . . . 763
Reading complete log data (IFCID 0306) . . . . . . . . . . . . . . . . . . . . . . . . 764

Reading log records with OPEN, GET, and CLOSE . . . . . . . . . . . . . . . . . . . . . . 766
JCL DD statements for DB2 stand-alone log services . . . . . . . . . . . . . . . . . . . . 767
Data sharing members that participate in a read. . . . . . . . . . . . . . . . . . . . . . 769
Registers and return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
Stand-alone log OPEN request. . . . . . . . . . . . . . . . . . . . . . . . . . . . 771
Stand-alone log GET request . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
Stand-alone log CLOSE request . . . . . . . . . . . . . . . . . . . . . . . . . . . 774
Sample application that uses stand-alone log services . . . . . . . . . . . . . . . . . . . . 775

Reading log records with the log capture exit routine . . . . . . . . . . . . . . . . . . . . . 776

Part 4. Appendixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779

Appendix A. Exit routines . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
Connection routines and sign-on routines . . . . . . . . . . . . . . . . . . . . . . . . . 781

Specifying connection and sign-on routines . . . . . . . . . . . . . . . . . . . . . . . 782
Sample connection and sign-on routines . . . . . . . . . . . . . . . . . . . . . . . . 782
When connection and sign-on routines are taken . . . . . . . . . . . . . . . . . . . . . 783
Exit parameter list for connection and sign-on routines . . . . . . . . . . . . . . . . . . . 784
Authorization ID parameter list for connection and sign-on routines . . . . . . . . . . . . . . . 785
Input values for connection routines. . . . . . . . . . . . . . . . . . . . . . . . . . 786
Input values for sign-on routines . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
Expected output for connection and sign-on routines . . . . . . . . . . . . . . . . . . . . 787
Processing in sample connection and sign-on routines . . . . . . . . . . . . . . . . . . . . 788
Performance considerations for connection and sign-on routines . . . . . . . . . . . . . . . . 789
Debugging connection and sign-on routines . . . . . . . . . . . . . . . . . . . . . . . 790
Session variables in connection and sign-on routines . . . . . . . . . . . . . . . . . . . . 791

Access control authorization exit routines . . . . . . . . . . . . . . . . . . . . . . . . . 792
Specifying access control authorization routines . . . . . . . . . . . . . . . . . . . . . . 794
The default access control authorization routine . . . . . . . . . . . . . . . . . . . . . . 794
When access control authorization routines are taken . . . . . . . . . . . . . . . . . . . . 794
Considerations for access control authorization routines . . . . . . . . . . . . . . . . . . . 795
Parameter list for access control authorization routines . . . . . . . . . . . . . . . . . . . 799
Expected output for access control authorization routines . . . . . . . . . . . . . . . . . . 808
Debugging access control authorization routines. . . . . . . . . . . . . . . . . . . . . . 811
Determining whether the access control authorization routine is active . . . . . . . . . . . . . . 811

Edit routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
Specifying edit routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
When edit routines are taken . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813
Parameter list for edit routines . . . . . . . . . . . . . . . . . . . . . . . . . . . 813
Incomplete rows and edit routines . . . . . . . . . . . . . . . . . . . . . . . . . . 814
Expected output for edit routines. . . . . . . . . . . . . . . . . . . . . . . . . . . 815

Validation routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
Specifying validation routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
When validation routines are taken . . . . . . . . . . . . . . . . . . . . . . . . . . 816
Parameter list for validation routines . . . . . . . . . . . . . . . . . . . . . . . . . 816
Incomplete rows and validation routines . . . . . . . . . . . . . . . . . . . . . . . . 818
Expected output for validation routines . . . . . . . . . . . . . . . . . . . . . . . . 818

Date and time routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
Specifying date and time routines . . . . . . . . . . . . . . . . . . . . . . . . . . 819
When date and time routines are taken. . . . . . . . . . . . . . . . . . . . . . . . . 820
Parameter list for date and time routines . . . . . . . . . . . . . . . . . . . . . . . . 820
Expected output for date and time routines . . . . . . . . . . . . . . . . . . . . . . . 821

Contents xiii



Conversion procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822
Specifying conversion procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 822
When conversion procedures are taken . . . . . . . . . . . . . . . . . . . . . . . . . 823
Parameter list for conversion procedures . . . . . . . . . . . . . . . . . . . . . . . . 823
Expected output for conversion procedures . . . . . . . . . . . . . . . . . . . . . . . 824

Field procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825
Field definition for field procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 826
Specifying field procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826
When field procedures are taken . . . . . . . . . . . . . . . . . . . . . . . . . . . 827
Control blocks for execution of field procedures . . . . . . . . . . . . . . . . . . . . . . 828
Field-definition (function code 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . 831
Field-encoding (function code 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 834
Field-decoding (function code 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 835

Log capture routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
Specifying log capture routines . . . . . . . . . . . . . . . . . . . . . . . . . . . 838
When log capture routines are taken . . . . . . . . . . . . . . . . . . . . . . . . . 838
Parameter list for log capture routines . . . . . . . . . . . . . . . . . . . . . . . . . 838

Routines for dynamic plan selection in CICS . . . . . . . . . . . . . . . . . . . . . . . . 840
Routine for the CICS transaction invocation stored procedure . . . . . . . . . . . . . . . . . . 840
General guidelines for writing exit routines . . . . . . . . . . . . . . . . . . . . . . . . 840

Coding rules for exit routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840
Modifying exit routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841
Execution environment for exit routines . . . . . . . . . . . . . . . . . . . . . . . . 841
Registers at invocation for exit routines. . . . . . . . . . . . . . . . . . . . . . . . . 841
Parameter list for exit routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 842

Row formats for edit and validation routines . . . . . . . . . . . . . . . . . . . . . . . . 843
Column boundaries for edit and validation routines . . . . . . . . . . . . . . . . . . . . 843
Null values for edit procedures, field procedures, and validation routines . . . . . . . . . . . . . 844
Fixed-length rows for edit and validation routines . . . . . . . . . . . . . . . . . . . . . 844
Varying-length rows for edit and validation routines . . . . . . . . . . . . . . . . . . . . 844
Varying-length rows with nulls for edit and validation routines . . . . . . . . . . . . . . . . 845
EDITPROCs and VALIDPROCs for handling basic and reordered row formats . . . . . . . . . . . 845
Converting basic row format table spaces with edit and validation routines to reordered row format . . . . 846
Dates, times, and timestamps for edit and validation routines . . . . . . . . . . . . . . . . . 847
Parameter list for row format descriptions. . . . . . . . . . . . . . . . . . . . . . . . 848
DB2 codes for numeric data in edit and validation routines . . . . . . . . . . . . . . . . . . 849

RACF access control module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851

Appendix B. Stored procedures for administration . . . . . . . . . . . . . . . . 853
DSNACICS stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853

The DSNACICX user exit routine. . . . . . . . . . . . . . . . . . . . . . . . . . . 859
DSNLEUSR stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861
DSNAIMS stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864
DSNAIMS2 stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868
ADMIN_COMMAND_DB2 stored procedure . . . . . . . . . . . . . . . . . . . . . . . . 873
ADMIN_COMMAND_DSN stored procedure . . . . . . . . . . . . . . . . . . . . . . . 885
ADMIN_COMMAND_UNIX stored procedure . . . . . . . . . . . . . . . . . . . . . . . 887
ADMIN_DS_BROWSE stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . 891
ADMIN_DS_DELETE stored procedure. . . . . . . . . . . . . . . . . . . . . . . . . . 894
ADMIN_DS_LIST stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 897
ADMIN_DS_RENAME stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . 902
ADMIN_DS_SEARCH stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . 905
ADMIN_DS_WRITE stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 908
ADMIN_INFO_HOST stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . 912
ADMIN_INFO_SSID stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 915
ADMIN_INFO_SYSPARM stored procedure . . . . . . . . . . . . . . . . . . . . . . . . 917
ADMIN_JOB_CANCEL stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . 921
ADMIN_JOB_FETCH stored procedure. . . . . . . . . . . . . . . . . . . . . . . . . . 923
ADMIN_JOB_QUERY stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . 926
ADMIN_JOB_SUBMIT stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . 930
ADMIN_UTL_SCHEDULE stored procedure . . . . . . . . . . . . . . . . . . . . . . . . 933

xiv Administration Guide

||

||

||
||

||
||



ADMIN_UTL_SORT stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 942
Common SQL API stored procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 949

Versioning of XML documents. . . . . . . . . . . . . . . . . . . . . . . . . . . . 950
XML input documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951
XML output documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952
XML message documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953
GET_CONFIG stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 954
GET_MESSAGE stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 973
GET_SYSTEM_INFO stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . 982

Troubleshooting DB2 stored procedures . . . . . . . . . . . . . . . . . . . . . . . . . 996

Information resources for DB2 for z/OS and related products . . . . . . . . . . . 999

How to obtain DB2 information . . . . . . . . . . . . . . . . . . . . . . . . 1005

How to use the DB2 library . . . . . . . . . . . . . . . . . . . . . . . . . . 1009

Notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013
Programming Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . 1015

General-use Programming Interface and Associated Guidance Information . . . . . . . . . . . . 1015
Product-sensitive Programming Interface and Associated Guidance Information. . . . . . . . . . . 1015

Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061

Contents xv

||
||
||
||
||
||
||
||
||



xvi Administration Guide



About this information

This information provides guidance information that you can use to perform a
variety of administrative tasks with DB2® for z/OS® (DB2).

Information about DB2 concepts, which was present in previous editions of this
book, is now provided in Introduction to DB2 for z/OS.

This information assumes that your DB2 subsystem is running in Version 9.1
new-function mode. Generally, new functions that are described, including changes
to existing functions, statements, and limits, are available only in new-function
mode. Two exceptions to this general statement are new and changed utilities and
optimization enhancements, which are also available in conversion mode unless
stated otherwise.

Who should read this information
This information is primarily intended for system and database administrators. It
assumes that the user is familiar with:
v The basic concepts and facilities of DB2
v Time Sharing Option (TSO) and Interactive System Productivity Facility (ISPF)
v The basic concepts of Structured Query Language (SQL)
v The basic concepts of Customer Information Control System (CICS®)
v The basic concepts of Information Management System (IMS™)
v How to define and allocate z/OS data sets using job control language (JCL).

Certain tasks require additional skills, such as knowledge of Transmission Control
Protocol/Internet Protocol (TCP/IP) or Virtual Telecommunications Access Method
(VTAM®) to set up communication between DB2 subsystems, or knowledge of the
IBM® System Modification Program (SMP/E) to install IBM licensed programs.

DB2 Utilities Suite

Important: In this version of DB2 for z/OS, the DB2 Utilities Suite is available as
an optional product. You must separately order and purchase a license to such
utilities, and discussion of those utility functions in this publication is not intended
to otherwise imply that you have a license to them.

The DB2 Utilities Suite is designed to work with the DFSORT™ program, which
you are licensed to use in support of the DB2 utilities even if you do not otherwise
license DFSORT for general use. If your primary sort product is not DFSORT,
consider the following informational APARs mandatory reading:
v II14047/II14213: USE OF DFSORT BY DB2 UTILITIES
v II13495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL

ARCHITECTURE

These informational APARs are periodically updated.
Related information

DB2 utilities packaging (Utility Guide)

© Copyright IBM Corp. 1982, 2009 xvii

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.ugref/db2z_utlpackaging.htm


Terminology and citations
In this information, DB2 Version 9.1 for z/OS is referred to as ″DB2 for z/OS.″ In
cases where the context makes the meaning clear, DB2 for z/OS is referred to as
″DB2.″ When this information refers to titles of DB2 for z/OS books, a short title is
used. (For example, ″See DB2 SQL Reference″ is a citation to IBM DB2 Version 9.1 for
z/OS SQL Reference.)

When referring to a DB2 product other than DB2 for z/OS, this information uses
the product’s full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

OMEGAMON®

Refers to any of the following products:
v IBM Tivoli® OMEGAMON XE for DB2 Performance Expert on z/OS
v IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS
v IBM DB2 Performance Expert for Multiplatforms and Workgroups
v IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS Represents CICS Transaction Server for z/OS.

IMS Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF®

Represents the functions that are provided by the RACF component of the
z/OS Security Server.

Accessibility features for DB2 Version 9.1 for z/OS
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including DB2 Version 9.1 for z/OS. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size

Tip: The Information Management Software for z/OS Solutions Information
Center (which includes information for DB2 Version 9.1 for z/OS) and its related
publications are accessibility-enabled for the IBM Home Page Reader. You can
operate all features using the keyboard instead of the mouse.

Keyboard navigation

You can access DB2 Version 9.1 for z/OS ISPF panel functions by using a keyboard
or keyboard shortcut keys.

xviii Administration Guide

|



For information about navigating the DB2 Version 9.1 for z/OS ISPF panels using
TSO/E or ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User’s Guide, and
the z/OS ISPF User’s Guide. These guides describe how to navigate each interface,
including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their
functions.

Related accessibility information

Online documentation for DB2 Version 9.1 for z/OS is available in the Information
Management Software for z/OS Solutions Information Center, which is available at
the following Web site: http://publib.boulder.ibm.com/infocenter/dzichelp

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the commitment that IBM has to accessibility.

How to send your comments
Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 for z/OS documentation.
You can use the following methods to provide comments:
v Send your comments by e-mail to db2zinfo@us.ibm.com and include the name

of the product, the version number of the product, and the number of the book.
If you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

v You can send comments from the Web. Visit the DB2 for z/OS - Technical
Resources Web site at:

http://www.ibm.com/support/docview.wss?&uid=swg27011656

This Web site has an online reader comment form that you can use to send
comments.

v You can also send comments by using the feedback link at the footer of each
page in the Information Management Software for z/OS Solutions Information
Center at http://publib.boulder.ibm.com/infocenter/db2zhelp.

How to read syntax diagrams
Certain conventions apply to the syntax diagrams that are used in IBM
documentation.

Apply the following rules when reading the syntax diagrams that are used in DB2
for z/OS documentation:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.

v Required items appear on the horizontal line (the main path).

About this information xix



�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

��
optional_item

required_item ��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

xx Administration Guide

|
|
|



�� required_item fragment-name ��

fragment-name:

required_item
optional_name

v With the exception of XPath keywords, keywords appear in uppercase (for
example, FROM). Keywords must be spelled exactly as shown. XPath keywords
are defined as lowercase names, and must be spelled exactly as shown. Variables
appear in all lowercase letters (for example, column-name). They represent
user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

About this information xxi

|||||||||||||
|

|

||||||||||||||||

|

|
|
|



xxii Administration Guide



Part 1. Designing a database

© Copyright IBM Corp. 1982, 2009 1



2 Administration Guide



Chapter 1. Database objects and relationships

The general tasks that are necessary to design a database are logical data modeling
and physical data modeling.

In logical data modeling, you design a model of the data without paying attention
to specific functions and capabilities of the DBMS that will store the data. In fact,
you could even build a logical data model without knowing which DBMS you will
use.

Physical data modeling begins when you move closer to a physical
implementation. The primary purpose of the physical design stage is to optimize
performance while ensuring the integrity of the data.

Logical database design with the entity-relationship model
Before you implement a database, you should plan or design the database so that
it satisfies all requirements.

Designing and implementing a successful database, one that satisfies the needs of
an organization, requires a logical data model. Logical data modeling is the process
of documenting the comprehensive business information requirements in an
accurate and consistent format. Analysts who do data modeling define the data
items and the business rules that affect those data items. The process of data
modeling acknowledges that business data is a vital asset that the organization
needs to understand and carefully manage. This section contains information that
was adapted from Handbook of Relational Database Design.

Consider the following business facts that a manufacturing company needs to
represent in its data model:
v Customers purchase products
v Products consist of parts
v Suppliers manufacture parts
v Warehouses store parts
v Transportation vehicles move the parts from suppliers to warehouses and then

to manufacturers

These are all business facts that a manufacturing company’s logical data model
needs to include. Many people inside and outside the company rely on
information that is based on these facts. Many reports include data about these
facts.

Any business, not just manufacturing companies, can benefit from the task of data
modeling. Database systems that supply information to decision makers,
customers, suppliers, and others are more successful if their foundation is a sound
data model.

Modeling your data
Data analysts can perform the task of data modeling in a variety of ways.

Many data analysts follow these steps:

© Copyright IBM Corp. 1982, 2009 3



1. Build critical user views.
a. Carefully examining a single business activity or function.
b. Develop a user view, which is the model or representation of critical

information that the business activity requires.
This initial stage of the data modeling process is highly interactive. Because
data analysts cannot fully understand all areas of the business that they are
modeling, they work closely with the actual users. Working together,
analysts and users define the major entities (significant objects of interest)
and determine the general relationships between these entities.
In a later stage, the analyst combines each individual user view with all the
other user views into a consolidated logical data model.

2. Add keys to user views
Key business rules affect insert, update, and delete operations on the data. For
example, a business rule might require that each customer entity have at least
one unique identifier. Any attempt to insert or update a customer identifier that
matches another customer identifier is not valid. In a data model, a unique
identifier is called a primary key.

3. Add detail to user views and validate them.
a. Add other descriptive details that are less vital.
b. Associate these descriptive details, called attributes, to the entities.

For example, a customer entity probably has an associated phone number.
The phone number is a non-key attribute of the customer entity.

c. Validate all the user views
To validate the views, analysts use the normalization process and process
models. Process models document the details of how the business will use
the data.

4. Determine additional business rules that affect attributes.
a. Clarify the data-driven business rules.

Data-driven business rules are constraints on particular data values. These
constraints need to be true, regardless of any particular processing
requirements.
The advantage to defining data-driven business rules during the data
design stage, rather than during application design is that programmers of
many applications don’t need to write code to enforce these business rules.
For example, Assume that a business rule requires that a customer entity
have a phone number, an address, or both. If this rule doesn’t apply to the
data itself, programmers must develop, test, and maintain applications that
verify the existence of one of these attributes. Data-driven business
requirements have a direct relationship with the data, thereby relieving
programmers from extra work.

5. Integrate user views.
a. Combine into a consolidated logical data model the newly created different

user views.
b. Integrate other data models that already exist in the organization with the

new consolidated logical data model.
At this stage, analysts also strive to make their data model flexible so that it
can support the current business environment and possible future changes. For
example, assume that a retail company operates in a single country and that
business plans include expansion to other countries. Armed with knowledge of
these plans, analysts can build the model so that it is flexible enough to
support expansion into other countries.

4 Administration Guide



Recommendations for logical data modeling
To build sound data models, analysts follow a well-planned methodology.

Follow these recommendation for building quality data models:
v Work interactively with the users as much as possible.
v Use diagrams to represent as much of the logical data model as possible.
v Build a data dictionary to supplement the logical data model diagrams.

A data dictionary is a repository of information about an organization’s
application programs, databases, logical data models, users, and authorizations.
A data dictionary can be manual or automated.

Practical examples of data modeling
To better understand the key activities that are necessary for creating valid data
models, investigate one or more real-life data modeling scenarios.

You begin by defining your entities, the significant objects of interest. Entities are
the things about which you want to store information. For example, you might
want to define an entity, called EMPLOYEE, for employees because you need to
store information about everyone who works for your organization. You might also
define an entity, called DEPARTMENT, for departments.

Next, you define primary keys for your entities. A primary key is a unique
identifier for an entity. In the case of the EMPLOYEE entity, you probably need to
store a large amount of information. However, most of this information (such as
gender, birth date, address, and hire date) would not be a good choice for the
primary key. In this case, you could choose a unique employee ID or number
(EMPLOYEE_NUMBER) as the primary key. In the case of the DEPARTMENT
entity, you could use a unique department number (DEPARTMENT_NUMBER) as
the primary key.

After you have decided on the entities and their primary keys, you can define the
relationships that exist between the entities. The relationships are based on the
primary keys. If you have an entity for EMPLOYEE and another entity for
DEPARTMENT, the relationship that exists is that employees are assigned to
departments. You can read more about this topic in the next section.

After defining the entities, their primary keys, and their relationships, you can
define additional attributes for the entities. In the case of the EMPLOYEE entity,
you might define the following additional attributes:
v Birth date
v Hire date
v Home address
v Office phone number
v Gender
v Resume

Lastly, you normalize the data.

Entities for different types of relationships
In a relational database, you can express several types of relationships.

Chapter 1. Database objects and relationships 5



Consider the possible relationships between employees and departments. If a given
employee can work in only one department, this relationship is one-to-one for
employees. One department usually has many employees; this relationship is
one-to-many for departments. Relationships can be one-to-many, many-to-one,
one-to-one, or many-to- many.

Subsections:
v “One-to-one relationships”
v “One-to-many and many-to-one relationships”
v “Many-to-many relationships” on page 7
v “Business rules for relationships” on page 7

The type of a given relationship can vary, depending on the specific environment.
If employees of a company belong to several departments, the relationship
between employees and departments is many-to-many.

You need to define separate entities for different types of relationships. When
modeling relationships, you can use diagram conventions to depict relationships
by using different styles of lines to connect the entities.

One-to-one relationships

When you are doing logical database design, one-to-one relationships are
bidirectional relationships, which means that they are single-valued in both
directions. For example, an employee has a single resume; each resume belongs to
only one person. The previous figure illustrates that a one-to-one relationship exists
between the two entities. In this case, the relationship reflects the rules that an
employee can have only one resume and that a resume can belong to only one
employee.

One-to-many and many-to-one relationships

A one-to-many relationship occurs when one entity has a multivalued relationship
with another entity. In the following figure, you see that a one-to-many
relationship exists between the two entities—employee and department. This figure
reinforces the business rules that a department can have many employees, but that
each individual employee can work for only one department.

Employee Resume
A resume is owned

by an employee

An employee
has a resume

Figure 1. Assigning one-to-one facts to an entity

Employee Department
One department can

have many employees

Many employees work
for one department

Figure 2. Assigning many-to-one facts to an entity

6 Administration Guide



Many-to-many relationships

A many-to-many relationship is a relationship that is multivalued in both
directions. The following figure illustrates this kind of relationship. An employee
can work on more than one project, and a project can have more than one
employee assigned.

Business rules for relationships

Whether a given relationship is one-to-one, one-to-many, many-to-one, or
many-to-many, your relationships need to make good business sense. Therefore,
database designers and data analysts can be more effective when they have a good
understanding of the business. If they understand the data, the applications, and
the business rules, they can succeed in building a sound database design.

When you define relationships, you have a big influence on how smoothly your
business runs. If you don’t do a good job at this task, your database and associated
applications are likely to have many problems, some of which may not manifest
themselves for years.

Entity attributes
When you define attributes for the entities, you generally work with the data
administrator to decide on names, data types, and appropriate values for the
attributes.

Attribute names
Most organizations have naming conventions. In addition to following these
conventions, data analysts also base attribute definitions on class words.

A class word is a single word that indicates the nature of the data that the attribute
represents.

The class word NUMBER indicates an attribute that identifies the number of an
entity. Attribute names that identify the numbers of entities should therefore
include the class word of NUMBER. Some examples are EMPLOYEE_NUMBER,
PROJECT_NUMBER, and DEPARTMENT_NUMBER.

When an organization does not have well-defined guidelines for attribute names,
data analysts try to determine how the database designers have historically named
attributes. Problems occur when multiple individuals are inventing their own
naming schemes without consulting one another.

Data types of attributes
You must specify a data type for each attribute of an entity. Most organizations
have well-defined guidelines for using the different data types.

Example: You might use the following data types for attributes of the EMPLOYEE
entity:

Employee Projects
Projects are worked on

by many employees

Employees work on
many projects

Figure 3. Assigning many-to-many facts to an entity

Chapter 1. Database objects and relationships 7



v EMPLOYEE_NUMBER: CHAR(6)
v EMPLOYEE_LAST_NAME: VARCHAR(15)
v EMPLOYEE_HIRE_DATE: DATE
v EMPLOYEE_SALARY_AMOUNT: DECIMAL(9,2)

The data types that you choose are business definitions of the data type. During
physical database design you might need to change data type definitions or use a
subset of these data types. The database or the host language might not support all
of these definitions, or you might make a different choice for performance reasons.

For example, you might need to represent monetary amounts, but DB2 and many
host languages do not have a data type MONEY. In the United States, a natural
choice for the SQL data type in this situation is DECIMAL(10,2) to represent
dollars. But you might also consider the INTEGER data type for fast, efficient
performance.
Related reference

CREATE TABLE (SQL Reference)

Appropriate values for attributes
When you design a database, you need to decide what values are acceptable for
the various attributes of an entity.

For example, you would not want to allow numeric data in an attribute for a
person’s name. The data types that you choose limit the values that apply to a
given attribute, but you can also use other mechanisms. These other mechanisms
are domains, null values, and default values.

Subsections:
v “Domain”
v “Null values” on page 9
v “Default values” on page 9

Domain

A domain describes the conditions that an attribute value must meet to be a valid
value. Sometimes the domain identifies a range of valid values. By defining the
domain for a particular attribute, you apply business rules to ensure that the data
will make sense.

Example 1: A domain might state that a phone number attribute must be a 10-digit
value that contains only numbers. You would not want the phone number to be
incomplete, nor would you want it to contain alphabetic or special characters and
thereby be invalid. You could choose to use either a numeric data type or a
character data type. However, the domain states the business rule that the value
must be a 10-digit value that consists of numbers.

Example 2: A domain might state that a month attribute must be a 2-digit value
from 01 to 12. Again, you could choose to use datetime, character, or numeric data
types for this value, but the domain demands that the value must be in the range
of 01 through 12. In this case, incorporating the month into a datetime data type is
probably the best choice. This decision should be reviewed again during physical
database design.

8 Administration Guide

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_createtable.htm#db2z_sql_createtable


Null values

When you are designing attributes for your entities, you will sometimes find that
an attribute does not have a value for every instance of the entity. For example,
you might want an attribute for a person’s middle name, but you can’t require a
value because some people have no middle name. For these occasions, you can
define the attribute so that it can contain null values.

A null value is a special indicator that represents the absence of a value. The value
can be absent because it is unknown, not yet supplied, or nonexistent. The DBMS
treats the null value as an actual value, not as a zero value, a blank, or an empty
string.

Just as some attributes should be allowed to contain null values, other attributes
should not contain null values.

Example: For the EMPLOYEE entity, you might not want to allow the attribute
EMPLOYEE_LAST_NAME to contain a null value.

Default values

In some cases, you may not want a given attribute to contain a null value, but you
don’t want to require that the user or program always provide a value. In this
case, a default value might be appropriate.

A default value is a value that applies to an attribute if no other valid value is
available.

Example: Assume that you don’t want the EMPLOYEE_HIRE_DATE attribute to
contain null values and that you don’t want to require users to provide this data. If
data about new employees is generally added to the database on the employee’s
first day of employment, you could define a default value of the current date.

Entity normalization
After you define entities and decide on attributes for the entities, you normalize
entities to avoid redundancy.

An entity is normalized if it meets a set of constraints for a particular normal form,
which this section describes. Normalization helps you avoid redundancies and
inconsistencies in your data. This section summarizes rules for first, second, third,
and fourth normal forms of entities, and it describes reasons why you should or
shouldn’t follow these rules.

Subsections:
v “First normal form” on page 10
v “Second normal form” on page 10
v “Third normal form” on page 11
v “Fourth normal form” on page 13

The rules for normal form are cumulative. In other words, for an entity to satisfy
the rules of second normal form, it also must satisfy the rules of first normal form.
An entity that satisfies the rules of fourth normal form also satisfies the rules of
first, second, and third normal form.

Chapter 1. Database objects and relationships 9



In this section, you will see many references to the word instance. In the context of
logical data modeling, an instance is one particular occurrence. An instance of an
entity is a set of data values for all of the attributes that correspond to that entity.

Example: The following figure shows one instance of the EMPLOYEE entity.

First normal form

A relational entity satisfies the requirement of first normal form if every instance of
an entity contains only one value, never multiple repeating attributes. Repeating
attributes, often called a repeating group, are different attributes that are inherently
the same. In an entity that satisfies the requirement of first normal form, each
attribute is independent and unique in its meaning and its name.

Example: Assume that an entity contains the following attributes:
EMPLOYEE_NUMBER
JANUARY_SALARY_AMOUNT
FEBRUARY_SALARY_AMOUNT
MARCH_SALARY_AMOUNT

This situation violates the requirement of first normal form, because
JANUARY_SALARY_AMOUNT, FEBRUARY_SALARY_AMOUNT, and
MARCH_SALARY_AMOUNT are essentially the same attribute, EMPLOYEE_
MONTHLY_SALARY_AMOUNT.

Second normal form

An entity is in second normal form if each attribute that is not in the primary key
provides a fact that depends on the entire key. A violation of the second normal
form occurs when a nonprimary key attribute is a fact about a subset of a
composite key.

Example: An inventory entity records quantities of specific parts that are stored at
particular warehouses. The following figure shows the attributes of the inventory
entity.

Here, the primary key consists of the PART and the WAREHOUSE attributes
together. Because the attribute WAREHOUSE_ADDRESS depends only on the
value of WAREHOUSE, the entity violates the rule for second normal form. This
design causes several problems:

Figure 4. The EMPLOYEE entity

Figure 5. Entity in violation of the second normal form

10 Administration Guide



v Each instance for a part that this warehouse stores repeats the address of the
warehouse.

v If the address of the warehouse changes, every instance referring to a part that is
stored in that warehouse must be updated.

v Because of the redundancy, the data might become inconsistent. Different
instances could show different addresses for the same warehouse.

v If at any time the warehouse has no stored parts, the address of the warehouse
might not exist in any instances in the entity.

To satisfy second normal form, the information in the previous figure would be in
two entities, as the following figure shows.

Third normal form

An entity is in third normal form if each nonprimary key attribute provides a fact
that is independent of other non-key attributes and depends only on the key. A
violation of the third normal form occurs when a nonprimary attribute is a fact
about another non-key attribute.

Figure 6. Entities that satisfy the second normal form

Figure 7. Results of an update in a table that violates the third normal form

Chapter 1. Database objects and relationships 11



Example: The first entity in the previous figure contains the attributes
EMPLOYEE_NUMBER and DEPARTMENT_NUMBER. Suppose that a program or
user adds an attribute, DEPARTMENT_NAME, to the entity. The new attribute
depends on DEPARTMENT_NUMBER, whereas the primary key is on the
EMPLOYEE_NUMBER attribute. The entity now violates third normal form.

Changing the DEPARTMENT_NAME value based on the update of a single
employee, David Brown, does not change the DEPARTMENT_NAME value for
other employees in that department. The updated version of the entity as shown in
the previous figure illustrates the resulting inconsistency. Additionally, updating
the DEPARTMENT_ NAME in this table does not update it in any other table that
might contain a DEPARTMENT_NAME column.

You can normalize the entity by modifying the EMPLOYEE_DEPARTMENT entity
and creating two new entities: EMPLOYEE and DEPARTMENT. The following
figure shows the new entities. The DEPARTMENT entity contains attributes for
DEPARTMENT_NUMBER and DEPARTMENT_NAME. Now, an update such as
changing a department name is much easier. You need to make the update only to
the DEPARTMENT entity.

Figure 8. Employee and department entities that satisfy the third normal form

12 Administration Guide



Fourth normal form

An entity is in fourth normal form if no instance contains two or more
independent, multivalued facts about an entity.

Example: Consider the EMPLOYEE entity. Each instance of EMPLOYEE could have
both SKILL_CODE and LANGUAGE_CODE. An employee can have several skills
and know several languages. Two relationships exist, one between employees and
skills, and one between employees and languages. An entity is not in fourth
normal form if it represents both relationships, as the previous figure shows.

Instead, you can avoid this violation by creating two entities that represent both
relationships, as the following figure shows.

If, however, the facts are interdependent (that is, the employee applies certain
languages only to certain skills), you should not split the entity.

You can put any data into fourth normal form. A good rule to follow when doing
logical database design is to arrange all the data in entities that are in fourth
normal form. Then decide whether the result gives you an acceptable level of
performance. If the performance is not acceptable, denormalizing your design is a
good approach to improving performance.

Logical database design with Unified Modeling Language
You can use the Unified Modeling Language (UML) to create a model of your
database design.

The Object Management Group is a consortium that created the UML standard.
UML modeling is based on object-oriented programming principals. The basic
difference between the entity-relationship model and the UML model is that,
instead of designing entities, you model objects. UML defines a standard set of
modeling diagrams for all stages of developing a software system. Conceptually,
UML diagrams are like the blueprints for the design of a software development
project.

Some examples of UML diagrams are as follows:

Figure 9. Entity in violation of the fourth normal form

Figure 10. Entities that satisfy the fourth normal form

Chapter 1. Database objects and relationships 13



Class Identifies high-level entities, known as classes. A class describes a set of
objects that have the same attributes. A class diagram shows the
relationships between classes.

Use case
Presents a high-level view of a system from the user’s perspective. A use
case diagram defines the interactions between users and applications or
between applications. These diagrams graphically depict system behavior.
You can work with use-case diagrams to capture system requirements,
learn how the system works, and specify system behavior.

Activity
Models the workflow of a business process, typically by defining rules for
the sequence of activities in the process. For example, an accounting
company can use activity diagrams to model financial transactions.

Interaction
Shows the required sequence of interactions between objects. Interaction
diagrams can include sequence diagrams and collaboration diagrams.
v Sequence diagrams show object interactions in a time-based sequence

that establishes the roles of objects and helps determine class
responsibilities and interfaces.

v Collaboration diagrams show associations between objects that define
the sequence of messages that implement an operation or a transaction.

Component
Shows the dependency relationships between components, such as main
programs and subprograms.

Developers can graphically represent the architecture of a database and how it
interacts with applications using one of many available UML modeling tools.
Similarities exist between components of the entity-relationship model and UML
diagrams. For example, the class structure corresponds closely to the entity
structure.

The logical data model provides an overall view of the captured business
requirements as they pertain to data entities. The data model diagram graphically
represents the physical data model. The physical data model applies the logical
data model’s captured requirements to specific DBMS languages. Physical data
models also capture the lower-level detail of a DBMS database.

Database designers can customize the data model diagram from other UML
diagrams, which allows them to work with concepts and terminology, such as
columns, tables, and relationships, with which they are already familiar.
Developers can also transform a logical data model into a physical data model.

Because the data model diagram includes diagrams for modeling an entire system,
it allows database designers, application developers, and other development team
members to share and track business requirements throughout development. For
example, database designers can capture information, such as constraints, triggers,
and indexes, directly on the UML diagram. Developers can also transfer between
object and data models and use basic transformation types such as many-to-many
relationships.

14 Administration Guide



Physical database design
After you complete the logical design of your database, you now move to the
physical design. The purpose of building a physical design of your database is to
optimize performance while ensuring data integrity by avoiding unnecessary data
redundancies.

During physical design, you transform the entities into tables, the instances into
rows, and the attributes into columns. You and your colleagues must decide on
many factors that affect the physical design, some of which are listed below.
v How to translate entities into physical tables
v What attributes to use for columns of the physical tables
v Which columns of the tables to define as keys
v What indexes to define on the tables
v What views to define on the tables
v How to denormalize the tables
v How to resolve many-to-many relationships

Physical design is the time when you abbreviate the names that you chose during
logical design. For example, you can abbreviate the column name that identifies
employees, EMPLOYEE_NUMBER, to EMPNO. In previous versions of DB2, you
needed to abbreviate column and table names to fit the physical constraint of an
18-byte limit. Beginning with DB2 version 8, the column name size was increased
to a 30- byte maximum and the table names size was increased to a 128-byte
maximum.

The task of building the physical design is a job that truly never ends. You need to
continually monitor the performance and data integrity characteristics of the
database as time passes. Many factors necessitate periodic refinements to the
physical design.

DB2 lets you change many of the key attributes of your design with ALTER SQL
statements. For example, assume that you design a partitioned table so that it will
store 36 months’ worth of data. Later you discover that you need to extend that
design to hold 84 months’ worth of data. You can add or rotate partitions for the
current 36 months to accommodate the new design.

The remainder of this chapter includes some valuable information that can help
you as you build and refine your database’s physical design.

Denormalization of tables
During physical design, analysts transform the entities into tables and the
attributes into columns.

Denormalization is a key step in the task of building a physical relational database
design. It is the intentional duplication of columns in multiple tables, and the
consequence is increased data redundancy. For more information, see Introduction
to DB2 for z/OS.

The warehouse address column first appears as part of a table that contains
information about parts and warehouses. To further normalize the design of the
table, analysts remove the warehouse address column from that table. Analysts
also define the column as part of a table that contains information only about
warehouses.

Chapter 1. Database objects and relationships 15

|
|
|
|
|
|
|

|
|



Normalizing tables is generally the recommended approach. What if applications
require information about both parts and warehouses, including the addresses of
warehouses? The premise of the normalization rules is that SQL statements can
retrieve the information by joining the two tables. The problem is that, in some
cases, performance problems can occur as a result of normalization. For example,
some user queries might view data that is in two or more related tables; the result
is too many joins. As the number of tables increases, the access costs can increase,
depending on the size of the tables, the available indexes, and so on. For example,
if indexes are not available, the join of many large tables might take too much
time. You might need to denormalize your tables. Denormalization is the
intentional duplication of columns in multiple tables, and it increases data
redundancy.

Example: Consider the design in which both tables have a column that contains
the addresses of warehouses. If this design makes join operations unnecessary, it
could be a worthwhile redundancy. Addresses of warehouses do not change often,
and if one does change, you can use SQL to update all instances fairly easily.

Tip: Do not automatically assume that all joins take too much time. If you join
normalized tables, you do not need to keep the same data values synchronized in
multiple tables. In many cases, joins are the most efficient access method, despite
the overhead they require. For example, some applications achieve 44-way joins in
subsecond response time.

When you are building your physical design, you and your colleagues need to
decide whether to denormalize the data. Specifically, you need to decide whether
to combine tables or parts of tables that are frequently accessed by joins that have
high performance requirements. This is a complex decision about which this book
cannot give specific advice. To make the decision, you need to assess the
performance requirements, different methods of accessing the data, and the costs of
denormalizing the data. You need to consider the trade-off: is duplication, in
several tables, of often-requested columns less expensive than the time for
performing joins?

Recommendations:

v Do not denormalize tables unless you have a good understanding of the data
and the business transactions that access the data. Consult with application
developers before denormalizing tables to improve the performance of users’
queries.

v When you decide whether to denormalize a table, consider all programs that
regularly access the table, both for reading and for updating. If programs
frequently update a table, denormalizing the table affects performance of update
programs because updates apply to multiple tables rather than to one table.

In the following figure, information about parts, warehouses, and warehouse
addresses appears in two tables, both in normal form.

The following figure illustrates the denormalized table.

Figure 11. Two tables that satisfy second normal form

16 Administration Guide

|

|
|
|



Resolving many-to-many relationships is a particularly important activity because
doing so helps maintain clarity and integrity in your physical database design. To
resolve many-to-many relationships, you introduce associative tables, which are
intermediate tables that you use to tie, or associate, two tables to each other.

Example: Employees work on many projects. Projects have many employees. In the
logical database design, you show this relationship as a many-to-many relationship
between project and employee. To resolve this relationship, you create a new
associative table, EMPLOYEE_PROJECT. For each combination of employee and
project, the EMPLOYEE_PROJECT table contains a corresponding row. The
primary key for the table would consist of the employee number (EMPNO) and
the project number (PROJNO).

Another decision that you must make relates to the use of repeating groups.

Example: Assume that a heavily used transaction requires the number of wires that
are sold by month in a given year. Performance factors might justify changing a
table so that it violates the rule of first normal form by storing repeating groups. In
this case, the repeating group would be: MONTH, WIRE. The table would contain
a row for the number of sold wires for each month (January wires, February wires,
March wires, and so on).

Recommendation: If you decide to denormalize your data, document your
denormalization thoroughly. Describe, in detail, the logic behind the
denormalization and the steps that you took. Then, if your organization ever needs
to normalize the data in the future, an accurate record is available for those who
must do the work.

Views as a way to customize what data users see
A view offers an alternative way of describing data that exists in one or more
tables.

Some users might find that no single table contains all the data they need; rather,
the data might be scattered among several tables. Furthermore, one table might
contain more data than users want to see or more than you want to authorize
them to see. For those situations, you can create views.

You might want to use views for a variety of reasons:
v To limit access to certain kinds of data

You can create a view that contains only selected columns and rows from one or
more tables. Users with the appropriate authorization on the view see only the
information that you specify in the view definition.
Example: You can define a view on the EMP table to show all columns except
SALARY and COMM (commission). You can grant access to this view to people
who are not managers because you probably don’t want them to have access to
salary and commission information.

v To combine data from multiple tables

Figure 12. The denormalized table

Chapter 1. Database objects and relationships 17

|

|
|
|



You can create a view that uses UNION or UNION ALL operators to logically
combine smaller tables, and then query the view as if it were one large table.
Example: Assume that three tables contain data for a period of one month. You
can create a view that is the UNION ALL of three fullselects, one for each month
of the first quarter of 2004. At the end of the third month, you can view
comprehensive quarterly data.

You can create a view any time after the underlying tables exist. The owner of a
set of tables implicitly has the authority to create a view on them. A user with
administrative authority at the system or database level can create a view for any
owner on any set of tables. If they have the necessary authority, other users can
also create views on a table that they didn’t create.
Related concepts

DB2 views (Introduction to DB2 for z/OS)

Indexes on table columns
If you are involved in the physical design of a database, you will be working with
other designers to determine what columns you should index.

You will use process models that describe how different applications are going to
be accessing the data. This information is important when you decide on indexing
strategies to ensure adequate performance.

The main purposes of an index are as follows:
v To optimize data access.

In many cases, access to data is faster with an index than without an index. If
the DBMS uses an index to find a row in a table, the scan can be faster than
when the DBMS scans an entire table.

v To ensure uniqueness.
A table with a unique index cannot have two rows with the same values in the
column or columns that form the index key.
Example: If payroll applications use employee numbers, no two employees can
have the same employee number.

v To enable clustering.
A clustering index keeps table rows in a specified sequence, to minimize page
access for a set of rows. When a table space is partitioned, a special type of
clustering occurs; rows are clustered within each partition.
The following example applies to table-based partitioning but not to index-based
partitioning because the partitioning index must be the clustering index.
Example: If the partitioning scheme on the month and the clustering index is on
the name, the rows will be clustered on the name within the month.

In general, users of the table are unaware that an index is in use. DB2 decides
whether to use the index to access the table.

18 Administration Guide

|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.intro/db2z_views.htm#db2z_views


Chapter 2. Implementing your database design

Implementing your database design involves implementing DB2 objects, loading
and managing data, and altering your design as necessary.

Tip: You can simplify your database implementation by letting DB2
implicitly create certain objects for you. On a CREATE TABLE statement, if you do
not specify a database name, DB2 will use an existing implicitly created database.
If an implicitly created database does not exist, DB2 creates one using the naming
convention of DSNxxxxx. The DSNxxxxx values can range from DSN00001 to
DSNnnnnn, where nnnnn is the maximum value of the sequence
SYSIBM.DSNSEQ_IMPLICITDB, with a default of 10000. If the table space is
implicitly created, DB2 will create all of the required system objects for you,
including:
v Enforcing the primary key index and the unique key index
v Creating the ROWID index (if the ROWID column is defined as GENERATED

BY DEFAULT)
v Creating the LOB table spaces, the auxiliary tables, and the auxiliary indexes

Implementing DB2 databases
Use DB2 databases to collect and control data.

Creating DB2 databases
You can create a DB2 database by defining a database at the current server.

Issue the CREATE DATABASE SQL statement to define a database.

The CREATE DATABASE statement allows you to define the following clauses:

STOGROUP
Lets you change the name of the default storage group to support disk
space requirements for table spaces and indexes within the database. The
new default DB2 storage group is used only for new table spaces and
indexes; existing definitions do not change.

BUFFERPOOL
Lets you change the name of the default buffer pool for table spaces and
indexes within the database. Again, it applies only to new table spaces and
indexes; existing definitions do not change.

INDEXBP
Lets you change the name of the default buffer pool for the indexes within
the database. The new default buffer pool is used only for new indexes;
existing definitions do not change.

© Copyright IBM Corp. 1982, 2009 19

|
|
|
|
|
|
|
|
|

|

|
|

|

|



Related concepts

DB2 databases (Introduction to DB2 for z/OS)

Dropping DB2 databases
You can drop a DB2 database by removing the database at the current server.

To remove a database:

Issue the DROP DATABASE SQL statement.

Related concepts

DB2 databases (Introduction to DB2 for z/OS)
Related reference

DROP (SQL Reference)

Implementing DB2 storage groups
DB2 uses storage groups to allocate storage for table spaces and indexes and to
define, extend, alter, and delete VSAM data sets.

You have the following options for creating storage groups and managing DB2
data sets:
v You can let DB2 manage the data sets. This option means less work for DB2

database administrators.
v You can let SMS manage some or all of the data sets, either when you use DB2

storage groups or when you use data sets that you have defined yourself. This
option offers a reduced workload for DB2 database administrators and storage
administrators. For more information, see “Enabling SMS to control DB2 storage
groups” on page 22.

v You can define and manage your own data sets using VSAM Access Method
Services. This option gives you the most control over the physical storage of
tables and indexes.

Advantages of storage groups
Allowing DB2 to manage your data sets by using DB2 storage groups offers
several advantages.

The following list describes some of the things that DB2 does for you in managing
your auxiliary storage requirements:
v When a table space is created, DB2 defines the necessary VSAM data sets using

VSAM Access Method Services. After the data sets are created, you can process
them with access method service commands that support VSAM control-interval
(CI) processing (for example, IMPORT and EXPORT).

Exception: You can defer the allocation of data sets for table spaces and
index spaces by specifying the DEFINE NO clause on the associated statement
(CREATE TABLESPACE and CREATE INDEX), which also must specify the

USING STOGROUP clause.

20 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.intro/db2z_databases.htm#db2z_databases
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.intro/db2z_databases.htm#db2z_databases
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_drop.htm#db2z_sql_drop


v When a table space is dropped, DB2 automatically deletes the associated data
sets.

v When a data set in a segmented or simple table space reaches its maximum size
of 2 GB, DB2 might automatically create a new data set. The primary data set
allocation is obtained for each new data set.

v When needed, DB2 can extend individual data sets.
v When you create or reorganize a table space that has associated data sets, DB2

deletes and then redefines them, reclaiming fragmented space. However, when
you run REORG with the REUSE option and SHRLEVEL NONE, REORG resets
and reuses DB2-managed data sets without deleting and redefining them. If the
size of your table space is not changing, using the REUSE parameter could be
more efficient.

Exception: When reorganizing a LOB table space with the SHRLEVEL
NONE option, DB2 does not delete and redefine the first data set that was
allocated for the table space. If the REORG results in empty data sets beyond the

first data set, DB2 deletes those empty data sets.
v When you want to move data sets to a new volume, you can alter the volumes

list in your storage group. DB2 automatically relocates your data sets during the
utility operations that build or rebuild a data set (LOAD REPLACE, REORG,
REBUILD, and RECOVER).

Restriction: If you use the REUSE option, DB2 does not delete and redefine the
data sets and therefore does not move them.
For a LOB table space, you can alter the volumes list in your storage group, and
DB2 automatically relocates your data sets during the utility operations that
build or rebuild a data set (LOAD REPLACE and RECOVER).
To move user-defined data sets, you must delete and redefine the data sets in
another location.

Control interval sizing
A control interval is a fixed-length area or disk in which VSAM stores records and
creates distributed free space. A control interval is the unit of information that
VSAM transmits to or from disk.

DB2 page sets are defined as VSAM linear data sets. Prior to Version 8, DB2
defined all data sets with VSAM control intervals that were 4 KB in size. Beginning
in Version 8, DB2 can define data sets with variable VSAM control intervals. One
of the biggest benefits of this change is an improvement in query processing
performance.

The VARY DS CONTROL INTERVAL parameter on installation panel DSNTIP7
allows you to control whether DB2–managed data sets have variable VSAM control
intervals:
v A value of YES indicates that a DB2–managed data set is created with a VSAM

control interval that corresponds to the size of the buffer pool that is used for
the table space. This is the default value.

v A value of NO indicates that a DB2–managed data set is created with a fixed
VSAM control interval of 4 KB, regardless of the size of the buffer pool that is
used for the table space.

The following table shows the default and compatible control interval sizes for
each table space page size. For example, a table space with pages 16 KB in size can

Chapter 2. Implementing your database design 21

|
|
|

|



have a VSAM control interval of 4 KB or 16 KB. Control interval sizing has no
impact on indexes; index pages are always 4 KB in size.

Table 1. Default and compatible control interval sizes

Table space page size Default control interval size
Compatible control interval
sizes

4 KB 4 KB 4 KB

8 KB 8 KB 4 KB, 8 KB

16 KB 16 KB 4 KB, 16 KB

32 KB 32 KB 4 KB, 32 KB

Creating DB2 storage groups
You can create DB2 storage groups by using the CREATE STOGROUP statement.
DB2 storage groups are a set of volumes on disks that hold the data sets in which
tables and indexes are stored.

To create a DB2 storage group:
1. Issue the SQL statement CREATE STOGROUP.
2. Specify the storage group name.

DB2 storage group names are unqualified identifiers of up to 128 characters. A
DB2 storage group name cannot be the same as any other storage group name

in the DB2 catalog.

After you define a storage group, DB2 stores information about it in the DB2
catalog. (This catalog is not the same as the integrated catalog facility catalog that
describes DB2 VSAM data sets). The catalog table SYSIBM.SYSSTOGROUP has a
row for each storage group, and SYSIBM.SYSVOLUMES has a row for each
volume. With the proper authorization, you can retrieve the catalog information
about DB2 storage groups by using SQL statements.

Enabling SMS to control DB2 storage groups
Managing data sets with the Storage Management Subsystem (SMS) family of
products can reduce workload for database administrators and storage
administrators.

To enable SMS to control DB2 storage groups:
1. Issue a CREATE STOGROUP SQL statement to define a DB2 storage group.

You can specify SMS classes when you create a storage group.
2. Indicate how you want SMS to control the allocation of volumes in one of the

following ways:
v Specify an asterisk (*) for the VOLUMES attribute.

v Specify the DATACLAS, MGMTCLAS, or STORCLAS keywords.

If you use DB2 to allocate data to specific volumes, you must assign an SMS
storage class with guaranteed space, and you must manage free space for each
volume to prevent failures during the initial allocation and extension. Using
guaranteed space reduces the benefits of SMS allocation, requires more time for
space management, and can result in more space shortages. You should only use
guaranteed space when space needs are relatively small and do not change.

22 Administration Guide

|
|

|
|

|

|



Deferring allocation of DB2-managed data sets
When you execute a CREATE TABLESPACE statement with the USING
STOGROUP clause, DB2 generally defines the necessary VSAM data sets for the
table space. In some cases, however, you might want to define a table space
without immediately allocating the associated data sets.

For example, you might be installing a software program that requires that many
table spaces be created, but your company might not need to use some of those
table spaces; you might prefer not to allocate data sets for the table spaces you will
not be using.

The deferral of allocating data sets is recommended when:
v Performance of the CREATE TABLESPACE statement is important.
v Disk resource is constrained.

To defer the physical allocation of DB2-managed data sets, complete the
following steps:
1. Issue a CREATE TABLESPACE SQL statement.

2. Specify the DEFINE NO clause.

The table space is created, but DB2 does not allocate (that is, define) the associated
data sets until a row is inserted or loaded into a table in that table space. The DB2
catalog table SYSIBM.SYSTABLEPART contains a record of the created table space
and an indication that the data sets are not yet allocated.

Restriction: The DEFINE NO clause is not allowed for LOB table spaces, for table
spaces in a work file database, or for user-defined data sets. (In the case of
user-defined data sets, the table space is created with the USING VCAT clause of
the CREATE TABLESPACE statement).

Do not use the DEFINE NO clause on a table space if you plan to use a tool
outside of DB2 to propagate data into a data set in the table space. When you use
DEFINE NO, the DB2 catalog indicates that the data sets have not yet been
allocated for that table space. Then, if data is propagated from a tool outside of
DB2 into a data set in the table space, the DB2 catalog information does not reflect
the fact that the data set has been allocated. The resulting inconsistency causes DB2
to deny application programs access to the data until the inconsistency is resolved.

How DB2 extends data sets
When a data set is created, DB2 allocates a primary allocation space on a volume
that has available space and that is specified in the DB2 storage group. Any
extension to a data set always gets a secondary allocation space.

If new extensions reach the end of the volume, DB2 accesses all candidate volumes
from the DB2 storage group and issues the Access Method Services command
ALTER ADDVOLUMES to add these volumes to the integrated catalog facility
(ICF) catalog as candidate volumes for the data set. DB2 then makes a request to
allocate a secondary extent on any one of the candidate volumes that has space
available. After the allocation is successful, DB2 issues the command ALTER
REMOVEVOLUMES to remove all candidate volumes from the ICF catalog for the
data set.

DB2 extends data sets when either of the following conditions occurs:

Chapter 2. Implementing your database design 23

|
|
|
|



v The requested space exceeds the remaining space in the data set.
v 10% of the secondary allocation space (but not over 10 allocation units, based on

either tracks or cylinders) exceeds the remaining space.

If DB2 fails to extend a data set with a secondary allocation space because of
insufficient available space on any single candidate volume of a DB2 storage
group, DB2 tries again to extend with the requested space if the requested space is
smaller than the secondary allocation space. Typically, DB2 requests only one
additional page. In this case, a small amount of two units (tracks or cylinders, as
determined by DFSMS™ based on the SECQTY value) is allocated. To monitor data
set extension activity, use IFCID 258 in statistics class 3.

Nonpartitioned spaces

For a nonpartitioned table space or a nonpartitioned index space, DB2 defines the
first piece of the page set starting with a primary allocation space, and extends that
piece by using secondary allocation spaces. When the end of the first piece is
reached, DB2 defines a new piece (which is a new data set) and extends that new
piece starting with a primary allocation space.

Exception: In the case where the OPTIMIZE EXTENT SIZING parameter
(MGEXTSZ) on installation panel DSNTIP7 is set to YES and the SECQTY value for
the table space or index space is greater than zero, the primary space allocation of
each subsequent data set is the larger of the SECQTY setting and the value that is
derived from a sliding scale algorithm. See “Secondary space allocation” on page
25 for information about the sliding scale algorithm.

Partitioned spaces

For a partitioned table space or a partitioned index space, each partition is a data
set. Therefore, DB2 defines each partition with the primary allocation space and
extends each partition’s data set by using a secondary allocation space, as needed.

Extension failures

If a data set uses all possible extents, DB2 cannot extend that data set. For a
partitioned page set, the extension fails only for the particular partition that DB2 is
trying to extend. For nonpartitioned page sets, DB2 cannot extend to a new data
set piece, which means that the extension for the entire page set fails.

To avoid extension failures, allow DB2 to use the default value for primary space
allocation and to use a sliding scale algorithm for secondary extent allocations.

DB2 space allocation
Primary and secondary space allocation sizes are the main factors that affect the
amount of disk space that DB2 uses.

In general, the primary space allocation must be large enough to handle the
storage needs that you anticipate. The secondary space allocation must be large
enough for your applications to continue operating until the data set is
reorganized.

If the secondary space allocation is too small, the data set might have to be
extended more times to satisfy those activities that need a large space.

24 Administration Guide

|
|
|
|
|
|
|



Primary space allocation
DB2 uses default values for primary space allocation of DB2-managed data sets.

The default values are:
v 1 cylinder (720 KB) for non-LOB table spaces
v 10 cylinders for LOB table spaces
v 1 cylinder for indexes

To indicate that you want DB2 to use the default values for primary space
allocation of table spaces and indexes, specify a value of 0 for the following
parameters on installation panel DSNTIP7, as shown in the following table.

Table 2. DSNTIP7 parameter values for managing space allocations

Installation panel DSNTIP7 parameter Recommended value

TABLE SPACE ALLOCATION 0

INDEX SPACE ALLOCATION 0

Thereafter:
v On CREATE TABLESPACE and CREATE INDEX statements, do not specify a

value for the PRIQTY option.
v On ALTER TABLESPACE and ALTER INDEX statements, specify a value of -1

for the PRIQTY option.

Primary space allocation quantities do not exceed DSSIZE or PIECESIZE clause
values.

Exception: If the OPTIMIZE EXTENT SIZING parameter (MGEXTSZ) on
installation panel DSNTIP7 is set to YES and the table space or index space has a
SECQTY setting of greater than zero, the primary space allocation of each
subsequent data set is the larger of the SECQTY setting and the value that is
derived from a sliding scale algorithm. See “Secondary space allocation” for
information about the sliding scale algorithm.

For those situations in which the default primary quantity value is not large
enough, you can specify a larger value for the PRIQTY option when creating or
altering table spaces and indexes. DB2 always uses a PRIQTY value if one is
explicitly specified.

If you want to prevent DB2 from using the default value for primary space
allocation of table spaces and indexes, specify a non-zero value for the TABLE
SPACE ALLOCATION and INDEX SPACE ALLOCATION parameters on

installation panel DSNTIP7.

Secondary space allocation
DB2 can calculate the amount of space to allocate to secondary extents by using a
sliding scale algorithm.

The first 127 extents are allocated in increasing size, and the remaining extents are
allocated based on the initial size of the data set:
v For 32 GB and 64 GB data sets, each extent is allocated with a size of 559

cylinders.

Chapter 2. Implementing your database design 25

|
|



v For data sets that range in size from less than 1 GB to 16 GB, each extent is
allocated with a size of 127 cylinders.

This approach has several advantages:
v It minimizes the potential for wasted space by increasing the size of secondary

extents slowly at first.
v It prevents very large allocations for the remaining extents, which would likely

cause fragmentation.
v It does not require users to specify SECQTY values when creating and altering

table spaces and index spaces.
v It is theoretically possible to reach maximum data set size without running out

of secondary extents.

In the case of severe DASD fragmentation, it can take up to 5 extents to satisfy a
logical extent request. In this situation, the data set does not reach the theoretical
data set size.

If you installed DB2 on the operating system z/OS Version 1 Release 7, or later,
then you can modify the Extent Constraint Removal option. By setting the Extent
Constraint Removal option to YES in the SMS data class, the maximum number of
extents can be up to 7257. However, the limits of 123 extents per volume and a
maximum volume count of 59 per data set remain valid. For more information, see
″Using VSAM extent constraint removal″ in the z/OS V1R7 guide ″DFSMS: Using
the New Functions″ (order number SC26-7473-02).

Maximum allocation is shown in the following table. This table assumes that the
initial extent that is allocated is one cylinder in size.

Table 3. Maximum allocation of secondary extents

Maximum data set size, in
GB

Maximum allocation, in
cylinders

Extents required to reach
full size

1 127 54

2 127 75

4 127 107

8 127 154

16 127 246

32 559 172

64 559 255

DB2 uses a sliding scale for secondary extent allocations of table spaces
and indexes when:
v You do not specify a value for the SECQTY option of a CREATE TABLESPACE

or CREATE INDEX statement
v You specify a value of -1 for the SECQTY option of an ALTER TABLESPACE or

ALTER INDEX statement.

Otherwise, DB2 always uses a SECQTY value for secondary extent allocations, if

one is explicitly specified.

26 Administration Guide

|
|

|
|
|

|
|
|
|
|
|
|



Exception: For those situations in which the calculated secondary quantity value
is not large enough, you can specify a larger value for the SECQTY option when
creating or altering table spaces and indexes. However, in the case where the
OPTIMIZE EXTENT SIZING parameter is set to YES and you specify a value for
the SECQTY option, DB2 uses the value of the SECQTY option to allocate a
secondary extent only if the value of the option is larger than the value that is
derived from the sliding scale algorithm. The calculation that DB2 uses to make
this determination is:
Actual secondary extent size = max ( min ( ss_extent, MaxAlloc ), SECQTY )

In this calculation, ss_extent represents the value that is derived from the sliding
scale algorithm, and MaxAlloc is either 127 or 559 cylinders, depending on the
maximum potential data set size. This approach allows you to reach the maximum
page set size faster. Otherwise, DB2 uses the value that is derived from the sliding
scale algorithm.

If you do not provide a value for the secondary space allocation quantity, DB2
calculates a secondary space allocation value equal to 10% of the primary space
allocation value and subject to the following conditions:
v The value cannot be less than 127 cylinders for data sets that range in initial size

from less than 1 GB to 16 GB, and cannot be less than 559 cylinders for 32 GB
and 64 GB data sets.

v The value cannot be more than the value that is derived from the sliding scale
algorithm.

The calculation that DB2 uses for the secondary space allocation value is:
Actual secondary extent size = max ( 0.1 × PRIQTY, min ( ss_extent, MaxAlloc ) )

In this calculation, ss_extent represents the value that is derived from the sliding
scale algorithm, and MaxAlloc is either 127 or 559 cylinders, depending on the
maximum potential data set size.

Secondary space allocation quantities do not exceed DSSIZE or PIECESIZE clause
values.

If you do not want DB2 to extend a data set, you can specify a value of 0 for the
SECQTY option. Specifying 0 is a useful way to prevent DSNDB07 work files from
growing out of proportion.

If you want to prevent DB2 from using the sliding scale for secondary extent
allocations of table spaces and indexes, specify a value of NO for the OPTIMIZE
EXTENT SIZING parameter on installation panel DSNTIP7.

Example of primary and secondary space allocation
Primary and secondary space allocation quantities are affected by a CREATE
statement and two subsequent ALTER statements.

This example assumes a maximum data set size of less than 32 GB, and the
following parameter values on installation panel DSNTIP7:
v TABLE SPACE ALLOCATION = 0
v INDEX SPACE ALLOCATION = 0
v OPTIMIZE EXTENT SIZING = YES

Chapter 2. Implementing your database design 27



Table 4. Example of specified and actual space allocations

Action
Specified
PRIQTY

Actual primary
quantity
allocated

Specified
SECQTY

Actual
secondary
quantity
allocated

CREATE
TABLESPACE

100 KB 100 KB 1000 KB 2 cylinders

ALTER TABLESPACE -1 1 cylinder 2000 KB 3 cylinders

ALTER TABLESPACE 1 cylinder -1 1 cylinder

Managing DB2 data sets with DFSMShsm
You can use the Hierarchical Storage Management functional component
(DFSMShsm™) of DFSMS to manage space and data availability among the storage
devices in your system.

You can also use DFSMShsm to move data sets that have not been recently used to
slower, less expensive storage devices. Moving the data sets helps to ensure that
disk space is managed efficiently.
Related information

z/OS Internet Library

Migrating to DFSMShsm
If you decide to use DFSMShsm for your DB2 data sets, you should develop a
migration plan with your system administrator.

With user-managed data sets, you can specify DFSMShsm classes on the Access
Method Services DEFINE command. With DB2 storage groups, you need to
develop automatic class selection routines.

Restriction: If you use the BACKUP SYSTEM utility to create system-level
backups, do not use DFSMShsm to migrate DB2 table spaces and indexes. You can
use DFSMShsm to migrate or recall archive log data sets.

To enable DFSMShsm to manage your DB2 storage groups, complete the
following steps:
1. Issue either a CREATE STOGROUP or ALTER STOGROUP SQL statement.
2. Specify one or more asterisks as volume-ID in the VOLUMES option.

The following example causes all database data set allocations and definitions
to use nonspecific selection through DFSMShsm filtering services.
CREATE STOGROUP G202
VOLUMES ('*')
VCAT vcat name
DATACLAS dataclass name
MGMTCLAS management class name
STORCLAS storage class name;

3. Define the data classes for your table space data sets and index data sets.
4. Code the SMS automatic class selection (ACS) routines to assign indexes to one

SMS storage class and to assign table spaces to a different SMS storage class.
5. Use the system parameters SMSDCFL and SMSDCIX to assign table spaces and

indexes to different DFSMShsm data classes.

28 Administration Guide

|
|
|

|
|
|
|
|
|

http://www.ibm.com/systems/z/os/zos/bkserv/


v SMSDCFL specifies a DFSMShsm data class for table spaces. If you assign a
value to SMSDCFL, DB2 specifies that value when it uses Access Method
Services to define a data set for a table space.

v SMSDCIX specifies a DFSMShsm data class for indexes. If you assign a value
to SMSDCIX, DB2 specifies that value when it uses Access Method Services
to define a data set for an index.

Important: If you specified the DATACLAS keyword in the CREATE
STOGROUP statement, the DATACLAS value overrides the SMSDCFL and
SMSDCIX values.

The following example shows how to create a storage group in a SMS managed
subsystem:
CREATE STOGROUP SGOS0101

VCAT REGSMS
DATACLAS REGSMSDC
MGMTCLAS REGSMSMC
STORCLAS REGSMSSC;

How archive logs are recalled by DFSMShsm
DFSMShsm can automatically migrate and recall archive log data sets and image
copy data sets. If DB2 needs an archive log data set or an image copy data set that
DFSMShsm has migrated, a recall begins automatically and DB2 waits for the
recall to complete before continuing.

For processes that read more than one archive log data set, such as the RECOVER
utility, DB2 anticipates a DFSMShsm recall of migrated archive log data sets. When
a DB2 process finishes reading one data set, it can continue with the next data set
without delay, because the data set might already have been recalled by
DFSMShsm.

If you accept the default value YES for the RECALL DATABASE parameter on the
Operator Functions panel (DSNTIPO), DB2 also recalls migrated table spaces and
index spaces. At data set open time, DB2 waits for DFSMShsm to perform the
recall. You can specify the amount of time DB2 waits while the recall is being
performed with the RECALL DELAY parameter, which is also on panel DSNTIPO.
If RECALL DELAY is set to zero, DB2 does not wait, and the recall is performed
asynchronously.

You can use System Managed Storage (SMS) to archive DB2 subsystem data sets,
including the DB2 catalog, DB2 directory, active logs, and work file databases
(DSNDB07 in a non-data-sharing environment). However, before starting DB2, you
should recall these data sets by using DFSMShsm. Alternatively, you can avoid
migrating these data sets by assigning them to a management class that prevents
migration.

If a volume has a STOGROUP specified, you must recall that volume only to
volumes of the same device type as others in the STOGROUP.

In addition, you must coordinate the DFSMShsm automatic purge period, the DB2
log retention period, and MODIFY utility usage. Otherwise, the image copies or
logs that you might need during a recovery could already have been deleted.

Chapter 2. Implementing your database design 29

|
|

|
|
|
|
|



The RECOVER utility and the DFSMSdss RESTORE command
The RECOVER utility can run the DFSMSdss™ RESTORE command, which
generally uses extensions that are larger than the primary and secondary space
allocation values of a data set.

The RECOVER utility runs this command if the point of recovery is defined by an
image copy that was taken by using the CONCURRENT option of the COPY
utility.

When the RECOVER utility chooses a system-level backup for object-level
recovery, DFSMShsm is used to restore the data sets from the system-level backup.

The DFSMSdss RESTORE command extends a data set differently than DB2, so
after this command runs, you must alter the page set to contain extents that are
defined by DB2.

Considerations for using the BACKUP SYSTEM utility and
DFSMShsm
If you plan to use the BACKUP SYSTEM utility to take volume-level copies of data
and logs, all of the DB2 data sets must reside on volumes that are managed by
DFSMSsms. You can take volume-level copies of the data and logs of a data
sharing group or a non-data-sharing DB2 subsystem.

Restriction: If you use the BACKUP SYSTEM utility to create system-level
backups, do not use DFSMShsm to migrate DB2 table spaces and indexes.

The BACKUP SYSTEM utility uses copy pools. A copy pool is a named set of
storage groups that can be backed up and restored as a unit; DFSMShsm processes
the storage groups collectively for fast replication. Each DB2 subsystem has up to
two copy pools, one for databases and one for logs.

Copy pools are also referred to as source storage groups. Each source storage
group contains the name of an associated copy-pool backup storage group, which
contains eligible volumes for the backups. The storage administrator must define
both the source and target storage groups, and use the following DB2 naming
convention:
DSN$locn-name$cp-type

The variables that are used in this naming convention are described in the
following table.

Table 5. Naming convention variables

Variable Meaning

DSN The unique DB2 product identifier

$ A delimiter. You must use the dollar sign ($) character.

locn-name The DB2 location name

cp-type The copy pool type. Use DB for database and LG for log.

The DB2 BACKUP SYSTEM and RESTORE SYSTEM utilities invoke DFSMShsm to
back up and restore the copy pools. DFSMShsm interacts with DFSMSsms to
determine the volumes that belong to a given copy pool so that the volume-level
backup and restore functions can be invoked.

30 Administration Guide

|
|

|
|



Tip: The BACKUP SYSTEM utility can dump the copy pools to tape automatically
if you specify the options that enable that function.
Related reference

BACKUP SYSTEM (DB2 Utilities)

RESTORE SYSTEM (DB2 Utilities)

Incremental system-level backups
You can use the BACKUP SYSTEM utility to take incremental FlashCopy® backups
of the data of a non-data sharing DB2 subsystem or a DB2 data sharing group. All
of the DB2 data sets must reside on volumes that are managed by DFSMSsms.

An incremental FlashCopy relationship is established for each source volume in the
copy pool with corresponding target volumes. Each source volume can have only
one incremental relationship. Therefore, multiple incremental FlashCopy backup
versions are not supported.

The incremental FlashCopy backup feature is supported by the z/OS Version 1
Release 8, or later operating system. To support this feature the following
keywords were added to the syntax of the BACKUP SYSTEM utility:
v ESTABLISH FCINCREMENTAL: Specifies that a persistent incremental

FlashCopy relationship is to be established, if none exists for source copy
volumes in the database copy pool. Use this keyword once to establish the
persistent incremental FlashCopy relationships. Subsequent invocations of
BACKUP SYSTEM (without this keyword) will automatically process the
persistent incremental FlashCopy relationship.

v END FCINCREMENTAL: Specifies that a last incremental FlashCopy backup be
taken and for the persistent incremental FlashCopy relationship to be withdrawn
for all of the volumes in the database copy pool. Use this keyword only if no
further incremental FlashCopy backups of the database copy pool are desired.

The first time that you use the ESTABLISH FCINCREMENTAL keyword in an
invocation of the BACKUP SYSTEM utility the persistent incremental FlashCopy
relationship is established. The incremental FlashCopy relationship exists until you
withdraw it by specifying the END FCINCREMENTAL keyword in the utility
control statement.

For the first invocation of BACKUP SYSTEM that specifies the ESTABLISH
FCINCREMENTAL keyword, all of the tracks of each source volume are copied to
their corresponding target volumes. For subsequent BACKUP SYSTEM requests,
only the changed tracks are copied to the target volumes.

If you keep more than one DASD FlashCopy version of the database copy pool,
you need to create full-copy backups for versions other than the incremental
version.

For example, you decide to keep two DASD FlashCopy versions of your database
copy pool. You invoke the BACKUP SYSTEM utility with the ESTABLISH
FCINCREMENTAL keyword. A full-copy of each volume is created, because the
incremental FlashCopy relationship is established for the first time. You invoke the
BACKUP SYSTEM utility the next day. This request creates the second version of
the backup. This version is a full-copy backup, because the incremental FlashCopy
relationship is established with the target volumes in the first version. The
following day you run the BACKUP SYSTEM utility again, but without the
ESTABLISH FCINCREMENTAL keyword. The incremental version is the oldest

Chapter 2. Implementing your database design 31

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_backupsystem.htm#db2z_utl_backupsystem
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_restoresystem.htm#db2z_utl_restoresystem


version, so the incremental version is used for the FlashCopy backup. This time
only the tracks that have changed are copied. The result is a complete copy of the
source volume.

DFSMShsm allows multiple versions of FlashCopy backups for a copy pool.
However, only one incremental FlashCopy backup is supported. If the database
copy pool has two versions of FlashCopy backups, every other copy is an
incremental copy since the oldest copy is replaced.

Managing your own data sets
You might choose to manage your own VSAM data sets for several reasons.

For example:
v You have a large linear table space on several data sets. If you manage your own

data sets, you can better control the placement of individual data sets on the
volumes (although you can keep a similar type of control by using
single-volume DB2 storage groups).

v You want to prevent deleting a data set within a specified time period, by using
the TO and FOR options of the Access Method Services DEFINE and ALTER
commands. You can create and manage the data set yourself, or you can create
the data set with DB2 and use the ALTER command of Access Method Services
to change the TO and FOR options.

v You are concerned about recovering dropped table spaces. Your own data set is
not automatically deleted when a table space is dropped, making it easier to
reclaim the data.

Tip: As table spaces and index spaces expand, you might need to provide
additional data sets. To take advantage of parallel I/O streams when doing certain
read-only queries, consider spreading large table spaces over different disk
volumes that are attached on separate channel paths.

Defining data sets
DB2 checks whether you have defined your data sets correctly.

You must define a data set for each of the following items:
v A simple or segmented table space
v A partition of a partitioned table space
v A partition of a partitioned index

You must define the data sets before you can issue the CREATE
TABLESPACE, CREATE INDEX, or ALTER TABLE ADD PARTITION SQL
statements.

If you create a partitioned table space, you must create a separate data set for each
partition, or you must allocate space for each partition by using the PARTITION
option of the NUMPARTS clause in the CREATE TABLESPACE statement.

If you create a partitioned secondary index, you must create a separate data set for
each partition. Alternatively, for DB2 to manage your data sets, you must allocate
space for each partition by using the PARTITIONED option of the CREATE INDEX
statement.

If you create a partitioning index that is partitioned, you must create a separate
data set for each partition. Alternatively, for DB2 to manage your data sets, you

32 Administration Guide

|
|
|

|
|
|
|



must allocate space for each partition by using the PARTITIONED option or the
PARTITION ENDING AT clause of the CREATE INDEX statement in the case of

index-controlled partitioning.

To define and manage VSAM data sets yourself, complete the following steps:
1. Issue a DEFINE CLUSTER statement to create the data set.
2. Give each data set a name that complies with the following format:

catname.DSNDBx.dbname.psname.y0001.znnn

For more information, see “Data set naming conventions” on page 34.
3. In the DEFINE CLUSTER statement, specify the size of the primary and

secondary extents of the VSAM cluster. If you specify zero for the secondary
extent size, data set extension does not occur.

4. Specify that the data sets be LINEAR. Do not use RECORDSIZE; this attribute
is invalid. Use the CONTROLINTERVALSIZE attribute if you are using
variable-sized control intervals.

5. Specify the REUSE option. You must define the data set as REUSE before
running the DSN1COPY utility.

6. Use SHAREOPTIONS(3,3).

Example:

The following example code shows an example of the DEFINE CLUSTER
command, which defines a VSAM data set for the SYSUSER table space in
database DSNDB06. Assume that an integrated catalog facility catalog named
DSNCAT is already defined.
DEFINE CLUSTER -

(NAME(DSNCAT.DSNDBC.DSNDB06.SYSUSER.I0001.A001) -
LINEAR -
REUSE -
VOLUMES(DSNV01) -
RECORDS(100 100) -
SHAREOPTIONS(3 3) ) -

DATA -
(NAME(DSNCAT.DSNDBD.DSNDB06.SYSUSER.I0001.A001) -

CATALOG(DSNCAT)

For user-managed data sets, you must pre-allocate shadow data sets prior to
running the following against the table space:
v REORG with SHRLEVEL CHANGE
v REORG with SHRLEVEL REFERENCE
v CHECK INDEX with SHRLEVEL CHANGE
v CHECK DATA with SHRLEVEL CHANGE
v CHECK LOB with SHRLEVEL CHANGE

You can specify the MODEL option for the DEFINE CLUSTER command so that
the shadow is created like the original data set, as shown in the following example
code.
DEFINE CLUSTER -

(NAME('DSNCAT.DSNDBC.DSNDB06.SYSUSER.x0001.A001') -
MODEL('DSNCAT.DSNDBC.DSNDB06.SYSUSER.y0001.A001')) -
DATA -
(NAME('DSNCAT.DSNDBD.DSNDB06.SYSUSER.x0001.A001') -
MODEL('DSNCAT.DSNDBD.DSNDB06.SYSUSER.y0001.A001')) -

Chapter 2. Implementing your database design 33

|
|
|

|
|

|

|

|

|

|



In the previous example, the instance qualifiers x and y are distinct and are equal
to either I or J. You must determine the correct instance qualifier to use for a
shadow data set by querying the DB2 catalog for the database and table space.

The DEFINE CLUSTER command has many optional parameters that do not apply
when DB2 uses the data set. If you use the parameters SPANNED,
EXCEPTIONEXIT, BUFFERSPACE, or WRITECHECK, VSAM applies them to your
data set, but DB2 ignores them when it accesses the data set.

The value of the OWNER parameter for clusters that are defined for storage
groups is the first SYSADM authorization ID specified at installation.

When you drop indexes or table spaces for which you defined the data sets, you
must delete the data sets unless you want to reuse them. To reuse a data set, first
commit, and then create a new table space or index with the same name. When
DB2 uses the new object, it overwrites the old information with new information,
which destroys the old data.

Likewise, if you delete data sets, you must drop the corresponding table spaces
and indexes; DB2 does not drop these objects automatically.
Related concepts

“Advantages of storage groups” on page 20

Data set naming conventions:

When you define a data set, you must give each data set a name that is in the
correct format.

The correct format for the name of a data set is as follows:
catname.DSNDBx.dbname.psname.y0001.znnn

catname
Integrated catalog name or alias (up to eight characters). Use the same
name or alias here as in the USING VCAT clause of the CREATE
TABLESPACE and CREATE INDEX statements.

x C (for VSAM clusters) or D (for VSAM data components).

dbname
DB2 database name. If the data set is for a table space, dbname must be the
name given in the CREATE TABLESPACE statement. If the data set is for
an index, dbname must be the name of the database containing the base
table. If you are using the default database, dbname must be DSNDB04.

psname
Table space name or index name. This name must be unique within the
database.

You use this name on the CREATE TABLESPACE or CREATE INDEX
statement. (You can use a name longer than eight characters on the
CREATE INDEX statement, but the first eight characters of that name must
be the same as in the data set’s psname.)

y0001 Instance qualifier for the data set.

Define one data set for the table space or index with a value of I for y if
you do not plan to run the following:
v REORG with SHRLEVEL CHANGE or SHRLEVEL REFERENCE

34 Administration Guide

|
|
|
|

||

|
|

|



v CHECK DATA with SHRLEVEL REFERENCE
v CHECK INDEX with SHRLEVEL REFERENCE
v CHECK LOB with SHRLEVEL REFERENCE

Define two data sets if you plan to run the following:
v REORG with SHRLEVEL CHANGE or SHRLEVEL REFERENCE
v CHECK DATA with SHRLEVEL CHANGE
v CHECK INDEX with SHRLEVEL CHANGE
v CHECK LOB with SHRLEVEL CHANGE

Define one data set with a value of I for y, and one with a value of J for y.

znnn Data set number. The first digit z of the data set number is represented by
the letter A, B, C, D, or E, which corresponds to the value 0, 1, 2, 3, or 4 as
the first digit of the partition number.

For partitioned table spaces, if the partition number is less than 1000, the
data set number is Annn in the data set name (for example, A999
represents partition 999). For partitions 1000 to 1999, the data set number is
Bnnn (for example, B000 represents partition 1000). For partitions 2000 to
2999, the data set number is Cnnn. For partitions 3000 to 3999, the data set
number is Dnnn. For partitions 4000 up to a maximum of 4096, the data set
number is Ennn.

The naming convention for data sets that you define for a partitioned
index is the same as the naming convention for other partitioned objects.

For simple or segmented table spaces, the number is 001 (preceded by A)
for the first data set. When little space is available, DB2 issues a warning
message. If the size of the data set for a simple or a segmented table space
approaches the maximum limit, define another data set with the same
name as the first data set and the number 002. The next data set will be
003, and so on.

You can reach the VSAM extent limit for a data set before you reach the
size limit for a partitioned or a nonpartitioned table space. If this happens,
DB2 does not extend the data set.

Extending user-managed data sets
A user-managed data set is allocated by using only volumes that are defined for
that data set in the ICF catalog. Before the current volume runs out of space, you
must extend the data set.

To extend a user-managed data set:

Issue the Access Method Services commands ALTER ADDVOLUMES or ALTER
REMOVEVOLUMES for candidate volumes.

Deleting user-managed data sets
If you manage the data sets of a storage structure yourself, at some point you
might need to delete data sets.

To delete a user-managed data set:

Issue the DELETE CLUSTER command for candidate volumes.

Chapter 2. Implementing your database design 35

|

|

|

|

|

|

|

|

|



Defining index space storage
Generally, the CREATE INDEX statement creates an index space in the same DB2
database that contains the table on which the index is defined, even if you defer
building the index.

Exceptions:

v If you specify the USING VCAT clause, you create and manage the data sets
yourself.

v If you specify the DEFINE NO clause on a CREATE INDEX statement that uses
the USING STOGROUP clause, DB2 defers the allocation of the data sets for the
index space.

To define your index space storage, complete the following steps:
1. Issue a CREATE INDEX statement.
2. Specify the USING clause.

When you specify USING, you declare whether you want DB2-managed or
user-managed data sets. For DB2-managed data sets, you specify the primary
and secondary space allocation parameters on the CREATE INDEX statement. If
you do not specify USING, DB2 assigns the index data sets to the default
storage groups using default space attributes.
You can specify the USING clause to allocate space for the entire index, or if
the index is a partitioned index, you can allocate space for each partition.

Information about space allocation for the index is kept in the
SYSIBM.SYSINDEXPART table of the DB2 catalog. Other information about the
index is in SYSIBM.SYSINDEXES.

Creating EA-enabled table spaces and index spaces
DFSMS has an extended-addressability function, which is necessary to create data
sets that are larger than 4 GB. Therefore, the term for page sets that are enabled for
extended addressability is EA-enabled.

You must use EA-enabled table spaces or index spaces if you specify a DSSIZE that
is larger than 4 GB in the CREATE TABLESPACE statement.

To create EA-enabled page sets, you must:
1. Use SMS to manage the data sets that are associated with the EA-enabled page

sets.
2. Associate the data sets with a data class (an SMS construct) that specifies the

extended format and extended addressability options.
To make this association between data sets and the data class, use an automatic
class selection (ACS) routine to assign the DB2 data sets to the relevant SMS
data class. The ACS routine does the assignment based on the data set name.
No performance penalty occurs for having non-EA-enabled DB2 page sets
assigned to this data class, too, if you would rather not have two separate data
classes for DB2.
For user-managed data sets, you can use ACS routines or specify the
appropriate data class on the DEFINE CLUSTER command when you create
the data set.

36 Administration Guide



3. Create the partitioned or LOB table space with a DSSIZE of 8 GB or greater.
The partitioning index for the partitioned table space takes on the EA-enabled
attribute from its associated table space.
After a page set is created, you cannot use the ALTER TABLESPACE statement
to change the DSSIZE. You must drop and re-create the table space.
Also, you cannot change the data sets of the page set to turn off the extended
addressability or extended format attributes. If someone modifies the data class
to turn off the extended addressability or extended format attributes, DB2
issues an error message the next time that it opens the page set.

Implementing DB2 table spaces
DB2 table spaces are storage structures that store one or more data sets, which
store one or more tables. You should understand the advantages and
disadvantages of each type of table space in order to implement the table space
that best suits your needs.

Creating a table space explicitly
Explicitly create a table space to define a segmented, partitioned, universal or LOB
table space at the current server.

To explicitly create a table space, complete the following steps:
1. Issue a CREATE TABLESPACE SQL statement.
2. Specify the attributes of the table space. You can create segmented, partitioned,

universal and LOB table spaces.

Tip: You can alter table spaces after they have been created, but the application
of some statements, such as ALTER MAXPARTITIONS, prevent access to the
database until they have finished. Consider future growth when defining new
table spaces.

Example definition for a segmented table space: The following CREATE
TABLESPACE statement creates a segmented table space with 32 pages in each
segment:
CREATE TABLESPACE MYTS

IN MYDB
USING STOGROUP MYSTOGRP

PRIQTY 30720
SECQTY 10240

SEGSIZE 32
LOCKSIZE TABLE
BUFFERPOOL BP0
CLOSE NO;

Example definition for an EA-enabled partitioned table space: The following
CREATE TABLESPACE statement creates an EA-enabled table space, SALESHX.
Assume that a large query application uses this table space to record historical
sales data for marketing statistics. The first USING clause establishes the
MYSTOGRP storage group and space allocations for all partitions:
CREATE TABLESPACE SALESHX

IN MYDB
USING STOGROUP MYSTOGRP

PRIQTY 4000
SECQTY 130
ERASE NO

DSSIZE 16G

Chapter 2. Implementing your database design 37

|
|



NUMPARTS 48
(PARTITION 46
COMPRESS YES,
PARTITION 47
COMPRESS YES,
PARTITION 48
COMPRESS YES)

LOCKSIZE PAGE
BUFFERPOOL BP1
CLOSE NO;

Generally, when you use the CREATE TABLESPACE statement with the USING
STOGROUP clause, DB2 allocates data sets for the table space. However, if you
also specify the DEFINE NO clause, you can defer the allocation of data sets until
data is inserted or loaded into a table in the table space.

Guidelines and recommendations for table spaces
You can follow these guidelines and recommendations to help you with naming a
table space, coding a table space, and determining the page size for a table space.

General naming guidelines for table spaces

A table space name is an identifier of up to eight characters. You can qualify a
table space name with a database name.

Consider the following facts about naming guidelines for table spaces:
v If you do not qualify an explicit table space with a database name, the default

database name is DSNDB04.
v If you do not explicitly specify a table space, DB2 implicitly creates the table

space, where the name is derived based on the name of the table that is being
created. In conversion mode, the table space type for implicitly created table
spaces is segmented. In new-function mode, the table space type for implicitly
created table spaces is either partition-by-growth or partition-by-range.

v If a database name is not explicitly specified for an implicit table space, and
DB2 is operating in conversion mode, DB2 uses database DSNDB04.

v If DB2 is operating in new-function mode, DB2 either implicitly creates a new
database for the table space, or uses an existing implicitly created database.

A typical name is:

Object Name

Table space
MYDB.MYTS

Related reference

“Examples of table space definitions” on page 42

Coding guidelines for explicitly defined table spaces
You can use the CREATE TABLESPACE statement to create a table space explicitly.
This statement lets you specify the attributes of the table space.

The following list introduces some of the clauses of the CREATE TABLESPACE
statement that you will read about in this topic.

38 Administration Guide

|
|

|
|

|
|
|
|
|

|
|

|
|



LOB
Indicates that the table space is to be a large object (LOB) table space.

DSSIZE
Indicates the maximum size, in GB, for each partition or, for LOB table spaces,
for each data set.

FREEPAGE integer
Specifies how often DB2 is to leave a page of free space when the table space
or partition is loaded or reorganized. You specify that DB2 is to set aside one
free page for every integer number of pages. Using free pages can improve
performance for applications that perform high-volume inserts or that update
variable-length columns.

PCTFREE integer
Indicates the percentage (integer) of each page that DB2 should leave as free
space when the table is loaded or reorganized. Specifying PCTFREE can
improve performance for applications that perform high-volume inserts or that
update variable-length columns.

COMPRESS
Specifies that data is to be compressed. You can compress data in a table space
and thereby store more data on each data page.

BUFFERPOOL bpname
Identifies the buffer pool that this table space is to use and determines the
page size of the table space. The buffer pool is a portion of memory in which
DB2 temporarily stores data for retrieval.

LOCKSIZE
Specifies the size of locks that DB2 is to use within the table space. DB2 uses
locks to protect data integrity. Use of locks results in some overhead processing
costs, so choose the lock size carefully.

You can create segmented, partitioned, and LOB table spaces.

DB2 stores the names and attributes of all table spaces in the
SYSIBM.SYSTABLESPACE catalog table, regardless of whether you define the table
spaces explicitly or implicitly.
Related reference

“Examples of table space definitions” on page 42

Coding guidelines for implicitly defined table spaces

In conversion mode, DB2 implicitly creates a segmented table space. In
new-function mode, DB2 implicitly creates a partition-by-growth table space for
small tables, when you create the table by using the CREATE TABLE statement
and do not specify an existing table space name.

When DB2 defines a table space implicitly, DB2 performs the following tasks:
v Generates a table space for you.
v Derives a table space name from the name of your table.
v Uses default values for space allocation and other table space attributes.
v Creates the required LOB objects and XML objects.
v Enforces the UNIQUE constraint.
v Creates the primary key index.
v Creates the ROWID index, if the ROWID column is defined as GENERATED BY

DEFAULT.

Chapter 2. Implementing your database design 39

|
|
|
|

|

|
|
|



One or more tables are created for segmented table spaces.

You also need to create a table space when you define a declared temporary table.

DB2 stores the names and attributes of all table spaces in the
SYSIBM.SYSTABLESPACE catalog table, regardless of whether you define the table
spaces explicitly or implicitly.
Related reference

“Examples of table space definitions” on page 42

Recommendations for page size
DB2 provides many options for data page sizes. The size of the data page is
determined by the buffer pool in which you define the table space.

For example, a table space that is defined in a 4 KB buffer pool has 4 KB page
sizes, and one that is defined in an 8 KB buffer pool has 8 KB page sizes.

Data in table spaces is stored and allocated in record segments. Any record
segment can be 4 KB in size, or the size determined by the buffer pool (4 KB, 8 KB,
16 KB, or 32 KB). In a table space with 4 KB record segments, an 8 KB page size
requires two 4 KB records, and a 32 KB page size requires eight 4 KB records. A
good starting point is the default of 4 KB page sizes when access to the data is
random and only a few rows per page are needed. If row sizes are very small,
using the 4 KB page size is recommended.

However, there are situations in which larger page sizes are needed or
recommended:
v When the size of individual rows is greater than 4 KB. In this case, you must

use a larger page size. When considering the size of work file table spaces,
remember that some SQL operations, such as joins, can create a result row that
does not fit in a 4 KB page. Therefore, having at least one work file that has 32
KB pages is recommended. (Work files cannot use 8 KB or 16 KB pages.)

v When you can achieve higher density on disk by choosing a larger page size.
For example, only one 2100-byte record can be stored in a 4 KB page, which
wastes almost half of the space. However, storing the record in a 32 KB page can
significantly reduce this waste. The downside with this approach is the potential
of incurring higher buffer pool storage costs or higher I/O costs—if you only
affect a few rows, you are bringing a bigger chunk of data from disk into the
buffer pool.
Using 8 KB or 16 KB page sizes can let you store more data on your disk with
less impact on I/O and buffer pool storage costs. If you use a larger page size
and access is random, you might need to go back and increase the size of the
buffer pool to achieve the same read-hit ratio you do with the smaller page size.

v When a larger page size can reduce data sharing overhead. One way to reduce
the cost of data sharing is to reduce the number of times the coupling facility
must be accessed. Particularly for sequential processing, larger page sizes can
reduce this number. More data can be returned on each access of the coupling
facility, and fewer locks must be taken on the larger page size, further reducing
coupling facility interactions.
If data is returned from the coupling facility, each access that returns more data
is more costly than those that return smaller amounts of data, but, because the
total number of accesses is reduced, coupling facility overhead is reduced.

40 Administration Guide

|
|
|
|
|
|
|



For random processing, using an 8 KB or 16 KB page size instead of a 32 KB
page size might improve the read-hit ratio to the buffer pool and reduce I/O
resource consumption.

The maximum number of partitions for a table space depends on the page size and
on the DSSIZE. The size of the table space depends on how many partitions are in
the table space and on the DSSIZE. The maximum number of partitions for a
partition-by-growth table space depends on the value that is specified for the
MAXPARTITIONS option of the CREATE TABLESPACE or ALTER TABLESPACE
statement.
Related reference

“Examples of table space definitions” on page 42

CREATE TABLESPACE (SQL Reference)

ALTER TABLESPACE (SQL Reference)

Recommendations for LOB page size
Choosing a page size for LOBs (in the LOB table space) is a trade-off between
minimizing the number of getpages (maximizing performance) and not wasting
space.

With LOB table spaces, no more than one LOB value is ever stored in a given page
in a LOB table space. Space that is not used by the LOB value in the last page that
is occupied by the LOB remains unused. DB2 also uses additional space for control
information. The smaller the LOB, the greater the proportion of space for this
“non-data” is used.

Example: For example, if you have a 17-KB LOB, the 4-KB page size is the most
efficient for storage. A 17-KB LOB requires five 4-KB pages for a total of 20 KB of
storage space. Pages that are 8 KB, 16 KB, and 32 KB in size waste more space,
because they require 24 KB, 32 KB, and 32 KB, respectively, for the LOB.

The following table shows that the number of data pages is lower for larger page
sizes, but larger page sizes might have more unused space.

Table 6. Relationship between LOB size and data pages based on page size

LOB size Page size LOB data pages
% Non-LOB data or
unused space

262 144 bytes 4 KB 64 1.6

8 KB 32 3.0

16 KB 16 5.6

32 KB 8 11.1

4 MB 4 KB 1029 0.78

8 KB 513 0.39

16 KB 256 0.39

32 KB 128 0.78

33 MB 4 KB 8234 0.76

8 KB 4106 0.39

16 KB 2050 0.19

32 KB 1024 0.10

Chapter 2. Implementing your database design 41

|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_createtablespace.htm#db2z_sql_createtablespace
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_altertablespace.htm#db2z_sql_altertablespace


Choosing a page size based on average LOB size

If you know that all of your LOBs are not the same size, you can still make an
estimate of what page size to choose. To estimate the average size of a LOB, you
need to add a percentage to account for unused space and control information. To
estimate the average size of a LOB value, use the following formula:
LOB size = (average LOB length) × 1.05

The following table contains some suggested page sizes for LOBs with the intent to
reduce the amount of I/O (getpages).

Table 7. Suggested page sizes based on average LOB length

Average LOB size (n) Suggested page size

n ≤4 KB 4 KB

4 KB < n ≤ 8 KB 8 KB

8 KB < n ≤ 16 KB 16 KB

16 KB < n 32 KB

The estimates in the previous table mean that a LOB value of 17 KB can mean 15
KB of unused space. Again, you must analyze your data to determine what is best.

General guidelines for LOBs of same size

If your LOBs are all the same size, you can fairly easily choose a page size that
uses space efficiently without sacrificing performance. For LOBs that are all the
same size, consider the alternative in the following table to maximize your space
savings.

Table 8. Suggested page sizes when LOBs are the same size

LOB size (y) Suggested page size

y ≤ 4 KB 4 KB

4 KB < y ≤ 8 KB 8 KB

8 KB < y ≤ 12 KB 4 KB

12 KB < y ≤ 16 KB 16 KB

16 KB < y ≤ 24 KB 8 KB

24 KB < y ≤ 32 KB 32 KB

32 KB < y ≤ 48 KB 16 KB

48 KB < y 32 KB

Related reference

“Examples of table space definitions”

Examples of table space definitions
When you define a table space, referring to examples of different types of table
space definitions can be helpful.

This information describes several examples of table space definitions. The
following clauses are used in the examples:

IN Identifies the database in which DB2 is to create the table space. If this
clause is not specified, the default database, DSNDB04, is used.

42 Administration Guide

|
|



USING STOGROUP
Indicates that you want DB2 to define and manage the data sets for this
table space. If you specify the DEFINE NO clause, you can defer allocation
of data sets until data is inserted or loaded into a table in the table space.

PRIQTY integer
Specifies the minimum primary space allocation for a DB2-managed data
set. This parameter applies only to table spaces that use storage groups.
The integer represents the number of kilobytes.

SECQTY integer
Specifies the minimum secondary space allocation for a DB2-managed data
set. This parameter applies only to table spaces that use storage groups.
The integer represents the number of kilobytes.

Example definition for a segmented table space

The following CREATE TABLESPACE statement creates a segmented table space
with 32 pages in each segment:
CREATE TABLESPACE MYTS

IN MYDB
USING STOGROUP MYSTOGRP

PRIQTY 30720
SECQTY 10240

SEGSIZE 32
LOCKSIZE TABLE
BUFFERPOOL BP0
CLOSE NO;

Example definition for an EA-enabled partitioned table space

The following CREATE TABLESPACE statement creates an EA-enabled table space,
SALESHX. Assume that a large query application uses this table space to record
historical sales data for marketing statistics. The first USING clause establishes the
MYSTOGRP storage group and space allocations for all partitions:
CREATE TABLESPACE SALESHX

IN MYDB
USING STOGROUP MYSTOGRP

PRIQTY 4000
SECQTY 130
ERASE NO

DSSIZE 16G
NUMPARTS 48
(PARTITION 46

COMPRESS YES,
PARTITION 47
COMPRESS YES,
PARTITION 48
COMPRESS YES)

LOCKSIZE PAGE
BUFFERPOOL BP1
CLOSE NO;

Example definitions for a partition-by-growth universal table
space

The following examples show how to create a partition-by-growth universal table

space.

Chapter 2. Implementing your database design 43



Example 1: In the following SQL statement, the universal table space is implicitly
created by a CREATE TABLE statement.
CREATE TABLE TEST02TB(
C1 SMALLINT,
C2 DECIMAL(9,2),
C3 CHAR(4))
PARTITIONING BY SIZE EVERY 4G
IN TEST02DB;
COMMIT;

Example 2: In the following SQL statement, the partition-by-growth universal table
space has a maximum size of 2 GB for each partition, 4 pages per segment, with a
maximum of 24 partitions for table space.
CREATE TABLESPACE TEST01TS IN TEST01DB USING STOGROUP SG1
DSSIZE 2G
MAXPARTITIONS 24
LOCKSIZE ANY
SEGSIZE 4;
COMMIT;

Example definitions for a range-partitioned universal table space

The following examples show how to create a range-partitioned universal table

space (UTS).

Example 1: The following SQL statement defines a range-partitioned universal
table space with 16 pages per segment and 55 partitions. This universal table space
uses a storage group SG1 and has LOCKSIZE ANY.
CREATE TABLESPACE TS1 IN DB1 USING STOGROUP SG1
NUMPARTS 55 SEGSIZE 16
LOCKSIZE ANY;

Example 2: The following SQL statement defines a range-partitioned universal
table space with 64 pages per segment and 7 defer-defined partitions. This
universal table space uses a storage group SG1 and compresses every
odd-numbered partition.
CREATE TABLESPACE TS1 IN DB1 USING STOGROUP SG1
NUMPARTS 7
(
PARTITION 1 COMPRESS YES,
PARTITION 3 COMPRESS YES,
PARTITION 5 COMPRESS YES,
PARTITION 7 COMPRESS YES
)
SEGSIZE 64
DEFINE NO;

44 Administration Guide



Related concepts

“General naming guidelines for table spaces” on page 38
“Coding guidelines for explicitly defined table spaces” on page 38
“Coding guidelines for implicitly defined table spaces” on page 39
“Recommendations for page size” on page 40
“Recommendations for LOB page size” on page 41

Implementing DB2 tables
Use the columns and rows of DB2 tables as logical structures for storing data.
Related concepts

Creation of tables (Introduction to DB2 for z/OS)

Creating base tables
When you create a table, DB2 records a definition of the table in the DB2 catalog.

Creating a table does not store the application data. You can put data into the table
by using several methods, such as the LOAD utility or the INSERT statement.

To create a base table that you designed:

Issue the CREATE TABLE statement.

Example: The following CREATE TABLE statement creates the EMP table, which is
in a database named MYDB and in a table space named MYTS:
CREATE TABLE EMP

(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
DEPT CHAR(3) ,
HIREDATE DATE ,
JOB CHAR(8) ,
EDL SMALLINT ,
SALARY DECIMAL(9,2) ,
COMM DECIMAL(9,2) ,
PRIMARY KEY (EMPNO))

IN MYDB.MYTS;

This CREATE TABLE statement shows the definition of multiple columns.

Guidelines for table names
Most organizations have naming conventions to ensure that objects are named in a
consistent manner. Consider these basic requirements for table names.

The table name is an identifier of up to 128 characters. You can qualify the table
name with an SQL identifier, which is a schema. When you define a table that is
based directly on an entity, these factors also apply to the table names.

Creating temporary tables
Temporary tables are useful when you need to sort or query intermediate result
tables that contain large numbers of rows and identify a small subset of rows to
store permanently. The two types of temporary tables are created temporary tables
and declared temporary tables.

Chapter 2. Implementing your database design 45

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.intro/db2z_creationoftables.htm#db2z_creationoftables


To create a temporary table:
1. Determine the type of temporary table that you want to create.
v If you need a permanent, sharable description of a table but need to store

data only for the life of an application process, define and use a created
temporary table.

v If you need to store data for the life of an application process, but you don’t
need a permanent, sharable description of the table, define and use a
declared temporary table.

2. Issue the appropriate SQL statement for the type of temporary table that you
want to create.
v To define a created temporary table, issue the CREATE GLOBAL

TEMPORARY TABLE statement. For more information, see “Creating created
temporary tables.”

v To define a declared temporary table, issue the DECLARE GLOBAL
TEMPORARY TABLE statement. For more information, see “Creating
declared temporary tables.”

Creating created temporary tables
If you need a permanent, sharable description of a table but need to store data
only for the life of an application process, you can define and use a created
temporary table.

DB2 does not log operations that it performs on created temporary tables;
therefore, SQL statements that use created temporary tables can execute more
efficiently. Each application process has its own instance of the created temporary
table.

To create a created temporary table:

Issue the CREATE GLOBAL TEMPORARY TABLE statement.

Example: The following statement defines a created temporary table that is named
TEMPPROD.
CREATE GLOBAL TEMPORARY TABLE TEMPPROD

(SERIALNO CHAR(8) NOT NULL,
DESCRIPTION VARCHAR(60) NOT NULL,
MFGCOSTAMT DECIMAL(8,2) ,
MFGDEPTNO CHAR(3) ,
MARKUPPCT SMALLINT ,
SALESDEPTNO CHAR(3) ,
CURDATE DATE NOT NULL);

Creating declared temporary tables
If you need to store data for the life of an application process, but you don’t need
a permanent, sharable description of the table, you can define and use a declared
temporary table.

To create a declared temporary table:

Issue the DECLARE GLOBAL TEMPORARY TABLE statement. Unlike other DB2
DECLARE statements, DECLARE GLOBAL TEMPORARY TABLE is an executable
statement that you can embed in an application program or issue interactively. You
can also dynamically prepare the statement.
When a program in an application process issues a DECLARE GLOBAL
TEMPORARY TABLE statement, DB2 creates an empty instance of the table. You
can populate the declared temporary table by using INSERT statements, modify

46 Administration Guide



the table by using searched or positioned UPDATE or DELETE statements, and
query the table by using SELECT statements. You can also create indexes on the
declared temporary table. The definition of the declared temporary table exists as
long as the application process runs.
At the end of an application process that uses a declared temporary table, DB2
deletes the rows of the table and implicitly drops the description of the table.

Example: The following statement defines a declared temporary table, TEMP_EMP.
(This example assumes that you have already created the WORKFILE database and
corresponding table space for the temporary table.)
DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_EMP

(EMPNO CHAR(6) NOT NULL,
SALARY DECIMAL(9, 2) ,
COMM DECIMAL(9, 2));

If specified explicitly, the qualifier for the name of a declared temporary table,
must be SESSION. If the qualifier is not specified, it is implicitly defined to be
SESSION.

Distinctions between DB2 base tables and temporary tables
DB2 base tables and the two types of temporary tables have several distinctions.

The following table summarizes important distinctions between base tables, created
temporary tables, and declared temporary tables.

Chapter 2. Implementing your database design 47

|
|
|



Table 9. Important distinctions between DB2 base tables and DB2 temporary tables

Area of
distinction Base tables Created temporary tables Declared temporary tables

Creation,
persistence, and
ability to share
table descriptions

CREATE TABLE statement
puts a description of the table
in catalog table SYSTABLES.
The table description is
persistent and is shareable
across application processes.

The name of the table in the
CREATE statement can be a
two-part or three-part name.
If the table name is not
qualified, DB2 implicitly
qualifies the name using the
standard DB2 qualification
rules applied to the SQL
statements.

CREATE GLOBAL
TEMPORARY TABLE
statement puts a description
of the table in catalog table
SYSTABLES. The table
description is persistent and is
shareable across application
processes.

The name of the table in the
CREATE statement can be a
two-part- or three-part name.
If the table name is not
qualified, DB2 implicitly
qualifies the name using the
standard DB2 qualification
rules applied to the SQL
statements.

The table space that is used
by created temporary tables is
reset by the following
commands: START DB2,
START DATABASE, and
START DATABASE(dbname)
SPACNAM(tsname), where
dbname is the name of the
database and tsname is the
name of the table space.

DECLARE GLOBAL
TEMPORARY TABLE statement
does not put a description of the
table in catalog table SYSTABLES.
The table description is not
persistent beyond the life of the
application process that issued
the DECLARE statement and the
description is known only to that
application process. Thus, each
application process could have its
own possibly unique description
of the same table.

The name of the table in the
DECLARE statement can be a
two-part or three-part name. If
the table name is qualified,
SESSION must be used as the
qualifier for the owner (the
second part in a three-part name).
If the table name is not qualified,
DB2 implicitly uses SESSION as
the qualifier.

The table space used by declared
temporary tables is reset by the
following commands: START
DB2, START DATABASE, and
START DATABASE(dbname)
SPACNAM(tsname), where
dbname is the name of the
database and tsname is the name
of the table space.

Table
instantiation and
ability to share
data

CREATE TABLE statement
creates one empty instance of
the table, and all application
processes use that one
instance of the table. The table
and data are persistent.

CREATE GLOBAL
TEMPORARY TABLE
statement does not create an
instance of the table. The first
implicit or explicit reference to
the table in an OPEN,
SELECT, INSERT, or DELETE
operation that is executed by
any program in the
application process creates an
empty instance of the given
table. Each application process
has its own unique instance of
the table, and the instance is
not persistent beyond the life
of the application process.

DECLARE GLOBAL
TEMPORARY TABLE statement
creates an empty instance of the
table for the application process.
Each application process has its
own unique instance of the table,
and the instance is not persistent
beyond the life of the application
process.

48 Administration Guide

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|



Table 9. Important distinctions between DB2 base tables and DB2 temporary tables (continued)

Area of
distinction Base tables Created temporary tables Declared temporary tables

References to the
table in
application
processes

References to the table name
in multiple application
processes refer to the same
single persistent table
description and to the same
instance at the current server.

If the table name that is being
referenced is not qualified,
DB2 implicitly qualifies the
name using the standard DB2
qualification rules that apply
to the SQL statements. The
name can be a two-part- or
three-part name.

References to the table name
in multiple application
processes refer to the same
single persistent table
description but to a distinct
instance of the table for each
application process at the
current server.

If the table name that is being
referenced is not qualified,
DB2 implicitly qualifies the
name using the standard DB2
qualification rules that apply
to the SQL statements. The
name can be a two-part or
three-part name.

References to that table name in
multiple application processes
refer to a distinct description and
instance of the table for each
application process at the current
server.

References to the table name in
an SQL statement (other than the
DECLARE GLOBAL
TEMPORARY TABLE statement)
must include SESSION as the
qualifier (the first part in a
two-part table name or the
second part in a three-part name).
If the table name is not qualified
with SESSION, DB2 assumes the
reference is to a base table.

Table privileges
and authorization

The owner implicitly has all
table privileges on the table
and the authority to drop the
table. The owner’s table
privileges can be granted and
revoked, either individually or
with the ALL clause.

Another authorization ID can
access the table only if it has
been granted appropriate
privileges for the table.

The owner implicitly has all
table privileges on the table
and the authority to drop the
table. The owner’s table
privileges can be granted and
revoked, but only with the
ALL clause; individual table
privileges cannot be granted
or revoked.

Another authorization ID can
access the table only if it has
been granted ALL privileges
for the table.

PUBLIC implicitly has all table
privileges on the table without
GRANT authority and has the
authority to drop the table. These
table privileges cannot be granted
or revoked.

Any authorization ID can access
the table without a grant of any
privileges for the table.

Indexes and other
SQL statement
support

Indexes and SQL statements
that modify data (INSERT,
UPDATE, DELETE, and so
on) are supported.

Indexes, UPDATE (searched
or positioned), and DELETE
(positioned only) are not
supported.

Indexes and SQL statements that
modify data (INSERT, UPDATE,
DELETE, and so on) are
supported.

Locking, logging,
and recovery

Locking, logging, and
recovery do apply.

Locking, logging, and
recovery do not apply. Work
files are used as the space for
the table.

Some locking, logging, and
limited recovery do apply. No
row or table locks are acquired.
Share-level locks on the table
space and DBD are acquired. A
segmented table lock is acquired
when all the rows are deleted
from the table or the table is
dropped. Undo recovery (rolling
back changes to a savepoint or
the most recent commit point) is
supported, but redo recovery
(forward log recovery) is not
supported.

Table space and
database
operations

Table space and database
operations do apply.

Table space and database
operations do not apply.

Table space and database
operations do apply.

Chapter 2. Implementing your database design 49



Table 9. Important distinctions between DB2 base tables and DB2 temporary tables (continued)

Area of
distinction Base tables Created temporary tables Declared temporary tables

Table space
requirements and
table size
limitations

The table can be stored in
implicitly created table spaces
and databases.

The table cannot span table
spaces. Therefore, the size of
the table is limited by the
table space size (as
determined by the primary
and secondary space
allocation values that are
specified for the table space’s
data sets) and the shared
usage of the table space
among multiple users. When
the table space is full, an error
occurs for the SQL operation.

The table is stored in table
spaces in the work file
database.

The table can span work file
table spaces. Therefore, the
size of the table is limited by
the number of available work
file table spaces, the size of
each table space, and the
number of data set extents
that are allowed for the table
spaces. Unlike the other types
of tables, created temporary
tables do not reach size
limitations as easily.

The table is stored in a table
space in the work file database.

The table cannot span table
spaces. Therefore, the size of the
table is limited by the table space
size (as determined by the
primary and secondary space
allocation values that are
specified for the table space’s
data sets) and the shared usage
of the table space among multiple
users. When the table space is
full, an error occurs for the SQL
operation.

You can find additional examples of implementing temporary tables and
information about restrictions and extensions of temporary tables in the DB2
Application Programming and SQL Guide and in the DB2 SQL Reference. For
information about temporary tables and their impact on DB2 resources, see the
DB2 Performance Guide.

Creating materialized query tables
Materialized query tables improve the performance of complex queries that operate
on very large amounts of data. Use the CREATE TABLE statement to create a
materialized query table.

DB2 uses a materialized query table to precompute the results of data that is
derived from one or more tables. When you submit a query, DB2 can use the
results that are stored in a materialized query table rather than compute the results
from the underlying source tables on which the materialized query table is defined.

To create a new materialized query table:

Issue the CREATE TABLE statement.

Example: The following CREATE TABLE statement defines a materialized query
table named TRANSCNT. TRANSCNT summarizes the number of transactions in
table TRANS by account, location, and year.
CREATE TABLE TRANSCNT (ACCTID, LOCID, YEAR, CNT) AS

(SELECT ACCOUNTID, LOCATIONID, YEAR, COUNT(*)
FROM TRANS
GROUP BY ACCOUNTID, LOCATIONID, YEAR )
DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY SYSTEM
ENABLE QUERY OPTIMIZATION;

The fullselect, together with the DATA INITIALLY DEFERRED clause and the
REFRESH DEFERRED clause, defines the table as a materialized query table.

50 Administration Guide

|
|
|

|
|



Creating tables that use table-controlled partitioning
Table-controlled partitioning does not require an index for partitioning and is
defined by PARTITION clauses on the CREATE TABLE statement.

To create a table that uses table-controlled partitioning:

Specify the partitioning key and the limit key values for a table in a partitioned
table space by using the PARTITION BY clause and the PARTITION ENDING AT
clause of the CREATE TABLE statement.

Example: Assume that you need to create a large transaction table that includes the
date of the transaction in a column named POSTED. You want the transactions for
each month in a separate partition. To create the table, issue the following
statement:
CREATE TABLE TRANS

(ACCTID ...,
STATE ...,
POSTED ...,
... , ...)
PARTITION BY (POSTED)
(PARTITION 1 ENDING AT ('01/31/2003'),
PARTITION 2 ENDING AT ('02/28/2003'),
...
PARTITION 13 ENDING AT ('01/31/2004'));

Differences between partitioning methods
You can use table-controlled partitioning instead of index-controlled partitioning.

When you define a partitioning index on a table in a partitioned table
space, you specify the partitioning key and the limit key values in the PARTITION
clause of the CREATE INDEX statement. This type of partitioning is called
index-controlled partitioning.

DB2 also supports a method called table-controlled partitioning for defining table
partitions. With table-controlled partitioning, you can specify the partitioning key
and the limit key values for a table in a partitioned table space by using the
PARTITION BY clause and the PARTITION ENDING AT clause of the CREATE
TABLE statement. When you use this type of partitioning, an index is not required
for partitioning.

Restriction: If you use table-controlled partitioning, you cannot specify the
partitioning key and the limit key values by using the PARTITION clause of the
CREATE INDEX statement. (Note that the preferred syntax changed from

PARTITION to PARTITION ENDING AT.)

The following table lists the differences between the two partitioning methods.

Table 10. Differences between table-controlled and index-controlled partitioning

Table-controlled partitioning Index-controlled partitioning

A partitioning index is not required;
clustering index is not required.

A partitioning index is required; clustering
index is required.

Multiple partitioned indexes can be created
in a table space.

Only one partitioned index can be created in
a table space.

Chapter 2. Implementing your database design 51

|
|
|
|

|
|
|

|



Table 10. Differences between table-controlled and index-controlled partitioning (continued)

Table-controlled partitioning Index-controlled partitioning

A table space partition is identified by both a
physical partition number and a logical
partition number.

A table space partition is identified by a
physical partition number.

The high-limit key is always enforced. The high-limit key is not enforced if the table
space is non-large.

Automatic conversion to table-controlled partitioning
Some index operations cause DB2 to automatically convert an index-controlled
partitioned table space to a table-controlled partitioned table space.

v

v Use CREATE INDEX with the PARTITIONED clause to create a partitioned
index on an index-controlled partitioned table space.

v Use CREATE INDEX with a PART VALUES clause and without a CLUSTER
clause to create a partitioning index.
DB2 stores the specified high limit key value instead of the default high limit
key value.

v Use ALTER INDEX with the NOT CLUSTER clause on a partitioning index that
is on an index-controlled partitioned table space.

v Use DROP INDEX to drop a partitioning index on an index-controlled
partitioned table space.

v Use ALTER TABLE to add a new partition, change a partition boundary, or
rotate a partition from first to last on an index-controlled partitioned table space.
In these cases, DB2 automatically converts to table-controlled partitioning but
does not automatically drop any indexes. DB2 assumes that any existing indexes
are useful.

After the conversion to table-controlled partitioning, DB2 changes the existing
high-limit key value for non-large table spaces to the highest value for the key.
Beginning in Version 8, DB2 enforces the high-limit key value. By default, DB2
does not put the last partition of the table space into a REORG-pending (REORP)
state. Exceptions to this rule are:
v When adding a new partition, DB2 stores the original high-limit key value

instead of the default high-limit key value. If this value was not previously
enforced, DB2 puts the last partition into a REORP state.

v When rotating a new partition, DB2 stores the original high-limit key value
instead of the default high-limit key value. DB2 puts the last partition into a
REORP state.

After the conversion to table-controlled partitioning, the SQL statement that
created the partitioning index is no longer valid. For example, after dropping a
partitioning index on an index-controlled partitioned table space, an attempt to
re-create the index by issuing the same CREATE INDEX statement that you
originally used would fail because the boundary partitions are now under the
control of the table.

52 Administration Guide

|
|
|
|
|
|



Nullable partitioning columns
DB2 lets you use nullable columns as partitioning columns. The use of nullable
columns has different implications for table-controlled partitioning than for
index-controlled partitioning.

With table-controlled partitioning, DB2 can restrict the insertion of null values into
a table with nullable partitioning columns, depending on the order of the
partitioning key:
v If the partitioning key is ascending, DB2 prevents the INSERT of a row with a

null value for the key column.
v If the partitioning key is descending, DB2 allows the INSERT of a row with a

null value for the key column. The row is inserted into the first partition.

Example 1: Assume that a partitioned table space is created with the
following SQL statements:
CREATE TABLESPACE TS IN DB
USING STOGROUP SG
NUMPARTS 4 BUFFERPOOL BP0;

CREATE TABLE TB (C01 CHAR(5),
C02 CHAR(5) NOT NULL,
C03 CHAR(5) NOT NULL)

IN DB.TS
PARTITION BY (C01)
PARTITION 1 ENDING AT ('10000'),
PARTITION 2 ENDING AT ('20000'),
PARTITION 3 ENDING AT ('30000'),
PARTITION 4 ENDING AT ('40000'));

Because the CREATE TABLE statement does not specify the order in which to put
entries, DB2 puts them in ascending order by default. DB2 subsequently prevents
any INSERT into the TB table of a row with a null value for partitioning column
C01. If the CREATE TABLE statement had specified the key as descending, DB2
would subsequently have allowed an INSERT into the TB table of a row with a
null value for partitioning column C01. DB2 would have inserted the row into
partition 1.

With index-controlled partitioning, DB2 does not restrict the insertion of null
values into a value with nullable partitioning columns.

Example 2: Assume that a partitioned table space is created with the following
SQL statements:
CREATE TABLESPACE TS IN DB
USING STOGROUP SG
NUMPARTS 4 BUFFERPOOL BP0;

CREATE TABLE TB (C01 CHAR(5),
C02 CHAR(5) NOT NULL,
C03 CHAR(5) NOT NULL)

IN DB.TS;

CREATE INDEX PI ON TB(C01) CLUSTER
(PARTITION 1 ENDING AT ('10000'),
PARTITION 2 ENDING AT ('20000'),
PARTITION 3 ENDING AT ('30000'),
PARTITION 4 ENDING AT ('40000'));

Regardless of the entry order, DB2 allows an INSERT into the TB table of a row
with a null value for partitioning column C01. If the entry order is ascending, DB2

Chapter 2. Implementing your database design 53



inserts the row into partition 4; if the entry order is descending, DB2 inserts the
row into partition 1. Only if the table space is created with the LARGE keyword

does DB2 prevent the insertion of a null value into the C01 column.

Creating tables that use index-controlled partitioning
Index-controlled partitioning requires an index and is defined by the PARTITION
clause of the CREATE INDEX statement.

Because the index is created separately from the associated table, you cannot insert
data into the table until the partitioning index is created.

To define a partitioning index on a table in a partitioned table space:

Specify the partitioning key and the limit key values in the PARTITION clause of
the CREATE INDEX statement.

Creating a clone table
You can create a clone table on an existing base table at the current server by using
the ALTER TABLE statement.

Although the ALTER TABLE syntax is used to create a clone table, the
authorization that is granted as part of the clone creation process is the same as
you would get during regular CREATE TABLE processing. The schema for the
clone table will be the same as for the base table.

Restriction: You can create a clone table only if the base table is in a universal
table space.

To create a clone table:

Issue the ALTER TABLE statement with the ADD CLONE option.

For example:
ALTER TABLE base-table-name ADD CLONE clone-table-name

Creating or dropping a clone table does not impact applications that are accessing
base table data. No base object quiesce is necessary, and this process does not
invalidate plans, packages, or the dynamic statement cache.

Restrictions:

v A clone table uses the statistics from the base table. RUNSTATS does not collect
statistics on a clone table, and Access Path Selection (APS) does not use
RUNSTATS statistics when accessing a clone table. This is in contrast to real-time
statistics, which keeps statistics for both the base and clone objects.

v Catalog and directory tables cannot be cloned.
v Indexes cannot be created on a clone table. Indexes can be created on the base

table but not on the clone table. Indexes that are created on the base table apply
to both the base and clone tables.

v BEFORE triggers can be created on the base table but not on the clone table.
BEFORE triggers that are created on the base table apply to both the base and
clone tables.

v You cannot rename a base table that has a clone relationship.

54 Administration Guide

|

|
|

|
|
|
|

|
|

|

|

|

|

|
|
|

|

|
|
|
|

|

|
|
|

|
|
|

|



v You cannot clone an RTS table.
v You cannot drop an AUX table or an AUX index on an object that is involved in

cloning.
v You cannot alter any table, or column attributes of a base table or clone table

when the objects are involved with cloning.
v The maximum number of partitions cannot be altered when a clone table resides

in a partition-by-growth table space.

Exchanging data between a base table and clone table
You can exchange table data and index data between the base table and clone table
by using the EXCHANGE statement.

To exchange data between the base table and clone table:

Issue an EXCHANGE statement with the DATA BETWEEN TABLE table-name1
AND table-name2 syntax.

For example,
EXCHANGE DATA BETWEEN TABLE table-name1 AND table-name2

After a data exchange, the base and clone table names remain the same as they
were prior to the data exchange. No data movement actually takes place. The
instance numbers in the underlying VSAM data sets for the objects (tables and
indexes) do change, and this has the effect of changing the data that appears in the
base and clone tables and their indexes. For example, a base table exists with the
data set name *I0001.*. The table is cloned and the clone’s data set is initially
named *.I0002.*. After an exchange, the base objects are named *.I0002.* and the
clones are named *I0001.*. Each time that an exchange happens, the instance
numbers that represent the base and the clone objects change, which immediately
changes the data contained in the base and clone tables and indexes.

Implementing DB2 views
When you design your database, you might need to give users access to only
certain pieces of data. You can give users access by designing and using views.

You can use views to perform the following tasks:
v Control access to a table
v Make data easier to use
v Simplify authorization by granting access to a view without granting access to

the table
v Show only portions of data in the table
v Show summary data for a given table
v Combine two or more tables in meaningful ways

Creating DB2 views
You can create a view on tables or on other views at the current server.

Chapter 2. Implementing your database design 55

|

|
|

|
|

|

|

|
|
|

|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|



Prerequisite: Before you create different column names for your view, remember
the naming conventions that you established when designing the relational
database.

To define a view:

Issue the CREATE VIEW SQL statement.
Unless you specifically list different column names after the view name, the

column names of the view are the same as those of the underlying table.

Example 1: Defining a view on a single table Assume that you want to create a
view on the DEPT table. Of the four columns in the table, the view needs only
three: DEPTNO, DEPTNAME, and MGRNO. The order of the columns that you
specify in the SELECT clause is the order in which they appear in the view:

CREATE VIEW MYVIEW AS
SELECT DEPTNO,DEPTNAME,MGRNO
FROM DEPT;

In this example, no column list follows the view name, MYVIEW. Therefore, the
columns of the view have the same names as those of the DEPT table on which it
is based. You can execute the following SELECT statement to see the view
contents:

SELECT * FROM MYVIEW;

The result table looks like this:
DEPTNO DEPTNAME MGRNO
====== ===================== ======
A00 CHAIRMANS OFFICE 000010
B01 PLANNING 000020
C01 INFORMATION CENTER 000030
D11 MANUFACTURING SYSTEMS 000060
E21 SOFTWARE SUPPORT ------

Example 2: Defining a view that combines information from several tables You
can create a view that contains a union of more than one table. DB2 provides two
types of joins—an outer join and an inner join. An outer join includes rows in
which the values in the join columns don’t match, and rows in which the values
match. An inner join includes only rows in which matching values in the join
columns are returned.

The following example is an inner join of columns from the DEPT and EMP tables.
The WHERE clause limits the view to just those columns in which the MGRNO in
the DEPT table matches the EMPNO in the EMP table:

56 Administration Guide



CREATE VIEW MYVIEW AS
SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT
FROM DEPT, EMP
WHERE EMP.EMPNO = DEPT.MGRNO;

The result of executing this CREATE VIEW statement is an inner join view of two
tables, which is shown below:
DEPTNO MGRNO LASTNAME ADMRDEPT
====== ====== ======== ========
A00 000010 HAAS A00
B01 000020 THOMPSON A00
C01 000030 KWAN A00
D11 000060 STERN D11

Guidelines for view names
The name for a view is an identifier of up to 128 characters.

The following example shows a view name:

Object Name
View MYVIEW

Use the CREATE VIEW statement to define and name a view. Unless you
specifically list different column names after the view name, the column names of
the view are the same as those of the underlying table. When you create different
column names for your view, remember the naming conventions that you
established when designing the relational database.

How DB2 inserts and updates data through views
After you define a view, you can refer to the name of a view in an INSERT,
UPDATE, or DELETE statement.

To ensure that the insert or update conforms to the view definition, specify
the WITH CHECK OPTION clause. The following example illustrates some
undesirable results of omitting that check.

Example 1: Suppose that you define a view, V1, as follows:
CREATE VIEW V1 AS
SELECT * FROM EMP
WHERE DEPT LIKE 'D%';

A user with the SELECT privilege on view V1 can see the information from the
EMP table for employees in departments whose IDs begin with D. The EMP table
has only one department (D11) with an ID that satisfies the condition.

Assume that a user has the INSERT privilege on view V1. A user with both
SELECT and INSERT privileges can insert a row for department E01, perhaps
erroneously, but cannot select the row that was just inserted.

The following example shows an alternative way to define view V1.

Example 2: You can avoid the situation in which a value that does not match the
view definition is inserted into the base table. To do this, instead define view V1 to
include the WITH CHECK OPTION clause:

Chapter 2. Implementing your database design 57



CREATE VIEW V1 AS SELECT * FROM EMP
WHERE DEPT LIKE 'D%' WITH CHECK OPTION;

With the new definition, any insert or update to view V1 must satisfy the predicate
that is contained in the WHERE clause: DEPT LIKE ‘D%’. The check can be
valuable, but it also carries a processing cost; each potential insert or update must
be checked against the view definition. Therefore, you must weigh the advantage
of protecting data integrity against the disadvantage of performance degradation.

Dropping DB2 views
You can drop a DB2 view by removing the view at the current server.

To remove a view:

Issue the DROP VIEW SQL statement.

Related reference

DROP (SQL Reference)

Implementing DB2 indexes
DB2 uses indexes for a variety of reasons. DB2 indexes enforce uniqueness on
column values, as in the case of parent keys. DB2 indexes are also used to cluster
data, to partition tables, to provide access paths to data, and to order retrieved
data without a sort.

Compressed indexes can use 8 KB, 16 KB, or 32 KB buffer pools. When you use
compressed indexes, more index leaf pages can be stored on a disk. The index leaf
pages are compressed down from either 8 KB, 16 KB, or 32 KB to fit into a 4 KB
page size. For an 8 KB index page size, the best compression ratio is 2:1. For a 16
KB index page size, the best compression ratio is 4:1, and for a 32 KB page size,
the best compression ratio is 8:1.

Indexes that are not compressed can take advantage of the larger page sizes of 8
KB, 16 KB, and 32 KB, without the concern of wasted space in the buffer pool.
When index compression is working to its fullest potential for any given buffer
pool page size, space is not wasted. However, for any combination of buffer pool
page sizes (8 KB, 16 KB, and 32 KB) that are compressed to a 4 KB disk page size,
some space in the buffer pool or on the disk will be wasted.

For example, consider the following scenarios for a compressed index that has an 8
KB buffer pool page size:
v If the index compression is very marginal, only half of the 8 KB page in the

buffer pool will be used, because only 4 KB of space on the disk is used.
v If the index compression is very good (for example, a ratio of 4:1), only a quarter

of the 4 KB page on the disk will be used.
v If the index compression is almost exactly 2:1, neither space in the buffer pool

nor on the disk will be wasted. A full 8 KB page of index keys will be
compressed to reside on the disk using only a 4 KB page size.

58 Administration Guide

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_drop.htm#db2z_sql_drop


Related concepts

Indexes that are padded or not padded (Introduction to DB2 for z/OS)

Creating DB2 indexes
When you define an index, DB2 builds and maintains an ordered set of pointers to
rows of a base table or an auxiliary table.

Define the index after you have defined the table.

To create a partitioning index, or a secondary index, and an index space at
the current server:

Issue the CREATE INDEX statement, and specify an index key.

The following example creates a unique index on the EMPPROJACT table. A
composite key is defined on two columns, PROJNO and STDATE.
CREATE UNIQUE INDEX XPROJAC1
ON EMPPROJACT
(PROJNO ASC,
STDATE ASC)

Related reference

CREATE INDEX (SQL Reference)

Guidelines for defining indexes
By following certain guidelines, you can successfully work with indexes.

Index names

The name for an index is an identifier of up to 128 characters. You can qualify this
name with an identifier, or schema, of up to 128 characters.

Example: The following example shows an index name:

Object Name
Index MYINDEX

The index space name is an eight-character name, which must be unique among
names of all index spaces and table spaces in the database.

Sequence of index entries

The sequence of the index entries can be in ascending order or descending order.
The ASC and DESC keywords of the CREATE INDEX statement indicate ascending
and descending order. ASC is the default.

Indexes on tables with large objects

You can use indexes on tables with LOBs the same way that you use them on
other tables, but consider the following facts:
v A LOB column cannot be a column in an index.

Chapter 2. Implementing your database design 59

|

|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.intro/db2z_indexespaddedornotpadded.htm#db2z_indexespaddedornotpadded
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_createindex.htm#db2z_sql_createindex


v An auxiliary table can have only one index. (An auxiliary table, which you
create by using the SQL CREATE AUXILIARY TABLE statement, holds the data
for a column that a base table defines.

v Indexes on auxiliary tables are different than indexes on base tables.

Creation of an index

If the table that you are indexing is empty, DB2 creates the index. However, DB2
does not actually create index entries until the table is loaded or rows are inserted.
If the table is not empty, you can choose to have DB2 build the index when the
CREATE INDEX statement is executed. Alternatively, you can defer the index build
until later. Optimally, you should create the indexes on a table before loading the
table. However, if your table already has data, choosing the DEFER option is
preferred; you can build the index later by using the REBUILD INDEX utility.

Copies of an index

If your index is fairly large and needs the benefit of high availability, consider
copying it for faster recovery. Specify the COPY YES clause on a CREATE INDEX
or ALTER INDEX statement to allow the indexes to be copied. DB2 can then track
the ranges of log records to apply during recovery, after the image copy of the
index is restored. (The alternative to copying the index is to use the REBUILD
INDEX utility, which might increase the amount of time that the index is
unavailable to applications.)

Deferred allocation of index space data sets

When you execute a CREATE INDEX statement with the USING STOGROUP
clause, DB2 generally defines the necessary VSAM data sets for the index space. In
some cases, however, you might want to define an index without immediately
allocating the data sets for the index space.

Example: You might be installing a software program that requires creation of
many indexes, but your company might not need some of those indexes. You
might prefer not to allocate data sets for indexes that you do not plan to use.

To defer the physical allocation of DB2-managed data sets, use the DEFINE NO
clause of the CREATE INDEX statement. When you specify the DEFINE NO
clause, DB2 defines the index but defers the allocation of data sets. The DB2
catalog table contains a record of the created index and an indication that the data
sets are not yet allocated. DB2 allocates the data sets for the index space as needed
when rows are inserted into the table on which the index is defined.

How DB2 implicitly creates an index
In certain circumstances, DB2 implicitly creates the unique indexes that are used to
enforce the uniqueness of the primary keys or unique keys.

These circumstances include:
v When the PRIMARY KEY or UNIQUE clause is specified in the CREATE TABLE

statement and the CREATE TABLE statement is processed by the schema
processor

v When the table space that contains the table is implicitly created

When a ROWID column is defined as GENERATED BY DEFAULT in the CREATE
TABLE statement, and the CREATE TABLE statement is processed by SET

60 Administration Guide

|

|
|

|

|
|
|

|

|
|



CURRENT RULES = ’STD’, or the table space that contains the table is implicitly
created, DB2 implicitly creates the unique indexes used to enforce the uniqueness
of the ROWID column. The privilege set must include the USE privilege of the
buffer pool. Each index is created as if the following CREATE INDEX statement
were issued:
CREATE UNIQUE INDEX xxx ON table-name (column1,...)

Where:
v xxx is the name of the index that DB2 generates.
v table-name is the name of the table that is specified in the CREATE TABLE

statement.
v (column1,...) is the list of column names that were specified in the UNIQUE or

PRIMARY KEY clause of the CREATE TABLE statement, or the column is a
ROWID column that is defined as GENERATED BY DEFAULT.

In addition, if the table space that contains the table is implicitly created, DB2 will
check the DEFINE DATA SET subsystem parameter to determine whether to define
the underlying data set for the index space of the implicitly created index on the
base table.

If DEFINE DATA SET is NO, the index is created as if the following CREATE
INDEX statement is issued:
CREATE UNIQUE INDEX xxx ON table-name (column1,...) DEFINE NO

Recommendations for index page size
With the CREATE INDEX statement, you can specify buffer pool sizes of 4 KB, 8
KB, 16 KB, and 32 KB for indexes.

When choosing an appropriate page size for an index, consider the following
factors:
v A larger index page size can improve performance for indexes with sequential

insert and fetch patterns but can cause degradation in performance for random
accesses to an index. A larger page size can also yield a larger fanout in index
non-leaf pages, which can reduce the number of levels in an index and improve
performance.

v A smaller index page size can yield better performance for indexes with random
fetch patterns.

Creating an index with a larger page size could reduce the number of page splits
in the index. A reduction in page splits is especially beneficial if the latch
contention from the index splits is frequent. For example:
v Latch class 6 in data sharing
v Latch class X’46’ in IFCID 57 performance trace record in a data sharing

environment
v Latch class X’FE’ in IFCID 57 record in a non-data-sharing environment

It can also lead to better performance for sequential access to the index.

The following example specifies a 16 KB buffer pool for the index being
created:
CREATE INDEX INDEX1 ON TABLE1 ( I1 ASC, I2 ASC) BUFFERPOOL BP16K1

Chapter 2. Implementing your database design 61

|
|
|
|
|

|

|

|

|
|

|
|
|

|
|
|
|

|
|

|

|

|
|

|
|

|
|
|
|
|

|
|

|
|
|

|

|
|

|

|

|
|

|



You can specify a 4 KB, 8 KB, 16 KB, or 32 KB default buffer pool for indexes in a
particular database using the CREATE DATABASE or ALTER DATABASE by using
the INDEXBP option as in the following examples:
CREATE DATABASE MYDB INDEXBP BP16K1

ALTER DATABASE MYDB INDEXBP BP16K1

Index versions
DB2 uses index versions to maximize data availability. Index versions enable DB2
to keep track of schema changes and provides users with access to data in altered
columns that are contained in indexes.

When users retrieve rows from a table with an altered column, the data is
displayed in the format that is described by the most recent schema definition,
even though the data is not currently stored in this format. The most recent
schema definition is associated with the current index version.

DB2 creates an index version each time you commit one of the following schema
changes:

Table 11. Situations when DB2 creates an index version

When you commit this change to a schema
DB2 creates this type of corresponding
index version

Use the ALTER TABLE statement to change
the data type of a non-numeric column that
is contained in one or more indexes.

A new index version for each index that is
affected by this operation.

Use the ALTER TABLE statement to change
the length of a VARCHAR column that is
contained in one or more PADDED indexes.

A new index version for each index that is
affected by this operation.

Use the ALTER TABLE statement to extend
the length of a CHAR column in a table.

A new index version for each index that is
affected by this operation.

Use the ALTER INDEX statement to add a
column to an index.

One new index version; only one index is
affected by this operation.

The index is set to REBUILD-pending status
if the column was not added to the table in
the same commit operation.

Add a new column to both a table and an
index in the same commit operation.

A new index version for each index that is
affected by this operation.

Exceptions: DB2 does not create an index version under the following
circumstances:
v When the index was created with DEFINE NO
v When you extend the length of a varying-length character (VARCHAR data

type) or varying-length graphic (VARGRAPHIC data type) column that is
contained in one or more indexes that are defined with the NOT PADDED
option

v When you specify the same data type and length that a column (which is
contained in one or more indexes) currently has, such that its definition does not
actually change

62 Administration Guide

|
|
|

|

|

|

|
|
|
|

|
|
|

|
|
|
|



DB2 creates only one index version if, in the same unit of work, you make
multiple schema changes to columns that are contained in the same index. If you
make these same schema changes in separate units of work, each change results in
a new index version.
Related tasks

“Reorganizing indexes” on page 128
“Recycling index version numbers” on page 129

Compressing indexes
You can compress your indexes to significantly reduce the physical space
requirements for most indexes.

Recommendation: Use index compression where a reduction in index storage
consumption is more important than a possible decrease in index performance.

To specify index compression:

Specify the compression option with a CREATE INDEX or ALTER INDEX
statement.
v YES: Activates index compression. The buffer pool used to create the index must

be either 8 KB or 16 KB in size. The physical page size on disk will be 4 KB. If
you create the index with the clause COMPRESS YES, index compression begins
as soon as the first index entries are added.

Restrictions:

– For user-managed index data sets, a compressed index requires a defined
control interval size (CISZ) of 4 KB.

– For DB2-managed index data sets that are altered to enable compression
(ALTER COMPRESS YES), the next utility operation to remove the
REBUILD-pending state will not apply the utility REUSE option.

v NO: Specifies that no index compression will be in effect. This is the default
option for the CREATE INDEX statement.

If you activate or deactivate compression with an ALTER INDEX statement, the
index will be placed into a REBUILD-pending (RBDP) state for partitioned indexes
and a pageset REBUILD-pending (PSRBD) state for non-partitioned indexes. Then
you need to use the REBUILD INDEX utility to rebuild the index, or use the
REORG utility to reorganize the table space that corresponds to the index.

Implementing DB2 schemas
Use schemas to provide a logical classification of objects in the database.

Creating a schema by using the schema processor
Schemas provide a logical classification of objects in the database. You can use the
schema processor to create a schema.

Creating a schema by using the CREATE SCHEMA statement is also supported for
compliance testing.

Chapter 2. Implementing your database design 63

|

|
|

|
|

|

|
|

|
|
|
|

|

|
|

|
|
|

|
|

|
|
|
|
|
|

|

|
|



CREATE SCHEMA statements cannot be embedded in a host program or
executed interactively. To process the CREATE SCHEMA statement, you must use
the schema processor. The ability to process schema definitions is provided for
conformance to ISO/ANSI standards. The result of processing a schema definition
is identical to the result of executing the SQL statements without a schema
definition.

Outside of the schema processor, the order of statements is important. They must
be arranged so that all referenced objects have been previously created. This
restriction is relaxed when the statements are processed by the schema processor if
the object table is created within the same CREATE SCHEMA. The requirement
that all referenced objects have been previously created is not checked until all of
the statements have been processed. For example, within the context of the schema
processor, you can define a constraint that references a table that does not exist yet
or GRANT an authorization on a table that does not exist yet.

To create a schema:
1. Write a CREATE SCHEMA statement.
2. Use the schema processor to execute the statement.

The following example shows schema processor input that includes the definition
of a schema.

CREATE SCHEMA AUTHORIZATION SMITH

CREATE TABLE TESTSTUFF
(TESTNO CHAR(4),
RESULT CHAR(4),
TESTTYPE CHAR(3))

CREATE TABLE STAFF
(EMPNUM CHAR(3) NOT NULL,
EMPNAME CHAR(20),
GRADE DECIMAL(4),
CITY CHAR(15))

CREATE VIEW STAFFV1
AS SELECT * FROM STAFF

WHERE GRADE >= 12

GRANT INSERT ON TESTSTUFF TO PUBLIC

GRANT ALL PRIVILEGES ON STAFF
TO PUBLIC

Processing schema definitions
You must use the schema processor to process CREATE SCHEMA statements.

Prerequisite: The schema processor sets the current SQLID to the value of the
schema authorization ID before executing any of the statements in the schema
definition. Therefore, that ID must have SYSADM or SYSCTRL authority, or it must
be the primary or one of the secondary authorization IDs of the process that
executes the schema processor. The same ID must have all the privileges that are
needed to execute all the statements in the schema definition.

To process schema definitions, complete the following steps:

64 Administration Guide



1. Run the schema processor (DSNHSP) as a batch job. Use the sample JCL
provided in member DSNTEJ1S of the SDSNSAMP library.
The schema processor accepts only one schema definition in a single job. No
statements that are outside the schema definition are accepted. Only SQL
comments can precede the CREATE SCHEMA statement; the end of input ends
the schema definition. SQL comments can also be used within and between
SQL statements.
The processor takes the SQL from CREATE SCHEMA (the SYSIN data set),
dynamically executes it, and prints the results in the SYSPRINT data set.

2. Optional: If a statement in the schema definition has an error, the schema
processor processes the remaining statements but rolls back all the work at the
end. In this case, you need to fix the statement in error and resubmit the entire
schema definition.

Loading data into DB2 tables
You can use several methods to load data into DB2 tables.

The most common method for loading data into most of your tables is to use the
LOAD utility. This utility loads data into DB2 persistent tables from sequential
data sets by using BSAM. You can also use a cursor that is declared with an EXEC
SQL utility control statement to load data from another SQL table with the DB2
UDB family cross-loader function. The LOAD utility cannot be used to load data
into DB2 temporary tables or system-maintained materialized query tables.

When loading tables with indexes, referential constraints, or table check
constraints, LOAD can perform several checks on the validity of data. If errors are
found, the table space that is being loaded, its index spaces, and even other table
spaces might be left in a restricted status. LOAD does not check the validity of
informational referential constraints. Plan to make necessary corrections and
remove restrictions after any LOAD job.

You can also use an SQL INSERT statement to copy all or selected rows of another
table, in any of the following methods:
v Using the INSERT statement in an application program
v Interactively through SPUFI
v With the command line processor (for DB2 Version 9.1 or later databases)

To reformat data from IMS DL/I databases and VSAM and SAM loading for the
LOAD utility, use DB2 DataPropagator™.

Loading data with the LOAD utility
Use the LOAD utility to load one or more tables of a table space. If you are
loading a large number of rows, use the LOAD utility rather than inserting the
rows by using the INSERT statement.

Before using the LOAD utility, make sure that you complete all of the prerequisite
activities for your situation.

Run the LOAD utility control statement with the options that you need to load
data.

Chapter 2. Implementing your database design 65

|
|

|

|

|



Related concepts

“Row format conversion for table spaces” on page 847

Before running LOAD (DB2 Utilities)
Related reference

LOAD (DB2 Utilities)

How the LOAD utility loads DB2 tables
Use the LOAD utility to load one or more persistent tables of a table space, or one
or more partitions of a table space. The LOAD utility operates on a table space, so
you must have authority for all tables in the table space when you run LOAD.

The LOAD utility loads records into the tables and builds or extends any indexes
defined on them. If the table space already contains data, you can choose whether
you want to add the new data to the existing data or replace the existing data.

Additionally, you can use the LOAD utility to do the following:
v Compress data and build a compression dictionary
v Convert data between compatible data types and between encoding schemes
v Load multiple tables in a single table space

Delimited input and output files

The LOAD and UNLOAD utilities can accept or produce a delimited file, which is
a sequential BSAM file with row delimiters and column delimiters. You can unload
data from other systems into one or more files that use a delimited file format and
then use these delimited files as input for the LOAD utility. You can also unload
DB2 data into delimited files by using the UNLOAD utility and then use these files
as input into another DB2 database.

INCURSOR option

The INCURSOR option of the LOAD utility specifies a cursor for the input data
set. Use the EXEC SQL utility control statement to declare the cursor before
running the LOAD utility. You define the cursor so that it selects data from another
DB2 table. The column names in the SELECT statement must be identical to the
column names of the table that is being loaded. The INCURSOR option uses the
DB2 cross-loader function.

CCSID option

You can load input data into ASCII, EBCDIC, or Unicode tables. The ASCII,
EBCDIC, and UNICODE options on the LOAD utility statement let you specify
whether the format of the data in the input file is ASCII, EBCDIC, or Unicode. The
CCSID option of the LOAD utility statement lets you specify the CCSIDs of the
data in the input file. If the CCSID of the input data does not match the CCSID of
the table space, the input fields are converted to the CCSID of the table space
before they are loaded.

Availability during load

For nonpartitioned table spaces, data for other tables in the table space that is not
part of the table that is being loaded is unavailable to other application programs
during the load operation with the exception of LOAD SHRLEVEL CHANGE. For
partitioned table spaces, data that is in the table space that is being loaded is also

66 Administration Guide

|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_beforerunningload.htm#db2z_beforerunningload
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_load.htm#db2z_utl_load


unavailable to other application programs during the load operation with the
exception of LOAD SHRLEVEL CHANGE. In addition, some SQL statements, such
as CREATE, DROP, and ALTER, might experience contention when they run
against another table space in the same DB2 database while the table is being
loaded.

Default values for columns

When you load a table and do not supply a value for one or more of the columns,
the action DB2 takes depends on the circumstances.
v If the column is not a ROWID or identity column, DB2 loads the default value

of the column, which is specified by the DEFAULT clause of the CREATE or
ALTER TABLE statement.

v If the column is a ROWID column that uses the GENERATED BY DEFAULT
option, DB2 generates a unique value.

v If the column is an identity column that uses the GENERATED BY DEFAULT
option, DB2 provides a specified value.

v With XML columns, if there is an implicitly created DOCID column in the table,
it is created with the GENERATED ALWAYS attribute.

For ROWID or identity columns that use the GENERATED ALWAYS option, you
cannot supply a value because this option means that DB2 always provides a
value.

XML columns

You can load XML documents from input records if the total input record length is
less than 32 KB. For input record length greater than 32 KB, you must load the
data from a separate file. (You can also use a separate file if the input record length
is less than 32 KB.)

When the XML data is to be loaded from the input record, specify XML as the
input field type. The target column must be an XML column. The LOAD utility
treats XML columns as varying-length data when loading XML directly from input
records and expects a two-byte length field preceding the actual XML value.

The XML tables are loaded when the base table is loaded. You cannot specify the
name of the auxiliary XML table to load.

XML documents must be well formed in order to be loaded.

LOB columns

The LOAD utility treats LOB columns as varying-length data. The length value for
a LOB column must be 4 bytes. The LOAD utility can be used to load LOB data if
the length of the row, including the length of the LOB data, does not exceed 32 KB.
The auxiliary tables are loaded when the base table is loaded. You cannot specify
the name of the auxiliary table to load.

Replacement or addition of data

You can use LOAD REPLACE to replace data in a single-table table space or in a
multiple-table table space. You can replace all the data in a table space (using the
REPLACE option), or you can load new records into a table space without
destroying the rows that are already there (using the RESUME option).

Chapter 2. Implementing your database design 67

|
|
|
|
|

|
|

|

|
|
|
|

|
|
|
|

|
|

|



Restricted status after LOAD
The LOAD utility can place a table space or an index space into a restricted status.
Several types of restricted status are possible.

Your use of a table space in restricted status is severely limited. In general, you
cannot access its data through SQL; you can only drop the table space or one of its
tables, or perform some operation that resets the status.

To discover what spaces are in restricted status, use the command:
-DISPLAY DATABASE (*) SPACENAM (*) RESTRICT

COPY-pending status

The LOAD utility places a table space in the COPY-pending state if you load with
LOG NO, which you might do to save space in the log. Immediately after that
operation, DB2 cannot recover the table space. However, you can recover the table
space by loading it again. Prepare for recovery, and remove the restriction, by
making a full image copy using SHRLEVEL REFERENCE. (If you end the COPY
job before it is finished, the table space is still in COPY-pending status.)

When you use REORG or LOAD REPLACE with the COPYDDN keyword, a full
image copy data set (SHRLEVEL REF) is created during the execution of the
REORG or LOAD utility. This full image copy is known as an inline copy. The table
space is not left in COPY-pending state regardless of which LOG option is
specified for the utility.

The inline copy is valid only if you replace the entire table space or partition. If
you request an inline copy by specifying COPYDDN in a LOAD utility statement,
an error message is issued, and the LOAD terminates if you specify LOAD
RESUME YES or LOAD RESUME NO without REPLACE.

REBUILD-pending status

The LOAD utility places all the index spaces for a table space in the
REBUILD-pending status if you end the job (by using -TERM UTILITY) before it
completes the INDEXVAL phase. It places the table space itself in
RECOVER-pending status if you end the job before it completes the RELOAD
phase.

CHECK-pending status

The LOAD utility places a table space in the CHECK-pending status if its
referential or check integrity is in doubt. Because of this restriction, use of the
CHECK DATA utility is recommended. That utility locates and, optionally, removes
invalid data. If the CHECK DATA utility removes invalid data, the remaining data
satisfies all referential and table check constraints, and the CHECK-pending
restriction is lifted. LOAD does not set the CHECK-pending status for
informational referential constraints.

Loading data by using the INSERT statement
You can load data into tables is by using the INSERT statement.

To load data into tables:
1. Issue an INSERT statement.
2. Insert single or multiple rows.

68 Administration Guide



You can issue the statement interactively or embed it in an application program.
Related tasks

“Inserting a single row”
“Inserting multiple rows”

Inserting a single row
The simplest form of the INSERT statement inserts a single row of data. In this
form of the statement, you specify the table name, the columns into which the data
is to be inserted, and the data itself.

To insert a single row:
1. Issue an INSERT INTO statement.
2. Specify the table name, the columns into which the data is to be inserted, and

the data itself.

For example, suppose that you create a test table, TEMPDEPT, with the same
characteristics as the department table:
CREATE TABLE SMITH.TEMPDEPT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) NOT NULL,
ADMRDEPT CHAR(3) NOT NULL)
IN DSN8D91A.DSN8S91D;

To now add a row to table TEMPDEPT, you can enter:
INSERT INTO SMITH.TEMPDEPT

VALUES ('X05','EDUCATION','000631','A01');

If you write an application program to load data into tables, you use that form of
INSERT, probably with host variables instead of the actual values shown in this

example.

Inserting multiple rows
You can use a form of INSERT that copies rows from another table.

To add multiple rows to a table, complete the following steps:
1. Issue an INSERT INTO statement. For example, the following statement loads

TEMPDEPT with data from the department table about all departments that
report to department D01.
INSERT INTO SMITH.TEMPDEPT

SELECT DEPTNO,DEPTNAME,MGRNO,ADMRDEPT
FROM DSN8910.DEPT
WHERE ADMRDEPT='D01';

2. Optional: Embed the INSERT statement in an application program to insert
multiple rows into a table from the values that are provided in host variable
arrays.
a. Specify the table name, the columns into which the data is to be inserted,

and the arrays that contain the data. Each array corresponds to a column.

For example, you can load TEMPDEPT with the number of rows in the host
variable num-rows by using the following embedded INSERT statement:

Chapter 2. Implementing your database design 69



EXEC SQL
INSERT INTO SMITH.TEMPDEPT
FOR :num-rows ROWS
VALUES (:hva1, :hva2, :hva3, :hva4);

Assume that the host variable arrays hva1, hva2, hva3, and hva4 are populated
with the values that are to be inserted. The number of rows to insert must be

less than or equal to the dimension of each host variable array.

Implications of using an INSERT statement to load tables
If you plan to use the INSERT statement to load tables, you should consider some
of the implications.
v If you are inserting a large number of rows, you can use the LOAD utility.

Alternatively, use multiple INSERT statements with predicates that isolate the
data that is to be loaded, and then commit after each insert operation.

v When a table, whose indexes are already defined, is populated by using the
INSERT statement, both the FREEPAGE and the PCTFREE parameters are
ignored. FREEPAGE and PCTFREE are in effect only during a LOAD or REORG
operation.

v Set the NOT LOGGED attribute for table spaces when large volumes of data are
being inserted with parallel INSERT processes. If the data in the table space is
lost or damaged, it can be reinserted from its original source.

v You can load a value for a ROWID column with an INSERT and fullselect only
if the ROWID column is defined as GENERATED BY DEFAULT. If you have a
table with a column that is defined as ROWID GENERATED ALWAYS, you can
propagate non-ROWID columns from a table with the same definition.

v You cannot use an INSERT statement on system-maintained materialized query
tables.

v REBUILD-pending (RBDP) status is set on a data-partitioned secondary index if
you create the index after you insert a row into a table. In addition, the last
partition of the table space is set to REORG-pending (REORP) restrictive status.

v When you insert a row into a table that resides in a partitioned table space and
the value of the first column of the limit key is null, the result of the INSERT
depends on whether DB2 enforces the limit key of the last partition:
– When DB2 enforces the limit key of the last partition, the INSERT fails (if the

first column is ascending).
– When DB2 enforces the limit key of the last partition, the rows are inserted

into the first partition (if the first column is descending).
– When DB2 does not enforce the limit key of the last partition, the rows are

inserted into the last partition (if the first column is ascending) or the first
partition (if the first column is descending).

DB2 enforces the limit key of the last partition for the following table spaces:
– Table spaces using table-controlled or index-controlled partitioning that are

large (DSSIZE greater than, or equal to, 4 GB)
– Tables spaces using table-controlled partitioning that are large or non-large

(any DSSIZE)

Loading data from DL/I
You might want to convert data in IMS DL/I databases from a hierarchical
structure to a relational structure so that it can be loaded into DB2 tables. To
convert the data, you can use the DataRefresher™ licensed program.

70 Administration Guide

|
|
|

|
|
|



Implementing DB2 stored procedures
You can create and call stored procedures to perform a number of utility and
application programming functions.

Consider using stored procedures in any of the following situations:
v An application executes multiple remote SQL statements
v An application accesses tables from a dynamic SQL environment, but you do not

want to grant the application table privileges
v An application accesses host variables for which you want to guarantee security

and integrity
v An application creates a result set to return to a client application.

The steps for implementing stored procedures vary depending on which of the
following types of stored procedures you are implementing:
v External stored procedures
v External SQL procedures
v Native SQL procedures

To implement DB2 stored procedures:
1. Configure DB2 for running stored procedures.

This step involves some basic setup tasks, such as setting up WLM
environments and setting subsystem parameters. Some of these tasks might
have already been performed during installation or migration. For detailed
instructions, see the related information about configuring DB2 for running
stored procedures.
You must perform this step for the following types of stored procedures:
v External stored procedures
v External SQL procedures
v Native SQL procedures that satisfy at least one of the following conditions:

– The native SQL procedure calls at least one external stored procedure,
external SQL procedure, or user-defined function.

– The native SQL procedure is defined with ALLOW DEBUG MODE or
DISALLOW DEBUG MODE.

v DB2-supplied stored procedures
2. Create the stored procedure. Follow the appropriate instructions depending on

the type of procedure that you want to create.
3. Call the stored procedure from either your application or the command line

processor.

After you complete the basic steps for implementing the stored procedure, you can
complete the following tasks, as needed:
v Alter the stored procedure options or body.

Restriction: For external SQL procedures, you can alter only the procedure
description. You cannot alter the body.

v Debug the stored procedure.
v Improve the performance of a stored procedure.
v Migrate external SQL procedures to native SQL procedures.
v Migrate stored procedures from test to production.

Chapter 2. Implementing your database design 71

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_enablestprocsudfs.htm#db2z_enablestprocsudfs
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_callspfromapp.htm#db2z_callspfromapp
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_runspfromclp.htm#db2z_runspfromclp
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_runspfromclp.htm#db2z_runspfromclp
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_debugsp.htm#db2z_debugsp
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.perf/db2z_improvestoreprocudfperf.htm#db2z_improvestoreprocudfperf
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_migrateexternalsptonativesp.htm#db2z_migrateexternalsptonativesp


Related information

″Procedures″ (Introduction to DB2 for z/OS)
″Creating a native SQL procedure″ (DB2 Application Programming and SQL
Guide)
″Creating an external SQL procedure″ (DB2 Application Programming and SQL
Guide)
″Creating an external stored procedure″ (DB2 Application Programming and SQL
Guide)
″Calling a stored procedure from your application″ (DB2 Application Programming
and SQL Guide)
″Running stored procedures from the command line processor″ (DB2 Application
Programming and SQL Guide)

Creating stored procedures
The process that you follow to create a stored procedure depends on the type of
stored procedure that you want to create.

You can create one of the following types of stored procedures:

Native SQL procedure
A procedure whose body is written in SQL and for which DB2 does not
generate an associated C program.

External SQL procedure
A procedure whose body is written in SQL and for which DB2 generates
an associated C program.

External stored procedure
A procedure that is written in a host language.

To create a stored procedure:
1. Set up the stored procedure environment. This step is required for creating

external SQL procedures and external stored procedures. For native SQL
procedures this step is not required, unless the native SQL procedure calls an
external stored procedure or a user-defined function. For more information
about setting up the stored procedure environment, see Configuring DB2 for
running stored procedures and user-defined functions in DB2 Installation
Guide.

2. Create the stored procedure by following the process for the type of stored
procedure that you want to create. When you create a stored procedure, you
use the CREATE PROCEDURE statement to register a stored procedure with a
database server.

72 Administration Guide

|

|
|

|

|
|
|

|
|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.intro/db2z_procedures.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_createnativesqlprocedure.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_createnativesqlprocedure.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_createexternalsqlproc.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_createexternalsqlproc.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_createexternalsp.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_createexternalsp.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_callspfromapp.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_callspfromapp.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_runspfromclp.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_runspfromclp.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_enablestprocsudfs.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_enablestprocsudfs.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_enablestprocsudfs.htm


Related tasks

Creating a native SQL procedure (Application Programming and SQL Guide)

Creating an external SQL procedure (Application Programming and SQL
Guide)

Creating an external stored procedure (Application Programming and SQL
Guide)
Related reference

CREATE PROCEDURE (SQL Reference)
Related information

IBM Data Studio

Dropping stored procedures
Use the DROP statement to drop a stored procedure at the current server.

To drop a stored procedure:

Issue the DROP PROCEDURE statement, and specify the name of the stored
procedure that you want to drop.

For example, to drop the stored procedure MYPROC in schema SYSPROC, issue
the following statement:
DROP PROCEDURE SYSPROC.MYPROC;

Related reference

DROP (SQL Reference)

Implementing DB2 user-defined functions
In contrast to built-in DB2 functions, you can create and implement your own
external, sourced, or SQL functions.

Creating user-defined functions
The CREATE FUNCTION statement registers a user-defined function with a
database server.

To create a user-defined function, complete the following step:
1. Issue the CREATE FUNCTION statement.
2. Specify the type of function you want to create.
v External scalar
v External table
v Sourced
v SQL scalar

Chapter 2. Implementing your database design 73

|

|

|
|

|
|

|

|

|

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_createnativesqlprocedure.htm#db2z_createnativesqlprocedure
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_createexternalsqlproc.htm#db2z_createexternalsqlproc
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_createexternalsqlproc.htm#db2z_createexternalsqlproc
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_createexternalsp.htm#db2z_createexternalsp
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_createexternalsp.htm#db2z_createexternalsp
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_createprocedure.htm#db2z_sql_createprocedure
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=ch27.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_drop.htm#db2z_sql_drop


Deleting user-defined functions
Use the DROP statement to delete a user-defined function at the current server.

To delete a user-defined function, complete the following steps:
1. Issue the DROP statement.
2. Specify FUNCTION or SPECIFIC FUNCTION.

For example, drop the user-defined function ATOMIC_WEIGHT from the schema
CHEM.
DROP FUNCTION CHEM.ATOMIC_WEIGHT;

Estimating disk storage for user data
To properly estimate the amount of disk storage that is necessary to store your
data, you need to consider several factors.

Estimating the space requirements for DB2 objects is easier if you collect and
maintain a statistical history of those objects. The accuracy of your estimates
depends on the currentness of the statistical data.

To estimate disk storage for user data:
1. First, ensure that the statistics history is current by using the MODIFY

STATISTICS utility to delete outdated statistical data from the catalog history
tables.

2. Then, use the DB2 Estimator to calculate space estimates for tables, indexes,
and other factors.

General approach to estimating storage
Estimating the space requirements for DB2 objects is easier if you collect and
maintain a statistical history of those objects.

The accuracy of your estimates depends on the currentness of the statistical data.
To ensure that the statistics history is current, use the MODIFY STATISTICS utility
to delete outdated statistical data from the catalog history tables.

The amount of disk space you need for your data is not just the number of bytes
of data; the true number is some multiple of that. That is,

space required = M × (number of bytes of data)

The multiplier M depends on your circumstances. It includes factors that are
common to all data sets on disk, as well as others that are particular to DB2. It can
vary significantly, from a low of about 1.25 to 4.0 or more. For a first
approximation, set M=2. For more information, see “Calculating the space required
for a table” on page 76.

Whether you use extended address volumes (EAV) is also a factor in estimating
storage. Although, the EAV factor is not a multiplier, you need to add 10 cylinders
for each object in the cylinder-managed space of an EAV. DB2 data sets might take
more space or grow faster on EAV compared to non-extended address volumes.
The reason is that the allocation unit in the extended addressing space (EAS) of

74 Administration Guide

|
|
|
|
|



EAV is a multiple of 21 cylinders, and every allocation is rounded up to this
multiple. If you use EAV, the data set space estimation for an installation must take
this factor into account. The effect is more pronounced for smaller data sets.

For more accuracy, you can calculate M as the product of the following factors:

Record overhead
Allows for eight bytes of record header and control data, plus space
wasted for records that do not fit exactly into a DB2 page. For the second
consideration, see “Recommendations for LOB page size” on page 41. The
factor can range from about 1.01 (for a careful space-saving design) to as
great as 4.0. A typical value is about 1.10.

Free space
Allows for space intentionally left empty to allow for inserts and updates.
You can specify this factor on the CREATE TABLESPACE statement. The
factor can range from 1.0 (for no free space) to 200 (99% of each page used
left free, and a free page following each used page). With default values,
the factor is about 1.05.

Unusable space
Track lengths in excess of the nearest multiple of page lengths. The
following table shows the track size, number of pages per track, and the
value of the unusable-space factor for several different device types.

Table 12. Unusable space factor by device type

Device type Track size Pages per track Factor value

3380 47476 10 1.16

3390 56664 12 1.15

Data set excess
Allows for unused space within allocated data sets, occurring as unused
tracks or part of a track at the end of any data set. The amount of unused
space depends upon the volatility of the data, the amount of space
management done, and the size of the data set. Generally, large data sets
can be managed more closely, and those that do not change in size are
easier to manage. The factor can range without limit above 1.02. A typical
value is 1.10.

Indexes
Allows for storage for indexes to data. For data with no indexes, the factor
is 1.0. For a single index on a short column, the factor is 1.01. If every
column is indexed, the factor can be greater than 2.0. A typical value is
1.20. For further discussion of the factor, see “Calculating the space
required for an index” on page 79.

The following table shows calculations of the multiplier M for three different
database designs:
v The tight design is carefully chosen to save space and allows only one index on

a single, short field.
v The loose design allows a large value for every factor, but still well short of the

maximum. Free space adds 30% to the estimate, and indexes add 40%.
v The medium design has values between the other two. You might want to use

these values in an early stage of database design.

Chapter 2. Implementing your database design 75

|
|
|



In each design, the device type is assumed to be a 3390. Therefore, the
unusable-space factor is 1.15. M is always the product of the five factors.

Table 13. Calculations for different database designs

Factor Tight design Medium design Loose design

Record overhead × 1.02 1.10 1.30

Free space × 1.00 1.05 1.30

Unusable space × 1.15 1.15 1.15

Data set excess × 1.02 1.10 1.30

Indexes = 1.02 1.20 1.40

Multiplier M 1.22 1.75 3.54

In addition to the space for your data, external storage devices are required for:
v Image copies of data sets, which can be on tape
v System libraries, system databases, and the system log
v Temporary work files for utility and sort jobs

A rough estimate of the additional external storage needed is three times the
amount calculated for disk storage.

Also, you need to add the EAV factor.

Calculating the space required for a table
The following information provides details about how to calculate the space that is
required for a table.
v “Calculations for record lengths and pages”
v “Saving space with data compression” on page 84
v “Estimating storage for LOBs” on page 77
v “Estimating storage when using the LOAD utility” on page 78

Space allocation parameters are specified in kilobytes (KB).

Calculations for record lengths and pages
In DB2, a record is the storage representation of a row. An important factor in
estimating the required amount of space for a table is the size of the records.

Records are stored within pages that are 4 KB, 8 KB, 16 KB, or 32 KB. Generally,
you cannot create a table in which the maximum record size is greater than the
page size.

Also consider:
v Normalizing your entities
v Using larger page sizes
v Using LOB data types if a single column in a table is greater than 32 K

In addition to the bytes of actual data in the row (not including LOB data, which is
not stored in the base row or included in the total length of the row), each record
has:
v A six-byte prefix
v One additional byte for each column that can contain null values
v Two additional bytes for each varying-length column or ROWID column
v Six bytes of descriptive information in the base table for each LOB column

76 Administration Guide

|



The sum of each column’s length is the record length, which is the length of
data that is physically stored in the table. You can retrieve the value of the
AVGROWLEN column in the SYSIBM.SYSTABLES catalog table to determine the
average length of rows within a table. The logical record length can be longer, for

example, if the table contains LOBs.

Every data page has:
v A 22-byte header
v A 2-byte directory entry for each record stored in the page

To simplify the calculation of record and page length, consider the directory entry
as part of the record. Then, every record has a fixed overhead of 8 bytes, and the
space available to store records in a 4 KB page is 4074 bytes. Achieving that
maximum in practice is not always simple. For example, if you are using the
default values, the LOAD utility leaves approximately 5 percent of a page as free
space when loading more than one record per page. Therefore, if two records are
to fit in a page, each record cannot be longer than 1934 bytes (approximately 0.95 ×
4074 × 0.5).

Furthermore, the page size of the table space in which the table is defined limits
the record length. If the table space is 4 KB, the record length of each record cannot
be greater than 4056 bytes. Because of the 8-byte overhead for each record, the sum
of column lengths cannot be greater than 4048 bytes (4056 minus the 8-byte
overhead for a record).

DB2 provides three larger page sizes to allow for longer records. You can improve
performance by using pages for record lengths that best suit your needs.

As shown in the following table, the maximum record size for each page size
depends on the size of the table space and on whether you specified the
EDITPROC clause.

Table 14. Maximum record size (in bytes)

EDITPROC 4-KB page 8-KB page 16-KB page 32-KB page

NO 4056 8138 16330 32714

YES 4046 8128 16320 32704

Creating a table using CREATE TABLE LIKE in a table space of a larger
page size changes the specification of LONG VARCHAR to VARCHAR and LONG
VARGRAPHIC to VARGRAPHIC. You can also use CREATE TABLE LIKE to create
a table with a smaller page size in a table space if the maximum record size is

within the allowable record size of the new table space.

Estimating storage for LOBs
Before calculating the storage that is required for LOB table spaces, you must
understand the size restrictions for large object (LOBs) data types.

Tables with LOBs can store byte strings up to 2 GB. A base table can be defined
with one or more LOB columns. The LOB columns are logically part of the base
table but are physically stored in an auxiliary table. In place of each LOB column,
there is an indicator column, which is a column with descriptive information about
the LOB. When a base table has LOB columns, then each row of the table has a row
identifier, which is a varying-length 17-byte field. You must consider the overhead

Chapter 2. Implementing your database design 77



of the indicator column and row identifiers when estimating table size. If the LOB
column is NULL or has a value of zero, no space is allocated in the auxiliary table.

To estimate the storage required for LOB table spaces, complete the following
steps:
1. Begin with your estimates from other table spaces
2. Round the figure up to the next page size
3. Multiply the figure by 1.1

One page never contains more than one LOB. When a LOB value is deleted, the
space occupied by that value remains allocated as long as any application might
access that value.

An auxiliary table resides in a LOB table space. There can be only one auxiliary
table in a LOB table space. An auxiliary table can store only one LOB column of a
base table and there must be one and only one index on this column.

Estimating storage when using the LOAD utility
You must complete several calculations to estimate the storage that is required for
a table to be loaded by the LOAD utility.

For a table to be loaded by the LOAD utility, assume the following values:
v Let FLOOR be the operation of discarding the decimal portion of a real number.
v Let CEILING be the operation of rounding a real number up to the next highest

integer.
v Let number of records be the total number of records to be loaded.
v Let average record size be the sum of the lengths of the fields in each record,

using an average value for varying-length fields, and including the following
amounts for overhead:
– 8 bytes for the total record
– 1 byte for each field that allows nulls
– 2 bytes for each varying-length field

v Let percsave be the percentage of kilobytes saved by compression (as reported by
the DSN1COMP utility in message DSN1940I)

v Let compression ratio be percsave/100

To calculate the storage required when using the LOAD utility, complete the
following steps:
1. Calculate the usable page size.

Usable page size is the page size minus a number of bytes of overhead (that is, 4
KB - 40 for 4 KB pages, 8 KB - 54 for 8 KB pages, 16 KB - 54 for 16 KB pages,
or 32 KB - 54 for 32 KB pages) multiplied by (100-p) / 100, where p is the value
of PCTFREE.
If your average record size is less than 16, then usable page size is 255
(maximum records per page) multiplied by average record size multiplied by
(100-p) / 100.

2. Calculate the records per page.
Records per page is MIN(MAXROWS, FLOOR(usable page size / average record
size)), but cannot exceed 255 and cannot exceed the value you specify for
MAXROWS.

3. Calculate the pages used.
Pages used is 2+CEILING(number of records / records per page).

78 Administration Guide



4. Calculate the total pages used.
Total pages is FLOOR(pages used× (1+fp ) / fp ), where fp is the (nonzero) value
of FREEPAGE. If FREEPAGE is 0, then total pages is equal to pages used.
If you are using data compression, you need additional pages to store the
dictionary.

5. Estimate the number of kilobytes required for a table.
v If you do not use data compression, the estimated number of kilobytes is

total pages× page size (4 KB, 8 KB, 16 KB, or 32 KB).
v If you use data compression, the estimated number of kilobytes is total

pages× page size (4 KB, 8 KB, 16 KB, or 32 KB) × (1 - compression ratio).

For example, consider a table space containing a single table with the following
characteristics:
v Number of records = 100000
v Average record size = 80 bytes
v Page size = 4 KB
v PCTFREE = 5 (5% of space is left free on each page)
v FREEPAGE = 20 (one page is left free for each 20 pages used)
v MAXROWS = 255

If the data is not compressed, you get the following results:
v Usable page size = 4056 × 0.95 = 3853 bytes
v Records per page = MIN(MAXROWS, FLOOR(3853 / 80)) = 48
v Pages used = 2 + CEILING(100000 / 48) = 2085
v Total pages = FLOOR(2085 × 21 / 20) = 2189
v Estimated number of kilobytes = 2189 × 4 = 8756

If the data is compressed, multiply the estimated number of kilobytes for an
uncompressed table by (1 - compression ratio) for the estimated number of kilobytes
required for the compressed table.
Related reference

CREATE TABLE (SQL Reference)

Calculating the space required for an index
The following information provides details about how to calculate the space that is
required for an index.
v “Levels of index pages”
v “Estimating storage from the number of index pages” on page 80

Space allocation parameters are specified in kilobytes (KB).

Levels of index pages
Indexes can have more than one level of pages. An index that is built by the
LOAD utility requires a certain amount of storage, which depends on the number
of index pages at all levels. The number of index pages at all levels depends on
whether the index is unique.

Index pages that point directly to the data in tables are called leaf pages and are
said to be on level 0. In addition to data pointers, leaf pages contain the key and
record-ID (RID).

If an index has more than one leaf page, it must have at least one nonleaf page
that contains entries that point to the leaf pages. If the index has more than one

Chapter 2. Implementing your database design 79

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_createtable.htm#db2z_sql_createtable


nonleaf page, then the nonleaf pages whose entries point to leaf pages are said to
be on level 1. If an index has a second level of nonleaf pages whose entries point to
nonleaf pages on level 1, then those nonleaf pages are said to be on level 2, and so
on. The highest level of an index contains a single page, which DB2 creates when it
first builds the index. This page is called the root page. The root page is a 4-KB
index page. The following figure shows, in schematic form, a typical index.

If you insert data with a constantly increasing key, DB2 adds the new highest key
to the top of a new page. Be aware, however, that DB2 treats nulls as the highest
value. When the existing high key contains a null value in the first column that
differentiates it from the new key that is inserted, the inserted non-null index
entries cannot take advantage of the highest-value split.

Estimating storage from the number of index pages
Before you run a LOAD utility job to load an index, estimate the future storage
requirements of the index.

An index key on an auxiliary table used for LOBs is 19 bytes and uses the same
formula as other indexes. The RID value stored within the index is 5 bytes, the
same as for large table spaces (defined with DSSIZE greater than or equal to 4 GB).

In general, the length of the index key is the sum of the lengths of all the columns
of the key, plus the number of columns that allow nulls. The length of a
varying-length column is the maximum length if the index is padded. Otherwise, if
an index is not padded, estimate the length of a varying-length column to be the
average length of the column data, and add a two-byte length field to the estimate.
You can retrieve the value of the AVGKEYLEN column in the
SYSIBM.SYSINDEXES catalog table to determine the average length of keys within
an index.

Root Page

Page A

Page B

Highest key of page A

Highest key of page 1

Highest key of page X Highest key of page Z

Highest key of page B

Nonleaf Page A Nonleaf Page B

Page 1

Page X Page Z

Leaf Page 1 Leaf Page X Leaf Page Z

Key Record-ID

Table

RowRow

Row

Level 2

Level 1

Level 0
Key Record-IDKey Record-ID

Figure 13. Sample index structure and pointers (three-level index)

80 Administration Guide



The following index calculations are intended only to help you estimate the storage
required for an index. Because there is no way to predict the exact number of
duplicate keys that can occur in an index, the results of these calculations are not
absolute. It is possible, for example, that for a nonunique index, more index entries
than the calculations indicate might be able to fit on an index page.

Important: Space allocation parameters are specified in kilobytes.

In the following calculations, assume the following:

k length of the index key

n average number of data records per distinct key value of a nonunique
index. For example:
v a = number of data records per index
v b = number of distinct key values per index
v n = a / b

f value of PCTFREE

p value of FREEPAGE

r record identifier (RID) length. Let r = 4 for indexes on nonlarge table
spaces and r = 5 for indexes on large spaces (defined with DSSIZE greater
than or equal to 4 GB) and on auxiliary tables.

FLOOR
the operation of discarding the decimal portion of a real number

CEILING
the operation of rounding a real number up to the next highest integer

MAX the operation of selecting the highest integer value

To estimate index storage size, complete the following calculations:
1. Calculate the pages for a unique index.

a. Calculate the total leaf pages
1) Calculate the space per key

space per key is approximately k + r + 3
2) Calculate the usable space per page

usable space per page is approximately FLOOR((100 - f)× 4038 / 100)
3) Calculate the entries per page

entries per page is approximately FLOOR(usable space per page / space per
key)

4) Calculate the total leaf pages

total leaf pages is approximately CEILING(number of table rows / entries
per page)

b. Calculate the total nonleaf pages
1) Calculate the space per key

space per key is approximately k + 7
2) Calculate the usable space per page

usable space per page is approximately FLOOR(MAX(90, (100 - f ))×
4046/100)

3) Calculate the entries per page

entries per page is approximately FLOOR(usable space per page / space per
key)

4) Calculate the minimum child pages

Chapter 2. Implementing your database design 81



minimum child pages is approximately MAX(2, (entries per page + 1))
5) Calculate the level 2 pages

level 2 pages is approximately CEILING(total leaf pages / minimum child
pages)

6) Calculate the level 3 pages

level 3 pages is approximately CEILING(level 2 pages / minimum child
pages)

7) Calculate the level x pages

level x pages is approximately CEILING(previous level pages / minimum
child pages)

8) Calculate the total nonleaf pages

total nonleaf pages is approximately (level 2 pages + level 3 pages + ...+ level
x pages until the number of level x pages = 1)

2. Calculate pages for a nonunique index:
a. Calculate the total leaf pages

1) Calculate the space per key

space per keyis approximately 4 + k + (n × (r+1))
2) Calculate the usable space per page

usable space per pageis approximately FLOOR((100 - f )× 4038 / 100)
3) Calculate the key entries per page

key entries per pageis approximately n× (usable space per page / space per
key)

4) Calculate the remaining space per page

remaining space per page is approximately usable space per page - (key
entries per page / n)×space per key

5) Calculate the data records per partial entry

data records per partial entry is approximately FLOOR((remaining space per
page - (k + 4)) / 5)

6) Calculate the partial entries per page

partial entries per page is approximately (n / CEILING(n / data records per
partial entry)) if data records per partial entry >= 1, or 0 if data records per
partial entry < 1

7) Calculate the entries per page

entries per page is approximately MAX(1, (key entries per page + partial
entries per page))

8) Calculate thetotal leaf pages

total leaf pages is approximately CEILING(number of table rows / entries
per page)

b. Calculate the total nonleaf pages
1) Calculate the space per key

space per key is approximately k + r + 7
2) Calculate the usable space per page

usable space per page is approximately FLOOR (MAX(90, (100- f))× 4046 /
100)

3) Calculate the entries per page

entries per page is approximately FLOOR((usable space per page / space per
key)

4) Calculate the minimum child pages

minimum child pages is approximately MAX(2, (entries per page + 1))
5) Calculate the level 2 pages

82 Administration Guide

|

|
|



level 2 pages is approximately CEILING(total leaf pages / minimum child
pages)

6) Calculate the level 3 pages

level 3 pages is approximately CEILING(level 2 pages / minimum child
pages)

7) Calculate the level x pages

level x pages is approximately CEILING(previous level pages / minimum
child pages)

8) Calculate the total nonleaf pages

total nonleaf pages is approximately (level 2 pages + level 3 pages + ...+ level
x pages until x = 1)

3. Calculate the total space requirement by estimating the number of kilobytes
required for an index built by LOAD
a. Calculate the free pages

free pages is approximately FLOOR(total leaf pages / p), or 0 if p = 0
b. Calculate the space map pages

space map pages is approximately CEILING((tree pages + free pages) / 8131)
c. Calculate the tree pages

tree pages is approximately MAX(2, (total leaf pages + total nonleaf pages))
d. Calculate the total index pages

total index pages is approximately MAX(4, (1 + tree pages + free pages + space
map pages))

e. Calculate the total space requirement

total space requirement is approximately 4× (total index pages + 2)

In the following example of the entire calculation, assume that an index is defined
with these characteristics:
v It is unique.
v The table it indexes has 100000 rows.
v The key is a single column defined as CHAR(10) NOT NULL.
v The value of PCTFREE is 5.
v The value of FREEPAGE is 4.

Table 15. Sample of the total space requirement for an index

Quantity Calculation Result

Length of key
Average number of duplicate keys
PCTFREE
FREEPAGE

k
n
f
p

10
1
5
4

Calculate total leaf pages
Space per key
Usable space per page
Entries per page

Total leaf pages

k + 7
FLOOR((100 - f ) × 4038/100)
FLOOR(usable space per page / space per key)

CEILING(number of table rows / entries per page)

17
3844

225

445

Chapter 2. Implementing your database design 83



Table 15. Sample of the total space requirement for an index (continued)

Quantity Calculation Result

Calculate total nonleaf pages
Space per key
Usable space per page
Entries per page
Minimum child pages
Level 2 pages
Level 3 pages

Total nonleaf pages

k + 7
FLOOR(MAX(90, (100 - f )) × 4046/100)
FLOOR(usable space per page / space per key)
MAX(2, (entries per page + 1))
CEILING(total leaf pages / minimum child pages)
CEILING(level 2 pages / minimum child pages)

(level 2 pages + level 3 pages +...+ level x pages until x = 1)

17
3843

226
227

2
1

3

Calculate total space required
Free pages
Tree pages
Space map pages
Total index pages

TOTAL SPACE REQUIRED, in KB

FLOOR(total leaf pages / p), or 0 if p = 0
MAX(2, (total leaf pages + total nonleaf pages))
CEILING((tree pages + free pages)/8131)
MAX(4, (1 + tree pages + free pages + space map pages))

4 × (total index pages + 2)

111
448

1
561

2252

Saving space with data compression
You can reduce the space required for a table by using data compression.
Compressing the data in a table space can significantly reduce the amount of disk
space that is needed to store data and can help improve buffer pool performance.

The disk space that is saved by data compression is countered by the disk space
that is required for a dictionary. Every compressed table space or partition requires
a dictionary.

Compressing data
Use data compression to reduce the space that is required for a table if your
system meets the requirements.

Restriction: You cannot compress data in a LOB table space.

To find out how much space you can save by compressing your data:

Run the DSN1COMP utility on your data sets.

Message DSN1940I of DSN1COMP reports an estimate of the percentage of
kilobytes that would be saved by using data compression.
Related reference

DSN1COMP (DB2 Utilities)

Calculating the space that is required for a dictionary
A dictionary contains the information that is used for compressing and
decompressing the data in a table space or partition. The dictionary resides in that
same table space or partition.

84 Administration Guide

|
|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1comp.htm#db2z_utl_dsn1comp


If you are not going to compress data, you do not need to calculate the space that
is required for a dictionary. Space allocation parameters are specified in pages
(either 4 KB, 8 KB, 16 KB, or 32 KB).

Complete the following steps to calculate the disk space that is required by a
dictionary, and the virtual storage that is required in the xxxxDBM1 address space
when a dictionary is read into storage from a buffer pool.

Calculating disk requirements for a dictionary
You can calculate the disk requirements for a dictionary that is associated with a
compressed, nonsegmented table space, or a compressed, segmented table space.

To calculate the disk requirements for a dictionary:

Determine your table space type:
v Nonsegmented table space

The dictionary contains 4096 entries in most cases.
This means you need to allocate an additional sixteen 4-KB pages, eight 8-KB
pages, four 16-KB pages, or two 32-KB pages. Although it is possible that your
dictionary can contain fewer entries, allocate enough space to accommodate a
dictionary with 4096 entries.
For 32-KB pages, one segment (minimum of four pages) is sufficient to contain
the dictionary. Use the following table to determine how many 4-KB pages, 8-KB
pages, 16-KB pages, or 32-KB pages to allocate for the dictionary of a
compressed nonsegmented table space.

Table 16. Pages required for the dictionary of a compressed nonsegmented table space

Table space
page size
(KB)

Dictionary
size (512
entries)

Dictionary
size (1024
entries)

Dictionary
size (2048
entries)

Dictionary
size (4096
entries)

Dictionary
size (8192
entries)

4 2 4 8 16 32

8 1 2 4 8 16

16 1 1 2 4 8

32 1 1 1 2 4

v Segmented table space

The size of the dictionary depends on the size of your segments. Assuming 4096
entries is recommended.
Use the following table to determine how many 4-KB pages to allocate for the
dictionary of a compressed segmented table space.

Table 17. Pages required for the dictionary of a compressed segmented table space

Segment
size (4-KB
pages)

Dictionary
size (512
entries)

Dictionary
size (1024
entries)

Dictionary
size (2048
entries)

Dictionary
size (4096
entries)

Dictionary
size (8192
entries)

4 4 4 8 16 32

8 8 8 8 16 32

12 12 12 12 24 36

≥16 Segment size Segment size Segment size Segment size Segment size

Now, determine the virtual storage size that is required for a dictionary.

Chapter 2. Implementing your database design 85



Calculating virtual storage requirements for a dictionary
Estimate the virtual storage as part of your calculations for the space required for a
dictionary.

To calculate how much storage is needed in the xxxxDBM1 address space for each
dictionary, complete the following step:

Calculate the necessary dictionary size by using the following formula:
dictionary size (number of entries) × 16 bytes

When a dictionary is read into storage from a buffer pool, the whole dictionary is
read, and it remains there as long as the compressed table space is being accessed.

86 Administration Guide



Chapter 3. Altering your database design

After using a relational database for a while, you might want to change some
aspects of its design.

To alter the database design you need to change the definitions of DB2 objects.

Recommendation: If possible, use the SQL ALTER statement to change the
definitions of DB2 objects. When you cannot make changes with the ALTER
statement, you typically must:
1. Use the DROP statement to remove the object.
2. Use the COMMIT statement to commit the changes to the object.
3. Use the CREATE statement to re-create the object.

Attention: The DROP statement has a cascading effect. Objects that are
dependent on the dropped object are also dropped. For example, all authorities for
those objects disappear, and plans or packages that reference deleted objects are
marked invalid by DB2.

Altering DB2 databases
You can alter a DB2 database by changing the description of a database at the
current server.

Issue the ALTER DATABASE SQL statement to change clauses that are

used to create a database.
Related concepts

DB2 databases (Introduction to DB2 for z/OS)
Related reference

“ALTER DATABASE options”

ALTER DATABASE (SQL Reference)

ALTER DATABASE options
You can issue the ALTER DATABASE statement to change the description of a
database at the current server.

The ALTER DATABASE statement allows you to change the following options:

STOGROUP
Use this option to change the name of the default storage group to support
disk space requirements for table spaces and indexes within the database.
The new default DB2 storage group is used only for new table spaces and
indexes; existing definitions do not change.

BUFFERPOOL
Use this option to change the name of the default buffer pool for table
spaces and indexes within the database. Again, it applies only to new table
spaces and indexes; existing definitions do not change.

INDEXBP
Use this option to change the name of the default buffer pool for the

© Copyright IBM Corp. 1982, 2009 87

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.intro/db2z_databases.htm#db2z_databases
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_alterdatabase.htm#db2z_sql_alterdatabase


indexes within the database. The new default buffer pool is used only for
new indexes; existing definitions do not change.

Related reference

ALTER DATABASE (SQL Reference)

Altering DB2 storage groups
To change the description of a storage group at the current server, use the ALTER
STOGROUP statement.

To alter a storage group:
1. Issue an ALTER STOGROUP statement.
2. Specify whether you want SMS to manage your DB2 storage groups, or to add

or remove volumes from a storage group.

If you want to migrate to another device type or change the catalog name of the
integrated catalog facility, you need to move the data.
Related concepts

“Moving DB2 data” on page 141

Letting SMS manage your DB2 storage groups
Using the SMS product Data Facility Storage Management Subsystem (DFSMS) to
manage your data sets can result in a reduced workload for DB2 database and
storage administrators.

To let SMS manage the storage needed for the objects that the storage
group supports, complete the following steps:
1. Issue an ALTER STOGROUP statement. You can specify SMS classes when you

alter a storage group.
2. Specify ADD VOLUMES (’*’) and REMOVE VOLUMES (current-vols) where

current-vols is the list of the volumes that are currently assigned to the storage
group. For example,
ALTER STOGROUP DSN8G910

REMOVE VOLUMES (VOL1)
ADD VOLUMES ('*');

The following example shows how to alter a storage group to SMS-managed using
the DATACLAS, MGMTCLAS, or STORCLAS keywords.
ALTER STOGROUP SGOS5001

MGMTCLAS REGSMMC2
DATACLAS REGSMDC2
STORCLAS REGSMSC2;

SMS manages every new data set that is created after the ALTER STOGROUP
statement is executed; SMS does not manage data sets that are created before the

execution of the statement.

Adding or removing volumes from a DB2 storage group
When you add or remove volumes from a storage group, all the volumes in that
storage group must be of the same type.

88 Administration Guide

|
|

|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_alterdatabase.htm#db2z_sql_alterdatabase


Also, when a storage group is used to extend a data set, the volumes must have
the same device type as the volumes that were used when the data set was defined

The changes that you make to the volume list by using the ALTER STOGROUP
statement have no effect on existing storage. Changes take effect when new objects
are defined or when the REORG, RECOVER, or LOAD REPLACE utilities are used
on those objects. For example, if you use the ALTER STOGROUP statement to
remove volume 22222 from storage group DSN8G910, the DB2 data on that
volume remains intact. However, when a new table space is defined by using
DSN8G910, volume 22222 is not available for space allocation.

To add a new volume to a storage group:
1. Use the SYSIBM.SYSTABLEPART catalog table to determine which table spaces

are associated with the storage group. For example, the following query
indicates which table spaces use storage group DSN8G910:
SELECT TSNAME, DBNAME

FROM SYSIBM.SYSTABLEPART
WHERE STORNAME ='DSN8G910' AND STORTYPE = 'I';

2. Make an image copy of each table space. For example, issue the statement
COPY TABLESPACE dbname.tsname DEVT SYSDA.

3. Ensure that the table space is not being updated in such a way that the data set
might need to be extended. For example, you can stop the table space with the
DB2 command STOP DATABASE (dbname) SPACENAM (tsname).

4. Use the ALTER STOGROUP statement to remove the volume that is associated
with the old storage group and to add the new volume:
ALTER STOGROUP DSN8G910

REMOVE VOLUMES (VOL1)
ADD VOLUMES (VOL2);

Restriction: When a new volume is added, or when a storage group is used to
extend a data set, the volumes must have the same device type as the volumes
that were used when the data set was defined.

5. Start the table space with utility-only processing by using the DB2 command
START DATABASE (dbname) SPACENAM (tsname) ACCESS(UT).

6. Use the RECOVER utility or the REORG utility to move the data in each table
space. For example, issue RECOVER dbname.tsname.

7. Start the table space with the DB2 command START DATABASE (dbname)

SPACENAM (tsname).

Altering table spaces
Use the ALTER TABLESPACE statement to change the description of a table space
at the current server.

The ALTER TABLESPACE statement can be embedded in an application
program or issued interactively.

You can use the ALTER TABLESPACE statement to change the maximum partition
size for partition-by-growth table spaces.

The ALTER TABLESPACE statement cannot be used to change certain attributes of
your table space. For example, you must use other methods to:
v Change the SEGSIZE attribute

Chapter 3. Altering your database design 89



v Change the number of partitions for regular-partitioned or range-partitioned
universal table space

v Convert to a large table space
Related reference

ALTER TABLESPACE (SQL Reference)

Changing the logging attribute
You can use the ALTER TABLESPACE statement to set the logging attribute of a
table space.

Important: Limit the use of the NOT LOGGED attribute. Logging is not generally
a performance bottleneck, given that in an average environment logging accounts
for less than 5% of the central processing unit (CPU) utilization. Therefore, you
should use the NOT LOGGED attribute only when data is being used by a single
task, where the table space can be recovered if errors occur.

To change the logging attribute of a table space, complete the following steps:
1. Issue an ALTER TABLESPACE statement.
2. Specify the LOGGED or NOT LOGGED attribute.
v LOGGED: Specifies that changes made to data in this table space are to be

recorded on the log.
v NOT LOGGED: Specifies that changes made to data in this table space are

not to be recorded on the log. The NOT LOGGED attribute suppresses the
logging of undo and redo information.

The change in logging applies to all tables in this table space and also applies to all
indexes on those tables, as well as associated LOB and XML table spaces.

The NOT LOGGED attribute
The NOT LOGGED attribute for a table space indicates that changes to tables in
the table space are not recorded on the log.

You should use the NOT LOGGED attribute only for situations where the data is
in effect being duplicated. If the data is corrupted, you can recreate it from its
original source, rather than from an image copy and the log. For example, you
could use NOT LOGGED when you are inserting large volumes of data with the
INSERT statement.

Restrictions: If you use the NOT LOGGED logging attribute, you can use images
copies for recovery with certain restrictions.
v The logging attribute applies to all partitions of a table space. NOT LOGGED

suppresses only the logging of undo and redo information; control records of the
table space continue to be logged.

v You can take full and incremental SHRLEVEL REFERENCE image copies even
though the table space has the NOT LOGGED attribute. You cannot take
SHRLEVEL CHANGE copies because the NOT LOGGED attribute suppresses
the logging of changes necessary for recovery.

v System-level backups taken with the BACKUP SYSTEM utility will contain NOT
LOGGED objects, but they cannot be used for object level recovery of NOT
LOGGED objects.

You can set the NOT LOGGED attribute when creating or altering table spaces.

90 Administration Guide

|
|

|

|
|

|
|
|
|
|

|

|

|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|

|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_altertablespace.htm#db2z_sql_altertablespace


When to use the NOT LOGGED attribute

Consider using the NOT LOGGED attribute in the following specific situations:
v For tables that summarize information in other tables, including materialized

query tables, where the data can be easily re-created.
v When you are inserting large volumes of data with the INSERT statement.
v When you are using LOAD RESUME.

To utilize table spaces that are not logged, when using LOAD RESUME,
complete the following steps:
1. Alter the table space to not logged before the load. Altering the logging

attribute requires exclusive use of the table space.
2. Run the LOAD utility with the RESUME option.
3. Before normal update processing, alter the table space back to logged, and

make an image copy of the table space.

Restriction: Online LOAD RESUME against a table space that is not logged is
not recoverable if the load fails. If an online load attempt fails and rollback is
necessary, the not logged table space is placed in LPL RECOVER-pending status.
If this happens, you must terminate the LOAD job, recover the data from a prior
image copy, and restart the online LOAD RESUME.

What happens when you change the logging attribute

Altering the logging attribute of a table space from LOGGED to NOT LOGGED
establishes a recoverable point for the table space. Indexes automatically inherit the
logging attribute of their table spaces. For the index, the change establishes a
recoverable point that can be used by the RECOVER utility. Each subsequent
image copy establishes another recoverable point for the table space and its
associated indexes if the image copy is taken as a set.

Altering the logging attribute of a table space from NOT LOGGED to LOGGED
marks the table space as COPY-pending (a recoverable point must be established
before logging resumes). The indexes on the tables in the table space that have the
COPY YES attribute are unchanged.

Changing the space allocation for user-managed data sets
If the table space is supported by user-managed data sets, you must complete
several steps to change the space allocation.

To change the space allocation for user-managed data sets, complete the
following steps:
1. Run the REORG TABLESPACE utility, and specify the UNLOAD PAUSE

option.
2. Make the table space unavailable with the STOP DATABASE command and the

SPACENAM option after the utility completes the unload and stops.
3. Delete and redefine the data sets.
4. Resubmit the utility job with the RESTART(PHASE) parameter specified on the

EXEC statement.

The job now uses the new data sets when reloading.

Chapter 3. Altering your database design 91

|

|

|
|

|

|

|
|

|
|

|

|
|

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|



Use of the REORG utility to extend data sets causes the newly acquired free space
to be distributed throughout the table space rather than to be clustered at the end.

Dropping, re-creating, or converting a table space
To make changes to a table space, you must drop the table space and then re-create
it. These table space changes include changing SEGSIZE, changing the number of
partitions, or converting a table space to a large table space.

To change or convert a table space by dropping the table space and then
recreating it:
1. Locate the original CREATE TABLE statement and all authorization statements

for all tables in the table space (for example, TA1, TA2, TA3, ... in TS1). If you
cannot find these statements, query the DB2 catalog to determine the table’s
description, the description of all indexes and views on it, and all users with
privileges on the table.

2. In another table space (for example, TS2), create tables TB1, TB2, TB3, ...
identical to TA1, TA2, TA3, .... For example, use a statement such as:
CREATE TABLE TB1 LIKE TA1 IN TS2;

3. Optional: If necessary, unload the data. For example, use a statement such as:
REORG TABLESPACE DSN8D91A.TS1 LOG NO SORTDATA UNLOAD EXTERNAL;

Another way of unloading data from your old tables and loading the data
into new tables is by using the INCURSOR option of the LOAD utility. This
option uses the DB2 cross-loader function.

4. Optional: Alternatively, instead of unloading the data, you can insert the data
from your old tables into the new tables by issuing an INSERT statement for
each table. For example:
INSERT INTO TB1

SELECT * FROM TA1;

If a table contains a ROWID column or an identity column and you want to
keep the existing column values, you must define that column as
GENERATED BY DEFAULT. If the ROWID column or identity column is
defined with GENERATED ALWAYS, and you want DB2 to generate new
values for that column, specify OVERRIDING USER VALUE on the INSERT
statement with the subselect.

5. Drop the table space. For example, use a statement such as:
DROP TABLESPACE TS1;

The compression dictionary for the table space is dropped, if one exists. All
tables in TS1 are dropped automatically.

6. Commit the DROP statement. You must commit the DROP TABLESPACE
statement before creating a table space or index with the same name. When
you drop a table space, all entries for that table space are dropped from
SYSIBM.SYSCOPY. This makes recovery for that table space impossible from
previous image copies.

7. Create the new table space, TS1, and grant the appropriate user privileges.
You can also create a partitioned table space. For example, use a statement
such as:
CREATE TABLESPACE TS1

IN DSN8D91A
USING STOGROUP DSN8G910

92 Administration Guide



PRIQTY 4000
SECQTY 130
ERASE NO

NUMPARTS 95
(PARTITION 45 USING STOGROUP DSN8G910

PRIQTY 4000
SECQTY 130
COMPRESS YES,

PARTITION 62 USING STOGROUP DSN8G910
PRIQTY 4000
SECQTY 130
COMPRESS NO)

LOCKSIZE PAGE
BUFFERPOOL BP1
CLOSE NO;

8. Create new tables TA1, TA2, TA3, ....
9. Recreate indexes on the tables, and grant user privileges on those tables.

10. Issue an INSERT statement for each table. For example:
INSERT INTO TA1

SELECT * FROM TB1;

If a table contains a ROWID column or an identity column and you want to
keep the existing column values, you must define that column as
GENERATED BY DEFAULT. If the ROWID column or identity column is
defined with GENERATED ALWAYS, and you want DB2 to generate new
values for that column, specify OVERRIDING USER VALUE on the INSERT
statement with the subselect.

11. Drop table space TS2. If a table in the table space has been created with
RESTRICT ON DROP, you must alter that table to remove the restriction
before you can drop the table space.

12. Notify users to recreate any synonyms they had on TA1, TA2, TA3, ....
13. REBIND any plans and packages that were invalidated as a result of dropping

the table space.

Rebalancing data in partitioned table spaces
When data becomes out of balance in partitioned table spaces, performance can be
degraded. Improving performance is possible if you can rebalance the partitions to
redistribute the data.

If an index established the partitions for the table space, you can use the ALTER
INDEX statement for that index and a REORG job to shift data among the affected
partitions. The result is that data is balanced according to your specifications. You
can rebalance data by changing the limit key values of all or most of the partitions.
The limit key is the highest value of the index key for a partition. You roll the
changes through the partitions one or more at a time, making relatively small parts
of the data unavailable at any given time. For more information about rebalancing
data for index-controlled partitioned table spaces by using the ALTER INDEX
statement, see The Official Introduction to DB2 UDB for z/OS.

In addition, for index-controlled and table-controlled partitioned table spaces, you
can use the REBALANCE option of the REORG TABLESPACE utility to shift data
among the partitions. When you use REORG TABLESPACE with REBALANCE,
DB2 automatically changes the limit key values for the partitioned table space.

To redistribute skewed data:

Chapter 3. Altering your database design 93



Determine your DB2 version level.
v Version 7 and earlier: Issue the ALTER TABLE VALUES or ALTER INDEX

VALUES statements, followed by a REORG utility job, to shift data among the
affected partitions.

v Version 8 and after: Use the REBALANCE keyword of the REORG utility to
reorganize selected partitions without affecting data availability.

Altering a page set to contain DB2-defined extents
After you use the RECOVER utility to run the DFSMSdss RESTORE command,
you must alter the page set to contain extents that are defined by DB2.

This step is required because the DFSMSdss RESTORE command extends a data
set differently than DB2.

To alter a page set to contain extents that are defined by DB2:
1. Issue the ALTER TABLESPACE SQL statement.

After you use the ALTER TABLESPACE statement, the new values take affect
only when you use REORG or LOAD REPLACE.

2. Enlarge the primary and secondary space allocation values for DB2-managed
data sets.

Using the RECOVER utility again does not resolve the extent definition.

For user-defined data sets, define the data sets with larger primary and secondary
space allocation values.

Altering DB2 tables
When you alter a table, you do not change the data in the table; you merely
change the specifications that you used in creating the table.

To alter a table, issue the ALTER TABLE statement. With the ALTER
TABLE statement, you can:
v Add a new column to a table.
v Rename a column.
v Change the data type of a column, with certain restrictions.
v Add or drop a parent key or a foreign key.
v Add or drop a table check constraint.
v Add a new partition to a table space.
v Change the boundary between partitions, extend the boundary of the last

partition, rotate partitions, or instruct DB2 to insert rows at the end of a table or
appropriate partition.

v Register an existing table as a materialized query table, change the attributes of
a materialized query table, or change a materialized query table to a base table.

v Change the VALIDPROC clause.
v Change the DATA CAPTURE clause.
v Change the AUDIT clause by using the options ALL, CHANGES, or NONE.
v Add or drop the restriction on dropping the table and the database and table

space that contain the table.

94 Administration Guide

|

|
|
|



v Alter the length of a VARCHAR column using the SET DATA TYPE VARCHAR
clause.

v Add or drop a clone table.
v Alter APPEND attributes.
v Drop the default value for a column.

Related reference

ALTER TABLE (SQL Reference)

Adding a new column to a table

When you use the ALTER TABLE statement to add a new column to a table, the
table space is placed in an advisory REORG-pending (AREO*) state.

Also, the new column might become the rightmost column of the table, depending
on whether you use basic row format or reordered row format.

The physical records are not actually changed until values are inserted in the new
column. When you use the ALTER TABLE ADD COLUMN statement, plans and
packages are not invalidated unless the data type of the new column is DATE,
TIME, or TIMESTAMP, you also specify the DEFAULT keyword, and you do not
specify a constant (that is, you use the system default value). However, to use the
new column in a program, you need to modify and recompile the program and
bind the plan or package again. You also might need to modify any program that
contains a static SQL statement SELECT *, which returns the new column after the
plan or package is rebound. You also must modify any INSERT statement that
does not contain a column list.

Access time to the table is not affected immediately, unless the record was
previously fixed length. If the record was fixed length, the addition of a new
column causes DB2 to treat the record as variable length, and access time is
affected immediately.

To change the records to fixed length:
1. Run the REORG utility with the COPY option on the table space, using the

inline copy.
2. Run the MODIFY utility with the DELETE option to delete records of all image

copies that were made before the REORG that you ran in step 1.
3. Create a unique index if you add a column that specifies PRIMARY KEY.

Tip: Inserting values in the new column might degrade performance by forcing
rows onto another physical page. You can avoid this situation by creating the table
space with enough free space to accommodate normal expansion. If you already
have this problem, run REORG on the table space to fix it.

You can define the new column as NOT NULL by using the DEFAULT clause
unless the column has a ROWID data type or is an identity column. If the column
has a ROWID data type or is an identity column, you must specify NOT NULL
without the DEFAULT clause. You can let DB2 choose the default value, or you can
specify a constant or the value of the CURRENT SQLID or USER special register as

Chapter 3. Altering your database design 95

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_altertable.htm#db2z_sql_altertable


the value to be used as the default. When you retrieve an existing row from the
table, a default value is provided for the new column. Except in the following
cases, the value for retrieval is the same as the value for insert:
v For columns of data type DATE, TIME, and TIMESTAMP, the retrieval defaults

are:

Data type
Default for retrieval

DATE
0001-01-01

TIME 00.00.00
TIMESTAMP

0001-01-01-00.00.00.000000
v For DEFAULT USER and DEFAULT CURRENT SQLID, the retrieved value for

rows that existed before the column was added is the value of the special
register when the column was added.

If the new column is a ROWID column, DB2 returns the same, unique row ID
value for a row each time you access that row. Reorganizing a table space does not
affect the values on a ROWID column. You cannot use the DEFAULT clause for
ROWID columns.

If the new column is an identity column (a column that is defined with the AS
IDENTITY clause), DB2 places the table space in REORG-pending (REORP) status,
and access to the table space is restricted until the table space is reorganized. When
the REORG utility is run, DB2
v Generates a unique value for the identity column of each existing row
v Physically stores these values in the database
v Removes the REORP status

You cannot use the DEFAULT clause for identity columns.

If the new column is a short string column, you can specify a field procedure for
it. If you do specify a field procedure, you cannot also specify NOT NULL.

The following example adds a new column to the table DSN8910.DEPT,
which contains a location code for the department. The column name is
LOCATION_CODE, and its data type is CHAR (4).
ALTER TABLE DSN8910.DEPT

ADD LOCATION_CODE CHAR (4);

Related concepts

“Row format conversion for table spaces” on page 847

Specifying a default value when altering a column
You can use the ALTER TABLE statement to add, change, or remove the default
value for a column.

Restrictions:

v You cannot alter a column to specify a default value if the table is referenced by
a view.

96 Administration Guide

|

|
|

|

|
|



v If the column is part of a unique constraint or unique index, the new default to
a value should not be the same as a value that already exists in the column.

v The new default value applies only to new rows.

To alter the default value for a column:
1. To set the default value, issue the following statement:

ALTER TABLE table-name ALTER COLUMN column-name
SET default-clause

You can use this statement to add a default value for a column that does not
already have one, or to change the existing default value.

2. To remove the default value without specifying a new one, issue the following
statement:
ALTER TABLE table-name ALTER COLUMN column-name
DROP DEFAULT

For example, suppose that table MYEMP is defined as follows:
CREATE TABLE MYEMP LIKE EMP

Use the following statement to assign a default value to column JOB:
ALTER TABLE MYEMP ALTER COLUMN JOB SET DEFAULT 'PENDING'

Use the following statement to drop the default value from column JOB:
ALTER TABLE MYEMP ALTER COLUMN JOB DROP DEFAULT

Altering the data type of a column
You can use the ALTER TABLE statement to change the data types of columns in
existing tables in several ways.

In general, DB2 can alter a data type if the data can be converted from the old type
to the new type without truncation or without losing arithmetic precision.

Restriction: The column that you alter cannot be a part of a referential constraint,
have a field procedure, be defined as an identity column, or be defined as a
column of a materialized query table.

When you alter the data type of a column in a table, DB2 creates a new version for
the table space that contains the data rows of the table.

To alter the data type of a column, complete the following steps:
1. Issue an ALTER TABLE statement.
2. Specify the data type change that you would like to make. Potential changes

include:
v Altering the length of fixed-length or varying-length character data types,

and the length of fixed-length or varying-length graphic data types.
v Switching between fixed-length and varying-length types for character and

graphic data.
v Switching between compatible numeric data types.

Chapter 3. Altering your database design 97

|
|

|

|

|

|
|

|
|

|
|

|
|

|

|

|

|

|

|

|

|



What happens to the column
When you change the data type of a column by using the ALTER TABLE
statement, the new definition of the column is stored in the catalog.

When you retrieve table rows, the columns are materialized in the format that is
indicated by the catalog, but the data is not saved in that format. When you
change or insert a row, the entire row is saved in the format that is indicated by
the catalog. When you reorganize the table space (or perform a load replace), DB2
reloads the data in the table space according to the format of the current
definitions in the catalog.

Example: Assume that a table contains basic account information for a
small bank. The initial account table was created many years ago in the following
manner:
CREATE TABLE ACCOUNTS (

ACCTID DECIMAL(4,0) NOT NULL,
NAME CHAR(20) NOT NULL,
ADDRESS CHAR(30) NOT NULL,
BALANCE DECIMAL(10,2) NOT NULL)

IN dbname.tsname;

The columns, as currently defined, have the following problems:
v The ACCTID column allows for only 9999 customers.
v The NAME and ADDRESS columns were defined as fixed-length columns,

which means that some of the longer values are truncated and some of the
shorter values are padded with blanks.

v The BALANCE column allows for amounts up to 99 999 999.99, but inflation
rates demand that this column hold larger numbers.

By altering the column data types in the following ways, you can make the
columns more appropriate for the data that they contain. The INSERT statement
that follows shows the kinds of values that you can now store in the ACCOUNTS
table.
ALTER TABLE ACCOUNTS ALTER COLUMN NAME SET DATA TYPE VARCHAR(40);
ALTER TABLE ACCOUNTS ALTER COLUMN ADDRESS SET DATA TYPE VARCHAR(60);
ALTER TABLE ACCOUNTS ALTER COLUMN BALANCE SET DATA TYPE DECIMAL(15,2);
ALTER TABLE ACCOUNTS ALTER COLUMN ACCTID SET DATA TYPE INTEGER;
COMMIT;

INSERT INTO ACCOUNTS (ACCTID, NAME, ADDRESS, BALANCE)
VALUES (123456, 'LAGOMARSINO, MAGDALENA',

'1275 WINTERGREEN ST, SAN FRANCISCO, CA, 95060', 0);
COMMIT;

The NAME and ADDRESS columns can now handle longer values without
truncation, and the shorter values are no longer padded. The BALANCE column is
extended to allow for larger dollar amounts. DB2 saves these new formats in the
catalog and stores the inserted row in the new formats.

Recommendation: If you change both the length and the type of a column from
fixed-length to varying-length by using one or more ALTER statements, issue the
ALTER statements within the same unit of work. Reorganize immediately so that
the format is consistent for all of the data rows in the table.

98 Administration Guide



What happens to an index on the column
Altering the data type of a column that is contained in an index has implications
for the index.

Example: Assume that the following indexes are defined on the
ACCOUNTS table:
CREATE INDEX IX1 ON ACCOUNTS(ACCTID);
CREATE INDEX IX2 ON ACCOUNTS(NAME);

When the data type of the ACCTID column is altered from DECIMAL(4,0) to
INTEGER, the IX1 index is placed in a REBUILD-pending (RBDP) state. Similarly,
when the data type of the NAME column is altered from CHAR(20) to
VARCHAR(40), the IX2 index is placed in an RBDP state. These indexes cannot be

accessed until they are rebuilt from the data.

Index inaccessibility and data availability

Whenever possible, DB2 tries to avoid using inaccessible indexes in an effort to
increase data availability. DB2 allows you to insert into, and delete from, tables
that have non-unique indexes that are in an RBDP state. DB2 also allows you to
delete from tables that have unique indexes that are in an RBDP state.

REBUILD INDEX with the SHRLEVEL CHANGE option allows read and write
access to the data for most of the rebuild operation.

In certain situations, when an index is inaccessible, DB2 can bypass the index to
allow applications access to the underlying data. In these situations, DB2 offers
accessibility at the expense of performance. In making its determination of the best
access path, DB2 can bypass an index under the following circumstances:
v Dynamic PREPAREs

DB2 avoids choosing an index that is in an RBDP state. Bypassing the index
typically degrades performance, but provides availability that would not be
possible otherwise.

v Cached PREPAREs
DB2 avoids choosing an index that is both in an RBDP state and within a cached
PREPARE statement, because the dynamic cache for the table is invalidated
whenever an index is put into an RBDP state.

In the case of static BINDs, DB2 might choose an index that is in an RBDP state as
the best access path. DB2 does so by making the optimistic assumption that the
index will be available by the time it is actually used. (If the index is not available
at that time, an application can receive a resource unavailable message.)

Padding

Whether an index is padded or not padded depends on when the index was
created and whether the index contains any varying length columns. In pre-Version
8 releases, an index is padded by default. In new-function mode for Version 8 or
later, an index is not padded by default for new installations of DB2, but will be
padded for migrated systems which came from at least Version 7 and later. In
Version 8 or later, this default behavior is specified by the value of the PAD INDEX
BY DEFAULT parameter on the DSNTIPE installation panel, which can be set to
YES or NO.

Chapter 3. Altering your database design 99

|
|

|
|
|

|

|
|
|
|
|
|
|
|



When an index is not padded, the value of the PADDED column of the
SYSINDEXES table is set to N. An index is only considered not padded when it is
created with at least one varying length column and either:
v The NOT PADDED keyword is specified.
v The default padding value is NO.

When an index is padded, the value of the PADDED column of the SYSINDEXES
table is set to Y. An index is padded if it is created with at least one varying length
column and either:
v The PADDED keyword is specified
v The default padding is YES.

In the example of the ACCOUNTS table, the IX2 index retains its padding
attribute. The padding attribute of an index is altered only if the value is
inconsistent with the current state of the index. The value can be inconsistent, for
example, if you change the value of the PADDED column in the SYSINDEXES
table after creating the index.

Consider the following information when you migrate indexes from one version of
DB2 to the next version, or when you install a new DB2 subsystem and create
indexes:
v If the index was migrated from a pre-Version 8 release, the index is padded by

default. In this case, the value of the PADDED column of the SYSINDEXES table
is blank (PADDED = ’ ’). The PADDED column is also blank when there are no
varying length columns.

v If a subsystem has been migrated from Version 7 to Version 8 compatibility
mode or new-function mode, the default is to pad all indexes that have a key
with at least one varying length column. In this case, the value of the PADDED
column of the SYSINDEXES table is YES (PADDED = ’Y’).

v If an installed subsystem is new to Version 8 or later, and the install is done
directly into new-function mode for Version 8 or later, indexes created with at
least one varying length column are not padded by default. In this case, the
PADDED column of the SYSINDEXES table is set to NO (PADDED = ’N’).

Table space versions
DB2 creates a table space version each time that you commit one or more specific
schema changes by using the ALTER TABLE statement.

The following schema changes result in DB2 creating a table space version:
v Extending the length of a character (CHAR data type) or graphic (GRAPHIC

data type) column
v Changing the type of a column within character data types (CHAR, VARCHAR)
v Changing the type of a column within graphic data types (GRAPHIC,

VARGRAPHIC)
v Changing the type of a column within numeric data types (SMALL INTEGER,

INTEGER, FLOAT, REAL, FLOAT8, DOUBLE, DECIMAL)
v Adding a column to a table
v Extending the length of a varying character (VARCHAR data type) or varying

graphic (VARGRAPHIC data type) column, if the table already has a version
number that is greater than 0

Note: DB2 does not create a table space version under the following
circumstances:

100 Administration Guide

|
|
|

|

|

|
|
|

|

|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|



v The table space was created with DEFINE NO.
v You extend the length of a varying character (VARCHAR data type) or varying

graphic (VARGRAPHIC data type) column, and the table does not have a
version number yet.

v You specify the same data type and length that a column currently has, so that
its definition does not actually change.

v You add a column to a table in a non-partitioned table space, and the table is
already versioned with no data in the current committed version format.

DB2 creates only one table space version if you make multiple schema
changes in the same unit of work. If you make these same schema changes in
separate units of work, each change results in a new table space version. For
example, the first three ALTER TABLE statements in the following example are all
associated with the same table space version. The scope of the first COMMIT
statement encompasses all three schema changes. The last ALTER TABLE statement
is associated with the next table space version. The scope of the second COMMIT
statement encompasses a single schema change.
ALTER TABLE ACCOUNTS ALTER COLUMN NAME SET DATA TYPE VARCHAR(40);
ALTER TABLE ACCOUNTS ALTER COLUMN ADDRESS SET DATA TYPE VARCHAR(60);
ALTER TABLE ACCOUNTS ALTER COLUMN BALANCE SET DATA TYPE DECIMAL(15,2);
COMMIT;

ALTER TABLE ACCOUNTS ALTER COLUMN ACCTID SET DATA TYPE INTEGER;
COMMIT;

Reorganizing table spaces:

After you commit a schema change, DB2 puts the affected table space in an
advisory REORG-pending (AREO*) state. The table space stays in this state until
you reorganize the table space and apply the schema changes.

To reorganize the table space and apply the schema changes:

Run the REORG TABLESPACE utility.
DB2 uses table space versions to maximize data availability. Table space versions
enable DB2 to keep track of schema changes, and simultaneously, provide users
with access to data in altered table spaces. When users retrieve rows from an
altered table, the data is displayed in the format that is described by the most
recent schema definition, even though the data is not currently stored in this
format. The most recent schema definition is associated with the current table space
version.
Although data availability is maximized by the use of table space versions,
performance might suffer because DB2 does not automatically reformat the data in
the table space to conform to the most recent schema definition. DB2 defers any
reformatting of existing data until you reorganize the table space with the REORG
TABLESPACE utility. The more ALTER statements that you commit between
reorganizations, the more table space versions DB2 must track, and the more
performance can suffer.

Recommendation: Run the REORG TABLESPACE utility as soon as possible after
a schema change to correct any performance degradation that might occur and to
keep performance at its highest level.

Chapter 3. Altering your database design 101

|
|
|

|
|



Related concepts

“Row format conversion for table spaces” on page 847

Recycling table space version numbers:

To prevent DB2 from running out of table space version numbers (and to prevent
subsequent ALTER statements from failing), you must recycle unused table space
version numbers regularly.

DB2 can store up to 256 table space versions, numbered sequentially from 0 to 255.
(The next consecutive version number after 255 is 1. Version number 0 is never
reused; it is reserved for the original version of the table space.) The versions that
are associated with schema changes that have not been applied yet are considered
to be “in use.” The range of used versions is stored in the catalog. If necessary,
in-use versions can be recovered from image copies of the table space.

To recycle table space version numbers:
1. First, determine the range of version numbers that are currently in use for a

table space by querying the OLDEST_VERSION and CURRENT_VERSION
columns of the SYSIBM.SYSTABLESPACE catalog table.
Version numbers are considered to be “unused” if the schema changes that are
associated with them have been applied and there are no image copies that
contain data at those versions. If all reusable version numbers (1 to 255) are
currently in use, you must reorganize the table space by running REORG
TABLESPACE utility before you can recycle the version numbers.

2. Then, recycle the unused table space version numbers by running the MODIFY
RECOVERY utility.

Altering a table for referential integrity
You can alter a table to add, change, or remove referential constraints.

If you plan to let DB2 enforce referential integrity in a set of tables, see the DB2
Application Programming and SQL Guide for a description of the requirements for
referential constraints. DB2 does not enforce informational referential constraints.

Adding referential constraints to existing tables
You can use the ALTER TABLE statement to add referential constraints to existing
tables.

Assume that the tables in the sample application (the DB2 sample activity table,
project table, project activity table, employee table, and department table) already
exist, have the appropriate column definitions, and are already populated.

Now, suppose that you want to define relationships among the sample tables by
adding primary and foreign keys with the ALTER TABLE statement. The following
rules apply to these relationships:
v An existing table must have a unique index on its primary key columns before

you can add the primary key. The index becomes the primary index.
v You must add the parent key of the parent table before adding the

corresponding foreign key of the dependent table.

You can build the same referential structure in several different ways; however, the
following process might be the simplest to understand.

102 Administration Guide



To add a referential constraint to an existing table:
1. Create a unique index on the primary key columns for any table that does not

already have one.
2. For each table, issue the ALTER TABLE statement to add its primary key.

In the next steps, you issue the ALTER TABLE statement to add foreign keys
for each table, except for the activity table. The table space remains in
CHECK-pending status, which you can reset by running the CHECK DATA
utility with the DELETE(YES) option.
Deletions by the CHECK DATA utility are not bound by delete rules. The
deletions cascade to all descendents of a deleted row, which can be disastrous.
For example, if you delete the row for department (A00) from the department
table, the deletion might propagate through most of the referential structure.
The remaining steps prevent deletion from more than one table at a time.

3. Add the foreign keys for the department table and run CHECK DATA
DELETE(YES) on its table space. Then, correct any rows in the exception table,
and use INSERT to replace the rows in the department table. This table is now
consistent with existing data.

4. Drop the foreign key on MGRNO in the department table. This step drops the
association of the department table with the employee table, without changing
the data of either table.

5. Add the foreign key to the employee table, run the CHECK DATA utility again,
and correct any errors. If errors are reported, be particularly careful not to
make any row inconsistent with the department table when you make
corrections.

6. Add the foreign key on MGRNO to the department table, which again leaves
the table space in CHECK-pending status. Then, run the CHECK DATA utility.
If you have not changed the data since the previous check, you can use the
DELETE(YES) option, and the deletions will not cascade.

7. For each of the following tables, in the order shown, add its foreign keys, run
the CHECK DATA utility with the DELETE(YES) option, and correct any rows
that are in error:
a. Project table
b. Project activity table
c. Employee to project activity table

Adding parent keys and foreign keys
You can add primary parent keys, unique parent keys, and foreign keys to an
existing table.

To add a key to a table:
1. Choose the type of key that you want to add.
2. Add the key by using the ALTER TABLE statement.

Option Description

Adding a primary key To add a primary key to an existing table,
use the PRIMARY KEY clause in an ALTER
TABLE statement. For example, if the
department table and its index XDEPT1
already exist, create its primary key by
issuing the following statement:

ALTER TABLE DSN8910.DEPT
ADD PRIMARY KEY (DEPTNO);

Chapter 3. Altering your database design 103



Option Description

Adding a unique key To add a unique key to an existing table, use
the UNIQUE clause of the ALTER TABLE
statement. For example, if the department
table has a unique index defined on column
DEPTNAME, you can add a unique key
constraint, KEY_DEPTNAME, consisting of
column DEPTNAME by issuing the
following statement:

ALTER TABLE DSN8910.DEPT
ADD CONSTRAINT KEY_DEPTNAME UNIQUE

(DEPTNAME);

Adding a foreign key To add a foreign key to an existing table, use
the FOREIGN KEY clause of the ALTER
TABLE statement. The parent key must exist
in the parent table before you add the
foreign key. For example, if the department
table has a primary key defined on the
DEPTNO column, you can add a referential
constraint, REFKEY_DEPTNO, on the
DEPTNO column of the project table by
issuing the following statement:

ALTER TABLE DSN8910.PROJ
ADD CONSTRAINT REFKEY_DEPTNO FOREIGN
KEY (DEPTNO) REFERENCES DSN8910.DEPT
ON DELETE RESTRICT;

Implications of adding parent or foreign keys:

When you add parent keys and foreign keys to an existing table, you must
consider certain restrictions and implications.
v If you add a primary key, the table must already have a unique index on the key

columns. If multiple unique indexes include the primary key columns, the index
that was most recently created on the key columns becomes the primary index.
Because of the unique index, no duplicate values of the key exist in the table;
therefore you do not need to check the validity of the data.

v If you add a unique key, the table must already have a unique index with a key
that is identical to the unique key. If multiple unique indexes include the
primary key columns, DB2 arbitrarily chooses a unique index on the key
columns to enforce the unique key. Because of the unique index, no duplicate
values of the key exist in the table; therefore you do not need to check the
validity of the data.

v You can use only one FOREIGN KEY clause in each ALTER TABLE statement; if
you want to add two foreign keys to a table, you must execute two ALTER
TABLE statements.

v If you add a foreign key, the parent key and unique index of the parent table
must already exist. Adding the foreign key requires the ALTER privilege on the
dependent table and either the ALTER or REFERENCES privilege on the parent
table.

v Adding a foreign key establishes a referential constraint relationship. DB2 does
not validate the data when you add the foreign key. Instead, if the table is
populated (or, in the case of a nonsegmented table space, if the table space has
ever been populated), the table space that contains the table is placed in

104 Administration Guide



CHECK-pending status, just as if it had been loaded with ENFORCE NO. In this
case, you need to execute the CHECK DATA utility to clear the CHECK-pending
status.

v You can add a foreign key with the NOT ENFORCED option to create an
informational referential constraint. This action does not leave the table space in
CHECK-pending status, and you do not need to execute CHECK DATA.

Dropping parent keys and foreign keys
You can drop primary parent keys, unique parent keys, and foreign keys from an
existing table.

Before you drop a foreign key or a parent key, consider carefully the effects on
your application programs. The primary key of a table serves as a permanent,
unique identifier of the occurrences of the entities it describes. Application
programs often depend on that identifier. The foreign key defines a referential
relationship and a delete rule. Without the key, your application programs must
enforce the constraints.

To drop a key, complete the following steps:
1. Choose the type of key that you want to drop.
2. Drop the key by using the ALTER TABLE statement.

Option Description

Dropping a foreign key When you drop a foreign key using the
DROP FOREIGN KEY clause of the ALTER
TABLE statement, DB2 drops the
corresponding referential relationships. (You
must have the ALTER privilege on the
dependent table and either the ALTER or
REFERENCES privilege on the parent table.)
If the referential constraint references a
unique key that was created implicitly, and
no other relationships are dependent on that
unique key, the implicit unique key is also
dropped.

Dropping a unique key When you drop a unique key using the
DROP UNIQUE clause of the ALTER TABLE
statement, DB2 drops all the referential
relationships in which the unique key is a
parent key. The dependent tables no longer
have foreign keys. (You must have the
ALTER privilege on any dependent tables.)
The table’s unique index that enforced the
unique key no longer indicates that it
enforces a unique key, although it is still a
unique index.

Dropping a primary key When you drop a primary key using the
DROP PRIMARY KEY clause of the ALTER
TABLE statement, DB2 drops all the
referential relationships in which the
primary key is a parent key. The dependent
tables no longer have foreign keys. (You
must have the ALTER privilege on any
dependent tables.) The table’s primary index
is no longer primary, although it is still a
unique index.

Chapter 3. Altering your database design 105



Adding or dropping table check constraints
You can add or drop constraint by using the ALTER TABLE statement.

To add or drop check constraints, complete the following steps:
1. Decide to add or drop a constraint.
2. Use the ALTER TABLE statement to add or drop the constraint.

Option Description

Add constraint You can define a check constraint on a table
by using the ADD CHECK clause of the
ALTER TABLE statement. If the table is
empty, the check constraint is added to the
description of the table.

If the table is not empty, what happens
when you define the check constraint
depends on the value of the CURRENT
RULES special register, which can be either
STD or DB2.

v If the value is STD, the check constraint is
enforced immediately when it is defined.
If a row does not conform, the table check
constraint is not added to the table and an
error occurs.

v If the value is DB2, the check constraint is
added to the table description but its
enforcement is deferred. Because some
rows in the table might violate the check
constraint, the table is placed in
check-pending status.

The ALTER TABLE statement that is used to
define a check constraint always fails if the
table space or partition that contains the
table is in a CHECK-pending status, the
CURRENT RULES special register value is
STD, and the table is not empty.

Drop constraint To remove a check constraint from a table,
use the DROP CONSTRAINT or DROP
CHECK clauses of the ALTER TABLE
statement. You must not use DROP
CONSTRAINT on the same ALTER TABLE
statement as DROP FOREIGN KEY, DROP
CHECK, DROP PRIMARY KEY, or DROP
UNIQUE.

Adding a partition
You can use the ALTER TABLE statement to add a partition to an existing
regular-partitioned or range-partitioned universal table space and to each
partitioned index in the table space.

106 Administration Guide

|
|
|



Restrictions:

v You cannot add a new partition to an existing partitioned table space if the table
has LOB columns.

v You cannot add or alter a partition for a materialized query table.
v You cannot explicitly add a new partition to a table created in the

partition-by-growth table space.

When you add a partition, DB2 uses the next physical partition that is not already
in use until you reach the maximum number of partitions for the table space.
When DB2 manages your data sets, the next available data set is allocated for the
table space and for each partitioned index. When you manage your own data sets,
you must first define the data sets for the table space and the partitioned indexes
before adding a new partition.

To add a partition:
1. Issue an ALTER TABLE statement.

2. Specify the ADD PARTITION option.

Example: Assume that a table space that contains a transaction table named
TRANS is divided into 10 partitions, and each partition contains one year of data.
Partitioning is defined on the transaction date, and the limit key value is the end
of the year. The following table shows a representation of the table space.

Table 18. Initial table space with 10 partitions

Partition Limit value Data set name that backs the partition

P001 12/31/1994 catname.DSNDBx.dbname.psname.I0001.A001

P002 12/31/1995 catname.DSNDBx.dbname.psname.I0001.A002

P003 12/31/1996 catname.DSNDBx.dbname.psname.I0001.A003

P004 12/31/1997 catname.DSNDBx.dbname.psname.I0001.A004

P005 12/31/1998 catname.DSNDBx.dbname.psname.I0001.A005

P006 12/31/1999 catname.DSNDBx.dbname.psname.I0001.A006

P007 12/31/2000 catname.DSNDBx.dbname.psname.I0001.A007

P008 12/31/2001 catname.DSNDBx.dbname.psname.I0001.A008

P009 12/31/2002 catname.DSNDBx.dbname.psname.I0001.A009

P010 12/31/2003 catname.DSNDBx.dbname.psname.I0001.A010

Assume that you want to add a new partition to handle the transactions
for the next year. To add a partition, issue the following statement:
ALTER TABLE TRANS ADD PARTITION ENDING AT ('12/31/2004');

DB2 adds a new partition to the table space and to each partitioned index on the
TRANS table. For the table space, DB2 uses the existing table space PRIQTY and
SECQTY attributes of the previous partition for the space attributes of the new
partition. For each partitioned index, DB2 uses the existing PRIQTY and SECQTY
attributes of the previous index partition.

Chapter 3. Altering your database design 107

|
|



When the ALTER statement completes, you can use the new partition immediately
if the table space is a large table space. In this case, the partition is not placed in a
REORG-pending (REORP) state, because it extends the high-range values that were
not previously used. For non-large table spaces, the partition is placed in a
REORG-pending (REORP) state, because the last partition boundary was not
previously enforced.

The following table shows a representative excerpt of the table space after the
partition for the year 2004 was added.

Table 19. An excerpt of the table space after adding a new partition (P011)

Partition Limit value Data set name that backs the partition

P008 12/31/2001 catname.DSNDBx.dbname.psname.I0001.A008

P009 12/31/2002 catname.DSNDBx.dbname.psname.I0001.A009

P010 12/31/2003 catname.DSNDBx.dbname.psname.I0001.A010

P011 12/31/2004 catname.DSNDBx.dbname.psname.I0001.A011

If you want to specify the space attributes for a new partition, use the
ALTER TABLESPACE and ALTER INDEX statements. For example, suppose the
new partition is PARTITION 11 for the table space and the index. Issue the
following statements to specify quantities for the PRIQTY, SECQTY, FREEPAGE,
and PCTFREE attributes:
ALTER TABLESPACE tsname ALTER PARTITION 11

USING STOGROUP stogroup-name
PRIQTY 200 SECQTY 200
FREEPAGE 20 PCTFREE 10;

ALTER INDEX index-name ALTER PARTITION 11
USING STOGROUP stogroup-name
PRIQTY 100 SECQTY 100
FREEPAGE 25 PCTFREE 5;

Recommendation: When you create a partitioned table space, you do not need to
allocate extra partitions for expected growth. Instead, use ALTER TABLE ADD
PARTITION statement to add partitions as needed.

Altering partitions
You can use the ALTER TABLE statement to alter the partitions of table spaces.

You can make the following changes:
v Change the boundary between partitions
v Rotate the first partition to be the last partition
v Extend the boundary of the last partition
v Instruct DB2 to insert rows at the end of a table or appropriate partition

To alter a partition:
1. Issue an ALTER TABLE statement.
2. Specify the options that you want to change.

108 Administration Guide

|



Example: Assume that a table space that contains a transaction table named
TRANS is divided into 10 partitions, and each partition contains one year of data.
Partitioning is defined on the transaction date, and the limit key value is the end
of the year. The following table shows a representation of the table space.

Table 20. Table space with multiple partitions

Partition Limit value Data set name that backs the partition

P001 12/31/1994 catname.DSNDBx.dbname.psname.I0001.A001

P002 12/31/1995 catname.DSNDBx.dbname.psname.I0001.A002

P003 12/31/1996 catname.DSNDBx.dbname.psname.I0001.A003

P004 12/31/1997 catname.DSNDBx.dbname.psname.I0001.A004

P005 12/31/1998 catname.DSNDBx.dbname.psname.I0001.A005

P006 12/31/1999 catname.DSNDBx.dbname.psname.I0001.A006

P007 12/31/2000 catname.DSNDBx.dbname.psname.I0001.A007

P008 12/31/2001 catname.DSNDBx.dbname.psname.I0001.A008

P009 12/31/2002 catname.DSNDBx.dbname.psname.I0001.A009

P010 12/31/2003 catname.DSNDBx.dbname.psname.I0001.A010

Changing the boundary between partitions
You can change the boundary between partitions in two ways.

To change partition boundaries, complete the following step:

Decide on the partitions that you want change the boundary for.

Option Description

ALTER TABLE Issue an ALTER TABLE statement with the
ALTER PARTITION option.

For example, assume that the year 2006
resulted in more data than was projected so
that the allocation for partition 10 reached
its maximum of 4 GB. In addition, the year
2005 resulted in less data than was
projected. You want to change the boundary
between partition 9 and partition 10 so that
some of the data in partition 10 becomes
part of the data in partition 9.

To change the boundary, issue the following
statement:

ALTER TABLE TRANS ALTER PARTITION 9
ENDING AT ('03/31/2006');

Now the data in the first quarter of the year
2006 is part of partition 9. The partitions on
either side of the new boundary (partitions 9
and 10) are placed in REORG-pending
(REORP) status and are not available until
the partitions are reorganized.

Chapter 3. Altering your database design 109



Option Description

REORG TABLESPACE Use the REBALANCE option of the REORG
utility.

For example, you can rebalance the data in
partitions 9 and 10 as follows:

REORG TABLESPACE dbname.tsname
PART(9:10) REBALANCE

This method avoids leaving the partitions in
a REORP state. When you use the
REBALANCE option on partitions, DB2
automatically changes the limit key values.
Restriction: You cannot use the
REBALANCE option for
partitioned-by-growth table spaces.

Rotating partitions
You can use the ALTER TABLE statement to rotate the first partition to become the
last partition.

Recommendation: When you create a partitioned table space, you do not
need to allocate extra partitions for expected growth. Instead, use either ALTER
TABLE ADD PARTITION to add partitions as needed or, if rotating partitions is
appropriate for your application, use ALTER TABLE ROTATE PARTITION to avoid

adding another partition.

Nullable partitioning columns: DB2 lets you use nullable columns as partitioning
columns. But with table-controlled partitioning, DB2 can restrict the insertion of
null values into a table with nullable partitioning columns, depending on the order
of the partitioning key. After a rotate operation, if the partitioning key is ascending,
DB2 prevents an INSERT of a row with a null value for the key column. If the
partitioning key is descending, DB2 allows an INSERT of a row with a null value
for the key column. The row is inserted into the first partition.

To rotate the first partition to be the last partition:
1. Issue an ALTER TABLE table-name statement with the ROTATE PARTITION

option.

2. Optional: Run the RUNSTATS utility.

Example

For example, assume that the partition structure of the table space is sufficient
through the year 2006. The following table shows a representation of the table
space through the year 2006. When another partition is needed for the year 2007,
you determine that the data for 1996 is no longer needed. You want to recycle the
partition for the year 1996 to hold the transactions for the year 2007.

Table 21. An excerpt of a partitioned table space

Partition Limit value Data set name that backs the partition

P008 12/31/2004 catname.DSNDBx.dbname.psname.I0001.A008

110 Administration Guide

|
|
|

|
|
|
|

|



Table 21. An excerpt of a partitioned table space (continued)

Partition Limit value Data set name that backs the partition

P009 12/31/2005 catname.DSNDBx.dbname.psname.I0001.A009

P010 12/31/2006 catname.DSNDBx.dbname.psname.I0001.A010

P011 12/31/2007 catname.DSNDBx.dbname.psname.I0001.A011

To rotate the first partition for table TRANS to be the last partition, issue
the following statement:
ALTER TABLE TRANS ROTATE PARTITION FIRST TO LAST

ENDING AT ('12/31/2007') RESET;

For a table with limit values in ascending order, the data in the ENDING AT clause
must be higher than the limit value for previous partitions. DB2 chooses the first
partition to be the partition with the lowest limit value.

For a table with limit values in descending order, the data must be lower than the
limit value for previous partitions. DB2 chooses the first partition to be the
partition with the highest limit value.

The RESET keyword specifies that the existing data in the oldest partition

is deleted, and no delete triggers are activated.

What happens:

v Because the oldest (or first) partition is P001, DB2 assigns the new limit value to
P001. This partition holds all rows in the range between the new limit value of
12/31/2005 and the previous limit value of 12/31/2004.

v The RESET operation deletes all existing data. You can use the partition
immediately after the ALTER completes. The partition is not placed in REORG-
pending (REORP) status because it extends the high-range values that were not
previously used.

The following table shows a representation of the table space after the first
partition is rotated to become the last partition.

Table 22. Rotating the low partition to the end

Partition Limit value Data set name that backs the partition

P002 12/31/1997 catname.DSNDBx.dbname.psname.I0001.A002

P003 12/31/1998 catname.DSNDBx.dbname.psname.I0001.A003

P004 12/31/1999 catname.DSNDBx.dbname.psname.I0001.A004

P005 12/31/2000 catname.DSNDBx.dbname.psname.I0001.A005

P006 12/31/2001 catname.DSNDBx.dbname.psname.I0001.A006

P007 12/31/2002 catname.DSNDBx.dbname.psname.I0001.A007

P008 12/31/2003 catname.DSNDBx.dbname.psname.I0001.A008

P009 12/31/2004 catname.DSNDBx.dbname.psname.I0001.A009

P010 12/31/2005 catname.DSNDBx.dbname.psname.I0001.A010

P011 12/31/2006 catname.DSNDBx.dbname.psname.I0001.A011

Chapter 3. Altering your database design 111



Table 22. Rotating the low partition to the end (continued)

Partition Limit value Data set name that backs the partition

P001 12/31/2007 catname.DSNDBx.dbname.psname.I0001.A001

Extending the boundary of the last partition
You can extend the boundary of the last partition by using the ALTER TABLE
statement.

To extend the boundary of the last partition:
1. Issue an ALTER TABLE TRANS statement.

2. Specify the ALTER PARTITION option.

Assume that you have decided to save the data for the year 2005 and the data for
the year 2006 into one partition. You have rotated the first partition to be the last
partition. The following table shows a representation of the table space through the
year 2007.

Table 23. Rotating the low partition to the end

Partition Limit value Data set name that backs the partition

P002 12/31/1997 catname.DSNDBx.dbname.psname.I0001.A002

P003 12/31/1998 catname.DSNDBx.dbname.psname.I0001.A003

P004 12/31/1999 catname.DSNDBx.dbname.psname.I0001.A004

P005 12/31/2000 catname.DSNDBx.dbname.psname.I0001.A005

P006 12/31/2001 catname.DSNDBx.dbname.psname.I0001.A006

P007 12/31/2002 catname.DSNDBx.dbname.psname.I0001.A007

P008 12/31/2003 catname.DSNDBx.dbname.psname.I0001.A008

P009 12/31/2004 catname.DSNDBx.dbname.psname.I0001.A009

P010 12/31/2005 catname.DSNDBx.dbname.psname.I0001.A010

P011 12/31/2006 catname.DSNDBx.dbname.psname.I0001.A011

P001 12/31/2007 catname.DSNDBx.dbname.psname.I0001.A001

To extend the boundary of the last partition, issue the following statement:
ALTER TABLE TRANS ALTER PARTITION 1 ENDING AT ('12/31/2006');

You can use the partition immediately after the ALTER statement completes. The
partition is not placed in REORG-pending (REORP) status, because it extends the
high-range values that were not previously used.

Reverting to the previous boundary:

You can use the ALTER TABLE statement to change a partition boundary back to a
previous setting.

To revert a partition boundary back to a previous boundary:
1. Issue an ALTER TABLE statement.

112 Administration Guide



2. Specify the ALTER PARTITION option. This partition is placed in
REORG-pending (REORP) status because some of the data could fall outside of
the boundary that is defined by the limit key value of 12/31/2005. You can
take either of the following corrective actions:
v Run REORG with the DISCARD option to clear the REORG-pending status,

set the new partition boundary, and discard the data rows that fall outside of
the new boundary.

v Add a new partition for the data rows that fall outside of the current

partition boundaries.

For example, the following table shows a representation of the table space through
the year 2007, where each year of data is saved into separate partitions. Assume
that you changed the limit key for P001 to be 12/31/2006 so that the data for the
year 2005 and the data for the year 2006 is saved into one partition.

Table 24. Rotating the low partition to the end

Partition Limit value Data set name that backs the partition

P002 12/31/1997 catname.DSNDBx.dbname.psname.I0001.A002

P003 12/31/1998 catname.DSNDBx.dbname.psname.I0001.A003

P004 12/31/1999 catname.DSNDBx.dbname.psname.I0001.A004

P005 12/31/2000 catname.DSNDBx.dbname.psname.I0001.A005

P006 12/31/2001 catname.DSNDBx.dbname.psname.I0001.A006

P007 12/31/2002 catname.DSNDBx.dbname.psname.I0001.A007

P008 12/31/2003 catname.DSNDBx.dbname.psname.I0001.A008

P009 12/31/2004 catname.DSNDBx.dbname.psname.I0001.A009

P010 12/31/2005 catname.DSNDBx.dbname.psname.I0001.A010

P011 12/31/2006 catname.DSNDBx.dbname.psname.I0001.A011

P001 12/31/2007 catname.DSNDBx.dbname.psname.I0001.A001

To change the limit key back to 12/31/2005, issue the following statement:
ALTER TABLE TRANS ALTER PARTITION 1 ENDING AT ('12/31/2005');

Adding a partition when the last partition is in REORG-pending status:

You can add a partition to a table when the last partition is in REORG-pending
(REORP) status.

To add a partition to a table when the last partition is in REORG-pending
status:
1. Issue an ALTER TABLE statement.

2. Specify the ADD PARTITION option.

For example, assume that you extended the boundary of the last partition and then
changed back to the previous boundary for that partition. The following table
shows a representation of the table space through the year 2005. The last partition
is in REORP.

Chapter 3. Altering your database design 113



Table 25. Rotating the low partition to the end

Partition Limit value Data set name that backs the partition

P002 12/31/1997 catname.DSNDBx.dbname.psname.I0001.A002

P003 12/31/1998 catname.DSNDBx.dbname.psname.I0001.A003

P004 12/31/1999 catname.DSNDBx.dbname.psname.I0001.A004

P005 12/31/2000 catname.DSNDBx.dbname.psname.I0001.A005

P006 12/31/2001 catname.DSNDBx.dbname.psname.I0001.A006

P007 12/31/2002 catname.DSNDBx.dbname.psname.I0001.A007

P008 12/31/2003 catname.DSNDBx.dbname.psname.I0001.A008

P009 12/31/2004 catname.DSNDBx.dbname.psname.I0001.A009

P010 12/31/2005 catname.DSNDBx.dbname.psname.I0001.A010

P011 12/31/2006 catname.DSNDBx.dbname.psname.I0001.A011

P001 12/31/2007 catname.DSNDBx.dbname.psname.I0001.A001

You want to add a new partition with a limit key value of 12/31/2006. You can
use ALTER TABLE ADD PARTITION because this limit key value is higher than
the previous limit key value of 12/31/2005. Issue the following statement:

ALTER TABLE TRANS ADD PARTITION ENDING AT ('12/31/2006');

The new partition is placed in REORG-pending (REORP) status because it inherits
the REORP state from the previous partition. You can now reorganize the table
space or only the last two partitions without discarding any of the data rows.

Inserting rows at the end of a partition
To specify how you want DB2 to insert rows at the end of a partition, you can use
the CREATE TABLE or ALTER TABLE statement.

To insert rows at the end of a partition, complete the following steps:
1. Issue a CREATE TABLE or ALTER TABLE statement:
2. Specify the APPEND option.
v YES: Requests data rows to be placed into the table by disregarding the

clustering during SQL INSERT and online LOAD operations. Rather than
attempting to insert rows in cluster-preserving order, rows are appended at
the end of the table or appropriate partition.

v NO: Requests standard behavior of SQL INSERT and online LOAD
operations, namely that they attempt to place data rows in a well clustered
manner with respect to the value in the row’s cluster key columns. NO is the
default option.

After populating a table with the APPEND option in effect, you can achieve
clustering by running the REORG utility.

Restriction: You cannot specify the APPEND option for tables created in XML or
Work file table spaces.

114 Administration Guide

|
|
|

|

|

|

|
|
|
|

|
|
|
|

|
|

|
|



Adding XML columns
You can add XML columns to regular relational tables by using the ALTER TABLE
statement.

When you add an XML column to a table, an XML table and XML table space are
implicitly created to store the XML data. If the new XML column is the first XML
column that you created for the table, DB2 also implicitly creates a BIGINT DOCID
column to store a unique document identifier for the XML columns of a row.

DB2 also implicitly creates indexes. If this is the first XML column that you created
for the table, DB2 implicitly creates an index on the DOCID column of the base
table.

An XML column has several restrictions. The column cannot:
v Be specified as part of the primary key
v Be specified as part of a UNIQUE key
v Have a DEFAULT value specified
v Be specified as part of the FOREIGN KEY references clause
v Be specified as part of the REFERENCES table-name clause
v Be specified in the PARTITION BY RANGE clause
v Be used in a materialized query table even if the table is specified WITH NO

DATA
v Be referenced in CHECK constraints
v Have GENERATED specified
v Have a FIELDPROC specified
v Have AS SECURITY LABEL specified
v Be added to a created temporary table
v The table that contains an XML column will not have its XML column value

passed to a VALIDPROC
v Be part of a transition table

To add an XML column to an existing table:

Issue an ALTER TABLE statement, specifying the ADD column-name XML option.

For example,
ALTER TABLE orders ADD shipping_info XML;

Altering materialized query tables
You can use the ALTER TABLE statement to change a materialized query table to a
base table, or to change the attributes of a materialized query table.

You can also use the ALTER TABLE statement to register an existing table as a
materialized query table.

Materialized query tables enable DB2 to use automatic query rewrite to optimize
queries. Automatic query rewrite is a process that DB2 uses to examine a query

Chapter 3. Altering your database design 115

|

|
|

|
|
|
|

|
|
|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|
|

|

|

|

|

|

|



and, if appropriate, to rewrite the query so that it executes against a materialized
query table that has been derived from the base tables in the submitted query.

Registering an existing table as a materialized query table
You can take advantage of automatic query rewrite for an existing table by
registering it as a materialized query table.

To register an existing table as a materialized query table, complete the
following steps:
1. Issue an ALTER TABLE statement.

2. Specify the ADD MATERIALIZED QUERY AS option.

For example, assume that you have a very large transaction table named TRANS
that contains one row for each transaction. The table has many columns, but you
are interested in only the following columns:
v ACCTID, which is the customer account ID
v LOCID, which is the customer location ID
v YEAR, which holds the year of the transaction

You created another base table named TRANSCOUNT that consists of
these columns and a count of the number of rows in TRANS that are grouped by
the account, location, and year of the transaction. Suppose that you repopulate
TRANSCOUNT periodically by deleting the rows and then by using the following
INSERT statement:
INSERT INTO TRANSCOUNT (ACCTID, LOCID, YEAR, CNT)

SELECT ACCTID, LOCID, YEAR, COUNT(*)
FROM TRANS
GROUP BY ACCTID, LOCID, YEAR;

You want to take advantage of automatic query rewrite for TRANSCOUNT by
registering it as a materialized query table. You can do this by issuing the
following ALTER TABLE statement:
ALTER TABLE TRANSCOUNT ADD MATERIALIZED QUERY AS (

SELECT ACCTID, LOCID, YEAR, COUNT(*) AS CNT
FROM TRANS
GROUP BY ACCTID, LOCID, YEAR )
DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY USER;

This statement registers TRANSCOUNT with its associated subselect as a
materialized query table, and DB2 can now use it in automatic query rewrite. The
data in TRANSCOUNT remains the same, as specified by the DATA INITIALLY
DEFERRED option.

You can still maintain the data, as specified by the MAINTAINED BY USER
option, which means that you can continue to load, insert, update, or delete data.
You can also use the REFRESH TABLE statement to populate the table. REFRESH
DEFERRED indicates that the data in the table is the result of your most recent
update or, if more recent, the result of a REFRESH TABLE statement.

The REFRESH TABLE statement deletes all the rows in a materialized query table,
executes the fullselect in its definition, inserts the result into the table, and updates

the catalog with the refresh timestamp and cardinality of the table.

116 Administration Guide



Changing a materialized query table to a base table
You can use the ALTER TABLE statement to change a materialized query table into
a base table.

To change a materialized query table to a base table, complete the
following steps:
1. Issue an ALTER TABLE statement.
2. Specify the DROP MATERIALIZED QUERY option. For example,

ALTER TABLE TRANSCOUNT DROP MATERIALIZED QUERY;

After you issue this statement, DB2 can no longer use the table for query
optimization, and you cannot populate the table by using the REFRESH TABLE

statement.

Changing the attributes of a materialized query table
You can use the ALTER TABLE statement to change the attributes of an existing
materialized query table.

To change the attributes of an existing materialized query table:
1. Issue the ALTER TABLE statement.
2. Decide which attributes to alter.

Option Description

Enable or disable automatic query rewrite. By default, when you create or register a
materialized query table, DB2 enables it for
automatic query rewrite. To disable
automatic query rewrite, issue the following
statement:

ALTER TABLE TRANSCOUNT DISABLE QUERY
OPTIMIZATION;

Switch between system-maintained and
user-maintained.

By default, a materialized query table is
system-maintained; the only way you can
change the data is by using the REFRESH
TABLE statement. To change to a
user-maintained materialized query table,
issue the following statement:

ALTER TABLE TRANSCOUNT SET MAINTAINED
BY USER;

Change back to a system-maintained
materialized query table.

Specify the MAINTAINED BY SYSTEM
option.

Changing the definition of a materialized query table
After you create a materialized query table, you can change the definition in one of
two ways.

To change the definition of an existing materialized query table, complete either of
the following steps:
v Optional: Drop and re-create the materialized query table with a different

definition.

Chapter 3. Altering your database design 117



v Optional: Use ALTER TABLE to change the materialized query table into a base
table. Then, change it back to a materialized query table with a different but
equivalent definition (that is, with a different but equivalent SELECT for the
query).

Altering the assignment of a validation routine
You can use the ALTER TABLE statement to make certain changes to a validation
exit routine that is associated with a table, if one exists.

If you have a validation exit routine associated with a table, you can use
the ALTER TABLE statement to make the following changes:
v Disassociate the validation routine from the table using the VALIDPROC NULL

clause. The routine is no longer given control when DB2 accesses the table. For
example:
ALTER TABLE DSN8910.EMP

VALIDPROC NULL;

v Assign a new validation routine to the table using the VALIDPROC clause.
(Only one validation routine can be connected to a table at a time; so if a
validation routine already exists, DB2 disconnects the old one and connects the
new routine.) Rows that existed before the connection of a new validation
routine are not validated. In this example, the previous validation routine is
disconnected and a new routine is connected with the program name
EMPLNEWE:
ALTER TABLE DSN8910.EMP

VALIDPROC EMPLNEWE;

To ensure that the rows of a table conform to a new validation routine, you must
run the validation routine against the old rows. One way to accomplish this is to
use the REORG and LOAD utilities as shown in the following steps:
1. Use REORG to reorganize the table space that contains the table with the new

validation routine. Specify UNLOAD ONLY, as in this example:
REORG TABLESPACE DSN8D91A.DSN8S91E

UNLOAD ONLY

This step creates a data set that is used as input to the LOAD utility.
2. Run LOAD with the REPLACE option, and specify a discard data set to hold

any invalid records. For example,
LOAD INTO TABLE DSN8910.EMP

REPLACE
FORMAT UNLOAD
DISCARDDN SYSDISC

The EMPLNEWE validation routine validates all rows after the LOAD step has
completed. DB2 copies any invalid rows into the SYSDISC data set.

Altering a table to capture changed data
You can use the ALTER TABLE statement to write data changes for that table to a
log in an expanded format.

To alter a table to capture changed data:
1. Issue an ALTER TABLE statement.

118 Administration Guide



2. Specify the DATA CAPTURE CHANGES option.

You can retrieve the log by using a program such as the log apply feature of the
Remote Recovery Data Facility (RRDF) program offering, or DB2 DataPropagator.

LOB values are not available for DATA CAPTURE CHANGES. To return a table

back to normal logging, use DATA CAPTURE NONE.

Changing an edit procedure or a field procedure
You cannot use ALTER TABLE to change the assignment of an edit procedure or a
field procedure. However, with the assistance of DB2 utilities, you can change an
existing edit procedure or field procedure.

To change an edit procedure or a field procedure for a table space in which the
maximum record length is less than 32 KB, use the following procedure:
1. Run the UNLOAD utility or run the REORG TABLESPACE utility with the

UNLOAD EXTERNAL option to unload the data and decode it using the
existing edit procedure or field procedure.
These utilities generate a LOAD statement in the data set (specified by the
PUNCHDDN option of the REORG TABLESPACE utility) that you can use to
reload the data into the original table space.
If you are using the same edit procedure or field procedure for many tables,
unload the data from all the table spaces that have tables that use the
procedure.

2. Modify the code of the edit procedure or the field procedure.
3. After the unload operation is completed, stop DB2.
4. Link-edit the modified procedure, using its original name.
5. Start DB2.
6. Use the LOAD utility to reload the data. LOAD then uses the modified

procedure or field procedure to encode the data.

To change an edit procedure or a field procedure for a table space in which the
maximum record length is greater than 32 KB, use the DSNTIAUL sample program
to unload the data.

Altering the subtype of a string column
If you add a column with a string data type, you can specify its subtype in the
ALTER TABLE statement. Subtypes are valid for string columns of data types
CHAR and VARCHAR. SBCS and MIXED are valid subtypes for CLOB data.

The interpretation of the FOREIGNKEY column depends on whether the
MIXED DATA install option is YES or NO.

Entering an M in the column when the MIXED DATA install option is NO specifies
SBCS data, not MIXED data.

To alter the subtype of an existing string column, enter the following SQL
statement:
ALTER TABLE table-name ALTER COLUMN column-name

SET DATA TYPE altered-data-type

Chapter 3. Altering your database design 119

|
|

|
|



Related reference

ALTER TABLE (SQL Reference)

Altering the attributes of an identity column
You can change the attributes of an identity column by using the ALTER TABLE
statement.

To change the attributes of an identity column, complete the following
steps:
1. Issue an ALTER TABLE statement.
2. Specify the ALTER COLUMN option.

This clause changes all of the attributes of an identity column except the data
type. However, if the ALTER TABLE statement is rolled back, a gap in the
sequence of identity column values can occur because of unassigned cache
values.

Changing the data type of an identity column, like changing some other data

types, requires that you drop and then re-create the table.

Changing data types by dropping and re-creating the table
Some changes to a table cannot be made with the ALTER TABLE statement.

For example, you must make the following changes by redefining the column (that
is, dropping the table and then re-creating the table with the new definitions):
v An original specification of CHAR (25) to CHAR (20)
v A column defined as INTEGER to SMALLINT
v A column defined as NOT NULL to allow null values
v The data type of an identity column

To make such changes, complete the following steps:
1. Unload the table.
2. Drop the table.

Attention: Be very careful about dropping a table. In most cases, recovering a
dropped table is nearly impossible. If you decide to drop a table, remember
that such changes might invalidate a plan or a package.
You must alter tables that have been created with RESTRICT ON DROP to
remove the restriction before you can drop them.

3. Commit the changes.
4. Re-create the table.

If the table has an identity column:
v Choose carefully the new value for the START WITH attribute of the identity

column in the CREATE TABLE statement if you want the first generated
value for the identity column of the new table to resume the sequence after
the last generated value for the table that was saved by the unload in step 1.

v Define the identity column as GENERATED BY DEFAULT so that the
previously generated identity values can be reloaded into the new table.

120 Administration Guide

|

|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_altertable.htm#db2z_sql_altertable


5. Reload the table.

Implications of dropping a table
Dropping a table has several implications that you should be aware of.

The DROP TABLE statement deletes a table. For example, to drop the
project table, run the following statement:
DROP TABLE DSN8910.PROJ;

The statement deletes the row in the SYSIBM.SYSTABLES catalog table that
contains information about DSN8910.PROJ. This statement also drops any other
objects that depend on the project table. This action results in the following
implications:
v The column names of the table are dropped from SYSIBM.SYSCOLUMNS.
v If the dropped table has an identity column, the sequence attributes of the

identity column are removed from SYSIBM.SYSSEQUENCES.
v If triggers are defined on the table, they are dropped, and the corresponding

rows are removed from SYSIBM.SYSTRIGGERS and SYSIBM.SYSPACKAGES.
v Any views based on the table are dropped.
v Application plans or packages that involve the use of the table are invalidated.
v Cached dynamic statements that involve the use of the table are removed from

the cache.
v Synonyms for the table are dropped from SYSIBM.SYSSYNONYMS.
v Indexes created on any columns of the table are dropped.
v Referential constraints that involve the table are dropped. In this case, the project

table is no longer a dependent of the department and employee tables, nor is it a
parent of the project activity table.

v Authorization information that is kept in the DB2 catalog authorization tables is
updated to reflect the dropping of the table. Users who were previously
authorized to use the table, or views on it, no longer have those privileges,
because catalog rows are deleted.

v Access path statistics and space statistics for the table are deleted from the
catalog.

v The storage space of the dropped table might be reclaimed.
– If the table space containing the table is implicitly created (using the CREATE

TABLE statement without the TABLESPACE clause), the table space is also
dropped. If the data sets are in a storage group, dropping the table space
reclaims the space. For user-managed data sets, you must reclaim the space
yourself.

– If the table space containing the table is partitioned, or contains only the one
table, you can drop the table space.

– If the table space containing the table is segmented, DB2 reclaims the space.
– If the table space containing the table is simple, and contains other tables, you

must run the REORG utility to reclaim the space.
v If the table contains a LOB column, the auxiliary table and the index on the

auxiliary table are dropped. The LOB table space is dropped if it was created
with SQLRULES(STD).

Chapter 3. Altering your database design 121



If a table has a partitioning index, you must drop the table space or use LOAD
REPLACE when loading the redefined table. If the CREATE TABLE that is used to
redefine the table creates a table space implicitly, commit the DROP statement
before re-creating a table by the same name. You must also commit the DROP
statement before you create any new indexes with the same name as the original
indexes.

Objects that depend on the dropped table
Before dropping a table, check to see what objects are dependent on the table. The
DB2 catalog tables SYSIBM.SYSVIEWDEP, SYSIBM.SYSPLANDEP, and
SYSIBM.SYSPACKDEP indicate what views, application plans, and packages are
dependent on different DB2 objects.

Finding dependent views

The following example query lists the views, with their creators, that are
affected if you drop the project table:
SELECT DNAME, DCREATOR

FROM SYSIBM.SYSVIEWDEP
WHERE BNAME = 'PROJ'
AND BCREATOR = 'DSN8910'
AND BTYPE = 'T';

Finding dependent packages

The next example lists the packages, identified by the package name,
collection ID, and consistency token (in hexadecimal representation), that are
affected if you drop the project table:
SELECT DNAME, DCOLLID, HEX(DCONTOKEN)

FROM SYSIBM.SYSPACKDEP
WHERE BNAME = 'PROJ'
AND BQUALIFIER = 'DSN8910'
AND BTYPE = 'T';

Finding dependent plans

The next example lists the plans, identified by plan name, that are affected
if you drop the project table:
SELECT DNAME

FROM SYSIBM.SYSPLANDEP
WHERE BNAME = 'PROJ'
AND BCREATOR = 'DSN8910'
AND BTYPE = 'T';

Finding other dependencies

In addition, the SYSIBM.SYSINDEXES table tells you what indexes currently exist
on a table. From the SYSIBM.SYSTABAUTH table, you can determine which users
are authorized to use the table.

122 Administration Guide



Re-creating a table
You can re-create a DB2 table in order to decrease the length attribute of a string
column or the precision of a numeric column.

To re-create a DB2 table to decrease the length attribute of a string column
or the precision of a numeric column, complete the following steps:
1. If you do not have the original CREATE TABLE statement and all authorization

statements for the table (call it T1), query the catalog to determine its
description, the description of all indexes and views on it, and all users with
privileges on it.

2. Create a new table (call it T2) with the desired attributes.
3. Copy the data from the old table T1 into the new table T2 by using one of the

following methods:
a. Execute the following INSERT statement:

INSERT INTO T2
SELECT * FROM T1;

b. Load data from your old table into the new table by using the INCURSOR
option of the LOAD utility. This option uses the DB2 UDB family
cross-loader function.

4. Execute the statement DROP TABLE T1. If T1 is the only table in an explicitly
created table space, and you do not mind losing the compression dictionary, if
one exists, drop the table space instead, so that the space is reclaimed.

5. Commit the DROP statement.
6. Use the statement RENAME TABLE to rename table T2 to T1.
7. Run the REORG utility on the table space that contains table T1.
8. Notify users to re-create any synonyms, indexes, views, and authorizations they

had on T1.

If you want to change a data type from string to numeric or from numeric to
string (for example, INTEGER to CHAR or CHAR to INTEGER), use the CHAR
and DECIMAL scalar functions in the SELECT statement to do the conversion.
Another alternative is to use the following method:
1. Use UNLOAD or REORG UNLOAD EXTERNAL (if the data to unload in less

than 32 KB) to save the data in a sequential file, and then
2. Use the LOAD utility to repopulate the table after re-creating it. When you

reload the table, make sure you edit the LOAD statement to match the new
column definition.

This method is particularly appealing when you are trying to re-create a large
table.

Moving a table to a table space of a different page size
You cannot alter a table to use a different page size. However, you can move a
table to a table space of a different page size.

To move a table to a table space of a different page size:
1. Unload the table using UNLOAD FROM TABLE or REORG UNLOAD

EXTERNAL FROM TABLE.
2. Use CREATE TABLE LIKE on the table to re-create it in the table space of the

new page size.

Chapter 3. Altering your database design 123



3. Use DB2 Control Center, DB2 Administration Tool, or catalog queries to
determine the dependent objects: views, authorization, plans, packages,
synonyms, triggers, referential integrity, and indexes.

4. Drop the original table.
5. Rename the new table to the name of the old table using RENAME TABLE.
6. Re-create all dependent objects.
7. Rebind plans and packages.
8. Reload the table using data from the SYSRECnn data set and the control

statements from the SYSPUNCH data set, which was created when the table

was unloaded.

Altering DB2 views
To alter a view, you must drop the view and create a new view with your
modified specifications.

To drop and re-create a view:
1. Issue the DROP VIEW SQL statement.
2. Commit the drop. When you drop a view, DB2 also drops the dependent

views.

3. Recreate the modified view using the CREATE VIEW SQL statement.

Attention: When you drop a view, DB2 invalidates application plans and
packages that are dependent on the view and revokes the privileges of users who
are authorized to use it. DB2 attempts to rebind the package or plan the next time
it is executed, and you receive an error if you do not recreate the view.

To tell how much rebinding and reauthorizing is needed if you drop a view, see
the following table.

Table 26. Catalog tables to check after dropping a view

Catalog table What to check

SYSIBM.SYSPLANDEP Application plans dependent on the view

SYSIBM.SYSPACKDEP Packages dependent on the view

SYSIBM.SYSVIEWDEP Views dependent on the view

SYSIBM.SYSTABAUTH Users authorized to use the view

Altering views by using the INSTEAD OF trigger
Typically, you can only do normal insert, update, and delete operations on specific
types of views, but you can use the INSTEAD OF trigger to extend the
updatability of views.

Unlike other forms of triggers that are defined only on tables, INSTEAD
OF triggers are defined only on views. If you use the INSTEAD OF trigger, the
requested update operation against the view is replaced by the trigger logic, which
performs the operation on behalf of the view.

To alter a view by using the INSTEAD OF trigger:

124 Administration Guide

|
|
|
|



Issue the CREATE TRIGGER statement and specify the INSTEAD OF trigger for

insert, update, and delete operations on the view.
Related reference

CREATE TRIGGER (SQL Reference)

Altering DB2 indexes
You can add a new column to an index or change the description of an index at
the current server by issuing the ALTER INDEX statement.

With the ALTER INDEX statement, you can:
v Add a new column to an index.
v Alter the PADDED or NOT PADDED attribute to change how varying-length

columns are stored in the index.
v Alter the CLUSTER or NOT CLUSTER attribute to change how data is stored.
v Alter the compression setting using ALTER COMPRESS YES or ALTER

COMPRESS NO.
v Change the limit key for index-controlled partitioning to rebalance data among

the partitions in a partitioned table space.

For other changes, you must drop and recreate the index.

When you add a new column to an index, change how varying-length columns are
stored in the index, or change the data type of a column in the index, DB2 creates
a new version of the index.

Restrictions:

v If the padding of an index is changed, the index is placed in RBDP
(REBUILD-pending) and a new version of the index is not created.

v If an index is versioned, any alteration to use index compression places the
index in REBUILD-pending status.

v If an index is compressed, altering a column that participates in the index key
places all indexes that contain that column as part of the index key in
REBUILD-pending status.

v You cannot add a column with the DESC attribute to an index if the column is a
VARBINARY column or a column with a distinct type that is based on the
VARBINARY type.

To change the description of an index at the current server:

Issue the ALTER INDEX statement.

The ALTER INDEX statement can be embedded in an application program or
issued interactively.

Chapter 3. Altering your database design 125

|
|

|
|

|
|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_createtrigger.htm#db2z_sql_createtrigger


Related concepts

Indexes that are padded or not padded (Introduction to DB2 for z/OS)
Related reference

ALTER INDEX (SQL Reference)

Adding a column to an index when you add the column to a
table

When you use the ALTER INDEX statement to add a column to an existing index,
the new column becomes the rightmost column of the index key.

Restriction: You cannot add a column to an index that enforces a primary key,
unique key, or referential constraint. Also, you cannot add columns to IBM-defined
indexes on the DB2 catalog.

To add a column to an existing index:
1. Issue the ALTER INDEX ADD COLUMN SQL statement when you add a

column to a table.
2. Commit the alter procedure.

If the column that is being added to the index is already part of the table on which
the index is defined, the index is left in a REBUILD-pending (RBDP) status.
However, if you add a new column to a table and to an existing index on that
table within the same unit of work, the index is left in advisory REORG-pending
(AREO*) status and can be used immediately for data access.

If you add a column to an index and to a table within the same unit of work, this
will cause table and index versioning.

For example, assume that you created a table with columns that include ACCTID,
STATE, and POSTED:
CREATE TABLE TRANS

(ACCTID ...,
STATE ...,
POSTED ...,
... , ...)
...;

You have an existing index on the STATE column:
CREATE INDEX STATE_IX ON TRANS(STATE);

To add a ZIPCODE column to the table and the index, issue the following
statements:
ALTER TABLE TRANS ADD COLUMN ZIPCODE CHAR(5);
ALTER INDEX STATE_IX ADD COLUMN (ZIPCODE);
COMMIT;

Because the ALTER TABLE and ALTER INDEX statements are executed within the
same unit of work, DB2 immediately can use the new index with the key STATE,
ZIPCODE for data access.

126 Administration Guide

|
|
|

|
|

|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.intro/db2z_indexespaddedornotpadded.htm#db2z_indexespaddedornotpadded
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_alterindex.htm#db2z_sql_alterindex


Related reference

ALTER INDEX (SQL Reference)

Altering how varying-length index columns are stored
You can use the ALTER INDEX statement to change how varying-length column
values are stored in an index.

To alter how varying-length column values are stored in an index,
complete the following steps:
1. Choose the padding attribute for the columns.
2. Issue the ALTER INDEX SQL statement.
v Specify the NOT PADDED clause if you do not want column values to be

padded to their maximum length. This clause specifies that VARCHAR and
VARGRAPHIC columns of an existing index are stored as varying-length
columns.

v Specify the PADDED clause if you want column values to be padded to the
maximum lengths of the columns. This clause specifies that VARCHAR and
VARGRAPHIC columns of an existing index are stored as fixed-length
columns.

3. Commit the alter procedure.

The ALTER INDEX statement is successful only if the index has at least one
varying-length column.

When you alter the padding attribute of an index, the index is placed into a
restricted REBUILD-pending (RBDP) state. When you alter the padding attribute of
a nonpartitioned secondary index (NPSI), the index is placed into a page set
REBUILD-pending (PSRBD) state. In both cases, the indexes cannot be accessed

until they are rebuilt from the data.
Related concepts

Indexes that are padded or not padded (Introduction to DB2 for z/OS)

Altering the clustering of an index
You can use the ALTER INDEX SQL statement to change the clustering index for a
table.

To change the clustering option of an index:
1. Issue the ALTER INDEX SQL statement.
2. Specify the desired clustering option.

Restriction: You can only specify CLUSTER if there is not already another
clustering index.
v CLUSTER indicates that the index is to be used as the clustering index of the

table. The change takes effect immediately. Any subsequently inserted rows
use the new clustering index. Existing data remains clustered by the previous
clustering index until the table space is reorganized.

v NOT CLUSTER indicates that the index is not to be used as the clustering
index of the table. However, if the index was previously defined as the
clustering index, it continues to be used as the clustering index until you
explicitly specify CLUSTER for a different index.

Chapter 3. Altering your database design 127

|

|
|
|
|

|
|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_alterindex.htm#db2z_sql_alterindex
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.intro/db2z_indexespaddedornotpadded.htm#db2z_indexespaddedornotpadded


3. Commit the alter procedure.

Specifying NOT CLUSTER for an index that is not a clustering index is ignored.

Related reference

ALTER TABLE (SQL Reference)

Dropping and redefining a DB2 index
Dropping an index does not cause DB2 to drop any other objects. The consequence
of dropping indexes is that DB2 invalidates application plans and packages that
use the index and automatically rebinds them when they are next used.

Prerequisite: Any primary key, unique key, or referential constraints associated
with a unique index must be dropped before you drop the unique index. However,
you can drop a unique index for a unique key without dropping the unique
constraint if the unique key was created before Version 9.

Commit the drop before you create any new table spaces or indexes by the same
name.

To drop and re-create an index, complete the following steps:
1. Issue a DROP INDEX SQL statement.
2. Commit the drop procedure. The index space associated with the index is also

dropped.
3. Re-create the modified index by issuing a CREATE INDEX SQL statement.

4. Rebind any application programs that use the dropped index.

If you drop and index and then run an application program using that index (and
thereby automatically rebound), that application program does not use the old
index. If, at a later time, you re-create the index and the application program is not
rebound, the application program cannot take advantage of the new index.

Reorganizing indexes
A schema change that affects an index might cause performance degradation. In
this case, you might need to reorganize indexes to correct any performance
degradation.

Although data availability is maximized by the use of index versions, performance
might suffer because DB2 does not automatically reformat the data in the index to
conform to the most recent schema definition. DB2 defers any reformatting of
existing data until you reorganize the index and apply the schema changes. The
more ALTER statements (which affect indexes) that you commit between
reorganizations, the more index versions DB2 must track, and the more
performance can suffer.

To reorganize an index:

Run the REORG INDEX utility as soon as possible after a schema change that
affects an index. You can also run the REORG TABLESPACE utility.

128 Administration Guide

|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_altertable.htm#db2z_sql_altertable


Related concepts

“Index versions” on page 62

Recycling index version numbers
To prevent DB2 from running out of index version numbers (and to prevent
subsequent ALTER statements from failing), you must recycle unused index
version numbers regularly.

DB2 can store up to 16 index versions, numbered sequentially from 0 to 15. The
next consecutive version number after 15 is 1. Version number 0 is never reused,
because it is reserved for the original version of the index. The versions that are
associated with schema changes that have not been applied yet are considered to
be “in use,” and the range of used versions is stored in the catalog. In use versions
can be recovered from image copies of the table space, if necessary.

Version numbers are considered to be unused if the schema changes that are
associated with them have been applied and no image copies contain data at those
versions.

To recycle unused index version numbers:
1. Determine the range of version numbers that are currently in use for an index

by querying the OLDEST_VERSION and CURRENT_VERSION columns of the
SYSIBM.SYSINDEXES catalog table.

2. Next, run the appropriate utility to recycle unused index version numbers.
v For indexes that are defined as COPY YES, run the MODIFY RECOVERY

utility.
If all reusable version numbers (1 to 15) are currently in use, reorganize the
index by running REORG INDEX or REORG TABLESPACE before you
recycle the version numbers.

v For indexes that are defined as COPY NO, run the REORG TABLESPACE,
REORG INDEX, LOAD REPLACE, or REBUILD INDEX utility. These utilities

recycle the version numbers as they perform their primary functions.
Related concepts

“Index versions” on page 62

Altering stored procedures
The process that you follow to alter a stored procedure depends on the type of
stored procedure and how you want to alter it.

You can alter stored procedures in the following ways:
v For a native SQL procedure, you can alter the options and the body, and you can

manage multiple versions.
v For an external SQL procedure, you can alter only the options.
v For an external stored procedure (a procedure that is written in a host language),

you can alter the procedure options. If you alter the host language code, you
need to prepare the code again.

To alter an existing stored procedure:
1. Follow the process for the type of change that you want to make:

Chapter 3. Altering your database design 129

|

|
|

|

|
|

|

|
|
|

|

|



v To alter the host language code for an external stored procedure, modify the
source and prepare the code again. (Precompile, compile, and link-edit the
application, and then bind the DBRM into a package.)

v To alter the body of a native SQL procedure, issue the ALTER PROCEDURE
statement with the REPLACE clause.

v To alter the description of any type of stored procedure, issue the ALTER
PROCEDURE statement with the options that you want.

2. Refresh the WLM environment. You must complete this step if either of the
following situations applies:
v For external SQL procedures or external procedures, you changed the stored

procedure logic or parameters.
v You changed the startup JCL for the stored procedures address space.

Restriction: In some cases, refreshing the WLM environment might not be
enough. For example, if the change to the JCL is to the NUMTCB value,
refreshing the WLM environment is not enough. The refresh fails because it
cannot start a new WLM address space that has a different NUMTCB from
the existing one. In this case, you need to do a WLM quiesce, followed by a
WLM resume.

Tip: To refresh the WLM environment, use the DB2-supplied WLM_REFRESH
stored procedure rather than the REFRESH command. (The REFRESH
command starts a new WLM address space and stops the existing one.)

3. Optional: If you disabled automatic rebinds, rebind any plans or packages that
refer to the stored procedure that you altered.

Example 1: The following example changes the stored procedure
SYSPROC.MYPROC to run in the WLM environment PARTSEC:
ALTER PROCEDURE SYSPROC.MYPROC

WLM ENVIRONMENT PARTSEC;

Example 2: If the stored procedure SYSPROC.MYPROC is defined with SECURITY
DEFINER, the external security environment for the stored procedure uses the
authorization ID of the owner of the stored procedure to control access to non-SQL
resources. The following example changes the stored procedure to use the
authorization ID of the person who is running it to control access to non-SQL
resources:
ALTER PROCEDURE SYSPROC.MYPROC

SECURITY USER;

130 Administration Guide

|
|
|

|
|

|
|

|
|

|
|

|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|

|



Related tasks

“Implementing DB2 stored procedures” on page 71
Related reference

ALTER PROCEDURE (SQL - native) (SQL Reference)

ALTER PROCEDURE (SQL - external) (SQL Reference)

ALTER PROCEDURE (external) (SQL Reference)

Altering user-defined functions
You can use the ALTER FUNCTION statement to update the description of
user-defined functions.

To alter a user-defined function:

Issue the ALTER FUNCTION SQL statement.

Changes to the user-defined function take effect immediately.

In the following example, two functions named CENTER exist in the SMITH
schema. The first function has two input parameters with INTEGER and FLOAT
data types, respectively. The specific name for the first function is FOCUS1. The
second function has three parameters with CHAR(25), DEC(5,2), and INTEGER
data types.

Using the specific name to identify the function, change the WLM environment in
which the first function runs from WLMENVNAME1 to WLMENVNAME2:
ALTER SPECIFIC FUNCTION SMITH.FOCUS1

WLM ENVIRONMENT WLMENVNAME2;

The following example changes the second function when any arguments are null:
ALTER FUNCTION SMITH.CENTER (CHAR(25), DEC(5,2), INTEGER)

RETURNS ON NULL CALL;

Altering implicitly created XML objects
You can alter implicitly created XML objects; however, you can change only some
of the properties for an XML object.

To alter implicitly created XML objects:

Determine the restrictions on the XML object that you want to change. The
following table provides information about the properties that you can or cannot
change for a particular XML object.

Chapter 3. Altering your database design 131

|

|

|

|

|

|

|

|
|

|

|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_alterproceduresqlnative.htm#db2z_sql_alterproceduresqlnative
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_alterproceduresqlexternal.htm#db2z_sql_alterproceduresqlexternal
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_alterprocedureexternal.htm#db2z_sql_alterprocedureexternal


Option Description

XML table space You can alter the following properties:

v BUFFERPOOL (16 KB buffer pools only)

v COMPRESS

v PRIQTY

v SECQTY

v MAXROWS

v FREEPAGE

v PCTFREE

v GBPCACHE

v USING STOGROUP

v ERASE

v LOCKSIZE (The only possible values are
XML and TABLESPACE.)

XML table space attributes that are inherited
from the base table space, such as LOG, are
implicitly altered if the base table space is
altered.

XML table The ALTER TABLE ALTER PARTITION
statement is not supported if the table
contains an XML column.

Index You cannot alter the following properties:

v CLUSTER

v PADDED

v ADD COLUMN.

Changing the high-level qualifier for DB2 data sets
The high-level qualifier for DB2 data sets is the catalog name of the integrated
catalog facility, which is commonly called the user catalog.

Prerequisite: To concentrate on DB2-related issues, this procedure assumes that the
catalog alias resides in the same user catalog as the one that is currently used. If
the new catalog alias resides in a different user catalog, see DFSMS/MVS™: Access
Method Services for the Integrated Catalog for information about planning such a
move.

If the data sets are managed by the Storage Management Subsystem (SMS), make
sure that automatic class selection routines are in place for the new data set name.

You cannot change the high-level qualifier for DB2 data sets by using the DB2
installation or migration update process. You must use other methods to change
this qualifier for both system data sets and user data sets.

The following procedures do not actually move or copy data.

Changing the high-level qualifier for DB2 data sets is a complex task. You should
have experience with both DB2 and managing user catalogs.

132 Administration Guide

|||

||

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|

||
|
|

||

|

|

|
|

|



Defining a new integrated catalog alias
You can define a new integrated catalog alias any time before you change the
high-level qualifier for system data sets or user data sets.

To define the new high-level qualifier as an alias to a current integrated catalog:

Issue the following access method services command:
DEFINE ALIAS (NAME (newcat) RELATE (usercat) CATALOG (master-cat))

See DFSMS/MVS: Access Method Services for the Integrated Catalog for more
information.

Changing the qualifier for system data sets
To change the qualifier for system data sets, you stop DB2, change the high-level
qualifier in the system parameter load module (possibly DSNZPARM), and
establish a new xxxxMSTR cataloged procedure before restarting DB2.

Important: The following steps must be done in sequence.

Changing the load module to reflect the new qualifier
To change the system parameter load module to specify the new qualifier for new
archive data sets and the DB2 catalog and directory data sets, you must follow the
installation process.

To specify the new qualifier:
1. Run the installation CLIST, and specify INSTALL TYPE=INSTALL and DATA

SHARING FUNCTION=NONE.
2. Enter new values for the fields shown in the following table.

Table 27. CLIST panels and fields to change to reflect new qualifier

Panel name Field name Comments

DSNTIPA1 INSTALL TYPE Specify INSTALL. Do not specify a new
default prefix for the input data sets listed
on this panel.

DSNTIPA1 OUTPUT MEMBER
NAME

DSNTIPA2 CATALOG ALIAS

DSNTIPH COPY 1 NAME and
COPY 2 NAME

These are the bootstrap data set names.

DSNTIPH COPY 1 PREFIX and
COPY 2 PREFIX

These fields appear for both active and
archive log prefixes.

DSNTIPT SAMPLE LIBRARY This field allows you to specify a field name
for edited output of the installation CLIST.
Avoid overlaying existing data sets by
changing the middle node, NEW, to
something else. The only members you use
in this procedure are xxxxMSTR and
DSNTIJUZ in the sample library.

DSNTIPO PARAMETER
MODULE

Change this value only if you want to
preserve the existing member through the
CLIST.

Chapter 3. Altering your database design 133



The output from the CLIST is a new set of tailored JCL with new cataloged
procedures and a DSNTIJUZ job, which produces a new member.

3. Run the first two job steps of DSNTIJUZ to update the subsystem parameter
load module.
Unless you have specified a new name for the load module, make sure the
output load module does not go to the SDSNEXIT or SDSNLOAD library used
by the active DB2 subsystem.
If you are changing the subsystem ID in addition to the system data set name
qualifier, you should also run job steps DSNTIZP and DSNTIZQ to update the
DSNHDECP module (ZPARM parameter SSID). Make sure that the updated
DSNHDECP module does not go to the SDSNEXIT or SDSNLOAD library used
by the active DB2 subsystem. Use caution when changing the subsystem ID.
For more information, see the heading ″MVS PARMLIB updates panel:
DSNTIPM″ for the discussion of panel DSNTIPM for PARMLIB members where
the subsystem ID has to be changed.

Stopping DB2 when no activity is outstanding
Before stopping DB2, make sure the subsystem does not have any outstanding
activity, such as outstanding units of recovery or pending writes. Ensuring that at
restart, DB2 does not need to access the data sets through the log, which contains
the old data set qualifiers.

To stop DB2 when no activity is outstanding:
1. Stop DB2 by entering the following command:

-STOP DB2 MODE(QUIESCE)

This command allows DB2 to complete processing currently executing
programs.

2. Start DB2 by entering the following command:
-START DB2 ACCESS(MAINT)

3. Use the following commands to make sure the subsystem is in a consistent
state.

-DISPLAY THREAD(*) TYPE(*)
-DISPLAY UTILITY (*)
-TERM UTILITY(*)
-DISPLAY DATABASE(*) RESTRICT
-DISPLAY DATABASE(*) SPACENAM(*) RESTRICT
-RECOVER INDOUBT

Correct any problems before continuing.
4. Stop DB2 by entering the following command:

-STOP DB2 MODE(QUIESCE)

5. Run the print log map utility (DSNJU004) to identify the current active log data
set and the last checkpoint RBA.

6. Run DSN1LOGP with the SUMMARY (YES) option, using the last checkpoint
RBA from the output of the print log map utility you ran in the previous step.
The report headed DSN1157I RESTART SUMMARY identifies active units of
recovery or pending writes. If either situation exists, do not attempt to
continue. Start DB2 with ACCESS(MAINT), use the necessary commands to
correct the problem, and repeat steps 4 through 6 until all activity is complete.

Renaming system data sets with the new qualifier
When renaming system data sets with a new qualifier, assume that the new
qualifier and the old qualifier reside in the same user catalog.

134 Administration Guide

|
|

|
|
|

|
|
|
|
|
|
|
|



Prerequisite: Access method services does not allow ALTER where the new name
does not match the existing catalog structure for an SMS-managed VSAM data set.
If the data set is not managed by SMS, the rename succeeds, but DB2 cannot
allocate it as described in DFSMS/MVS: Access Method Services for the Integrated
Catalog.

DB2 table spaces are defined as linear data sets with DSNDBC as the second node
of the name for the cluster and DSNDBD for the data component. The examples
shown here assume the normal defaults for DB2 and VSAM data set names. Use
access method services statements with a generic name (*) to simplify the process.
Access method services allows only one generic name per data set name string.

To rename the system data sets:
1. Using IDCAMS, change the names of the catalog and directory table spaces. Be

sure to specify the instance qualifier of your data set, y, which can be either I
or J. For example,
ALTER oldcat.DSNDBC.DSNDB01.*.y0001.A001 -

NEWNAME (newcat.DSNDBC.DSNDB01.*.y0001.A001)
ALTER oldcat.DSNDBD.DSNDB01.*.y0001.A001 -

NEWNAME (newcat.DSNDBD.DSNDB01.*.y0001.A001)
ALTER oldcat.DSNDBC.DSNDB06.*.y0001.A001 -

NEWNAME (newcat.DSNDBC.DSNDB06.*.y0001.A001)
ALTER oldcat.DSNDBD.DSNDB06.*.y0001.A001 -

NEWNAME (newcat.DSNDBD.DSNDB06.*.y0001.A001)

2. Using IDCAMS, change the active log names. Active log data sets are named
oldcat.LOGCOPY1.COPY01 for the cluster component and
oldcat.LOGCOPY1.COPY01.DATA for the data component. For example,
ALTER oldcat.LOGCOPY1.* -

NEWNAME (newcat.LOGCOPY1.*)
ALTER oldcat.LOGCOPY1.*.DATA -

NEWNAME (newcat.LOGCOPY1.*.DATA)
ALTER oldcat.LOGCOPY2.* -

NEWNAME (newcat.LOGCOPY2.*)
ALTER oldcat.LOGCOPY2.*.DATA -

NEWNAME (newcat.LOGCOPY2.*.DATA)

3. Using IDCAMS, change the BSDS names. For example,
ALTER oldcat.BSDS01 -

NEWNAME (newcat.BSDS01)
ALTER oldcat.BSDS01.* -

NEWNAME (newcat.BSDS01.*)
ALTER oldcat.BSDS02 -

NEWNAME (newcat.BSDS02)
ALTER oldcat.BSDS02.* -

NEWNAME (newcat.BSDS02.*)

Updating the BSDS with the new qualifier
Update the first BSDS with the new alias and correct data set names for the active
logs. In this step, you do not attempt to change the names of existing archive log
data sets.

If these catalog entries or data sets will not be available in the future, copy all the
table spaces in the DB2 subsystem to establish a new recovery point. You can
optionally delete the entries from the BSDS. If you do not delete the entries, they
will gradually be replaced by newer entries.

To update the BSDS:
1. Run the change log inventory utility (DSNJU003).

Chapter 3. Altering your database design 135



Use the new qualifier for the BSDS because it has now been renamed. The
following example illustrates the control statements required for three logs and
dual copy is specified for the logs. This is only an example; the number of logs
can vary and dual copy is an option. The starting and ending log RBAs are
from the print log map report.
NEWCAT VSAMCAT=newcat
DELETE DSNAME=oldcat.LOGCOPY1.DS01
DELETE DSNAME=oldcat.LOGCOPY1.DS02
DELETE DSNAME=oldcat.LOGCOPY1.DS03
DELETE DSNAME=oldcat.LOGCOPY2.DS01
DELETE DSNAME=oldcat.LOGCOPY2.DS02
DELETE DSNAME=oldcat.LOGCOPY2.DS03
NEWLOG DSNAME=newcat.LOGCOPY1.DS01,COPY1,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY1.DS02,COPY1,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY1.DS03,COPY1,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY2.DS01,COPY2,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY2.DS02,COPY2,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY2.DS03,COPY2,STARTRBA=strtrba,ENDRBA=endrba

During startup, DB2 compares the newcat value with the value in the system
parameter load module, and they must be the same.

2. Using the IDCAMS REPRO command, replace the contents of BSDS2 with the
contents of BSDS01.

3. Run the print log map utility (DSNJU004) to verify your changes to the BSDS.
4. At a convenient time, change the DD statements for the BSDS in any of your

offline utilities to use the new qualifier.

Establishing a new xxxxMSTR cataloged procedure
After updating BSDS with the new qualifier and before you start DB2, establish a
new xxxxMSTR cataloged procedure.
1. Update xxxxMSTR in SYS1.PROCLIB with the new BSDS data set names.
2. Copy the new system parameter load module to the active

SDSNEXIT/SDSNLOAD library.

Starting DB2 with the new xxxxMSTR and load module
You can start DB2 with the new xxxxMSTR cataloged procedure and load module.
1. Issue a START DB2 command with the module name as shown in the following

example.
-START DB2 PARM(new_name)

2. Optional: If you stopped DSNDB01 or DSNDB06 in “Stopping DB2 when no
activity is outstanding” on page 134, you must explicitly start them in this step.

Changing qualifiers for other databases and user data sets
You can change qualifiers for DB2 databases other than the catalog and directory.

DSNDB07 is a system database that contains no permanent data, and can be
deleted and redefined with the new qualifier. If you are changing the qualifier for
DSNDB07, do that before changing the rest of the user databases.

You can change the databases in the following list that apply to your environment:
v DSNDB07 (work file database)
v DSNDB04 (system default database)
v DSNDDF (communications database)
v DSNRLST (resource limit facility database)
v DSNRGFDB (the database for data definition control)
v Any other application databases that use the old high-level qualifier

136 Administration Guide



At this point, the DB2 catalog tables SYSSTOGROUP, SYSTABLEPART, and
SYSINDEXPART contain information about the old integrated user catalog alias. To
update those tables with the new alias, you must use the following procedures.
Until you do so, the underlying resources are not available.

Important: Table spaces and indexes that span more than one data set require
special procedures. Partitioned table spaces can have different partitions allocated
to different DB2 storage groups. Nonpartitioned table spaces or indexes only have
the additional data sets to rename (those with the lowest level name of A002, A003,
and so on).

Changing your work database to use the new high-level qualifier
You can use one of two methods to change the high-level qualifier for your work
database or the system database DSNDB07.

The method that you use depends on if you have a new installation or a migrated
installation of DB2 for z/OS.

Changing your work database for a new installation of DB2:

You can change the high-level qualifier for your work database if you have a new
installation of DB2 for z/OS.

To change your work database:
1. Reallocate the database by using the installation job DSNTIJTM from

prefix.SDSNSAMP.
2. Modify your existing job by changing the job to remove the BIND step for

DSNTIAD and renaming the data set names in the DSNTTMP step to your new
names. Make sure that you include your current allocations.

Changing your work database for a migrated installation of DB2:

You can change the high-level qualifier for your work database if you have a
migrated installation of DB2 for z/OS.

Migrated installations do not have a usable DSNTIJTM, because the IDCAMS
allocation step is missing.

To change your work database:
1. Stop the database by using the following command (for a database named

DSNDB07):
-STOP DATABASE (DSNDB07)

2. Drop the database by using the following SQL statement:
DROP DATABASE DSNDB07;

3. Re-create the database by using the following SQL statement:
CREATE DATABASE DSNDB07;

4. Define the clusters by using the following access method services commands.
You must specify the instance qualifier of your data set, y, which can be either I
or J.

ALTER oldcat.DSNDBC.DSNDB07.DSN4K01.y0001.A001
NEWNAME newcat.DSNDBC.DSNDB07.DSN4K01.y0001.A001

ALTER oldcat.DSNDBC.DSNDB07.DSN32K01.y0001.A001
NEWNAME newcat.DSNDBC.DSNDB07.DSN32K01.y0001.A001

Chapter 3. Altering your database design 137



Repeat the preceding statements (with the appropriate table space name) for as
many table spaces as you use.

5. Create the table spaces in DSNDB07 by using the following commands:
CREATE TABLESPACE DSN4K01

IN DSNDB07
BUFFERPOOL BP0
CLOSE NO
USING VCAT DSNC910;

CREATE TABLESPACE DSN32K01
IN DSNDB07
BUFFERPOOL BP32K
CLOSE NO
USING VCAT DSNC910;

6. Start the database by using the following command:
-START DATABASE (DSNDB07)

Changing user-managed objects to use the new qualifier
You can change user-managed objects to use the new high-level qualifier.

To change user-managed objects:
1. Stop the table spaces and index spaces by using the following command:

-STOP DATABASE(dbname) SPACENAM(*)

2. Use the following SQL ALTER TABLESPACE and ALTER INDEX statements
with the USING clause to specify the new qualifier:
ALTER TABLESPACE dbname.tsname

USING VCAT newcat;

ALTER INDEX creator.index-name
USING VCAT newcat;

Repeat this step for all the objects in the database.
3. Using IDCAMS, rename the data sets to the new qualifier. Also, be sure to

specify the instance qualifier of your data set, y, which can be either I or J:
ALTER oldcat.DSNDBC.dbname.*.y0001.A001 -

NEWNAME newcat.DSNDBC.dbname.*.y0001.A001
ALTER oldcat.DSNDBD.dbname.*.y0001.A001 -

NEWNAME newcat.DSNDBD.dbname.*.y0001.A001

4. Start the table spaces and index spaces, using the following command:
-START DATABASE(dbname) SPACENAM(*)

5. Verify the success of the procedure by entering the following command:
-DISPLAY DATABASE(dbname)

6. Using SQL, verify that you can access the data.

Renaming the data sets can be done while DB2 is down. They are included here
because the names must be generated for each database, table space, and index
space that is to change.

Changing DB2-managed objects to use the new qualifier
You can keep an existing DB2 storage group and change only the high-level
qualifier.

To change DB2- managed objects:
1. Remove all table spaces and index spaces from the storage group by converting

the data sets temporarily to user-managed data sets.
a. Stop each database that has data sets you are going to convert, using the

following command:

138 Administration Guide



-STOP DATABASE(dbname) SPACENAM(*)

Restriction: Some databases must be explicitly stopped to allow any
alterations. For these databases, use the following command:
-STOP DATABASE(dbname)

b. Convert to user-managed data sets with the USING VCAT clause of the
SQL ALTER TABLESPACE and ALTER INDEX statements, as shown in the
following statements. Use the new catalog name for VCAT.
ALTER TABLESPACE dbname.tsname

USING VCAT newcat;

ALTER INDEX creator.index-name
USING VCAT newcat;

2. Drop the storage group, using the following statement:
DROP STOGROUP stogroup-name;

The DROP succeeds only if all the objects that referenced this STOGROUP are
dropped or converted to user-managed (USING VCAT clause).

3. Re-create the storage group using the correct volumes and the new alias, using
the following statement:
CREATE STOGROUP stogroup-name

VOLUMES (VOL1,VOL2)
VCAT newcat;

4. Using IDCAMS, rename the data sets for the index spaces and table spaces to
use the new high-level qualifier. Also, be sure to specify the instance qualifier
of your data set, y, which can be either I or J:
ALTER oldcat.DSNDBC.dbname.*.y0001.A001 -

NEWNAME newcat.DSNDBC.dbname.*.y0001.A001
ALTER oldcat.DSNDBD.dbname.*.y0001.A001 -

NEWNAME newcat.DSNDBD.dbname.*.y0001.A001

If your table space or index space spans more than one data set, be sure to
rename those data sets also.

5. Convert the data sets back to DB2-managed data sets by using the new DB2
storage group. Use the following SQL ALTER TABLESPACE and ALTER
INDEX statements:
ALTER TABLESPACE dbname.tsname

USING STOGROUP stogroup-name
PRIQTY priqty
SECQTY secqty;

ALTER INDEX creator.index-name
USING STOGROUP stogroup-name
PRIQTY priqty
SECQTY secqty;

If you specify USING STOGROUP without specifying the PRIQTY and
SECQTY clauses, DB2 uses the default values.

6. Start each database, using the following command:
-START DATABASE(dbname) SPACENAM(*)

7. Verify the success of the procedure by entering the following command:
-DISPLAY DATABASE(dbname)

8. Using SQL, verify that you can access the data.

Tools for moving DB2 data
Moving DB2 data can be complicated. Fortunately, several tools exist that can help
to simplify the process.

Chapter 3. Altering your database design 139

|
|

|



Important: Before copying any DB2 data, resolve any data that is in an
inconsistent state. Use the DISPLAY DATABASE command to determine whether
any inconsistent state exists, and the RECOVER INDOUBT command or the
RECOVER utility to resolve the inconsistency. The copying process generally loses
all traces of an inconsistency except the problems that result.

Although DB2 data sets are created using VSAM access method services, they are
specially formatted for DB2 and cannot be processed by services that use VSAM
record processing. They can be processed by VSAM utilities that use
control-interval (CI) processing and, if they are linear data sets (LDSs), also by
utilities that recognize the LDS type.

Furthermore, copying the data might not be enough. Some operations require
copying DB2 object definitions. And when copying from one subsystem to another,
you must consider internal values that appear in the DB2 catalog and the log, for
example, the DB2 object identifiers (OBIDs) and log relative byte addresses (RBAs).

The following tools can help to simplify the operations:
v The REORG and LOAD utilities move data sets from one disk device type to

another within the same DB2 subsystem.
The INCURSOR option of the LOAD utility allows you to specify a cursor to
select data from another DB2 table or tables, which can be on a remote DB2
system. Use the EXEC SQL utility control statement to declare the cursor before
executing the LOAD utility. This option uses the DB2 UDB family cross-loader
function.

v The COPY and RECOVER utilities allow you to recover an image copy of a DB2
table space or index space onto another disk device within the same subsystem.

v The UNLOAD or REORG UNLOAD EXTERNAL utility unloads a DB2 table
into a sequential file and generates statements to allow the LOAD utility to load
it elsewhere.

v The DSN1COPY utility copies the data set for a table space or index space to
another data set. It can also translate the object identifiers and reset the log
RBAs in the target data set. When you use the OBIDXLAT option of DSN1COPY
to move objects from one system to another, use REPAIR VERSIONS to update
the version information in the catalog and directory for the target table space or
index.

You might also want to use the following tools to move DB2 data:
v The DB2 DataPropagator is a licensed program that can extract data from DB2

tables, DL/I databases, VSAM files, and sequential files.
v DFSMS, which contains the following functional components:

– Data Set Services (DFSMSdss)
Use DFSMSdss to copy data between disk devices. For instructions, see Data
Facility Data Set Services: User’s Guide and Reference. You can use online panels
to control this, through the Interactive Storage Management Facility (ISMF)
that is available with DFSMS; for instructions, refer to z/OS DFSMSdfp Storage
Administration Reference.

– Data Facility Product (DFSMSdfp™)
This is a prerequisite for DB2. You can use access method services EXPORT
and IMPORT commands with DB2 data sets when control interval processing
(CIMODE) is used. For instructions on EXPORT and IMPORT, see
DFSMS/MVS: Access Method Services for the Integrated Catalog.

– Hierarchical Storage Manager (DFSMShsm)

140 Administration Guide



With the MIGRATE, HMIGRATE, or HRECALL commands, which can specify
specific data set names, you can move data sets from one disk device type to
another within the same DB2 subsystem. Do not migrate the DB2 directory,
DB2 catalog, and the work file database (DSNDB07). Do not migrate any data
sets that are in use frequently, such as the bootstrap data set and the active
log. With the MIGRATE VOLUME command, you can move an entire disk
volume from one device type to another. The program can be controlled using
online panels, through the Interactive Storage Management Facility (ISMF).
For instructions, see z/OS DFSMShsm Managing Your Own Data.

The following table shows which tools are applicable to specific operations.

Table 28. Tools applicable to data-moving operations

Tool Moving a data set Copying a database
Copying an entire
subsystem

REORG and LOAD Yes Yes No

UNLOAD Yes No No

COPY and RECOVER Yes No No

DSNTIAUL Yes Yes No

DSN1COPY Yes Yes No

DataRefresher or DXT™ Yes Yes No

DFSMSdss Yes No Yes

DFSMSdfp Yes No Yes

DFSMShsm Yes No No

Some of the listed tools rebuild the table space and index space data sets, and they
therefore generally require longer to execute than the tools that merely copy them.
The tools that rebuild are REORG and LOAD, RECOVER and REBUILD,
DSNTIAUL, and DataRefresher. The tools that merely copy data sets are
DSN1COPY, DFSMSdss, DFSMSdfp EXPORT and IMPORT, and DFSMShsm.

DSN1COPY is fairly efficient in use, but somewhat complex to set up. It requires a
separate job step to allocate the target data sets, one job step for each data set to
copy the data, and a step to delete or rename the source data sets. DFSMSdss,
DFSMSdfp, and DFSMShsm all simplify the job setup significantly.

Although less efficient in execution, RECOVER is easy to set up if image copies
and recover jobs already exist. You might only need to redefine the data sets
involved and recover the objects as usual.

Moving DB2 data
DB2 provides several tools and options to make moving data easier.

You can move data within DB2 in several ways: copying a database, copying a
DB2 subsystem, or by moving data sets within a particular DB2 subsystem.

Copying a relational database

Copying your relational database involves not only copying data, but also finding
or generating, and executing, SQL statements to create storage groups, databases,
table spaces, tables, indexes, views, synonyms, and aliases.

Chapter 3. Altering your database design 141

|



You can copy a database by using the DSN1COPY utility. As with the other
operations, DSN1COPY is likely to execute faster than the other applicable tools. It
copies directly from one data set to another, while the other tools extract input for
LOAD, which then loads table spaces and builds indexes. But again, DSN1COPY is
more difficult to set up. In particular, you must know the internal DB2 object
identifiers, which other tools translate automatically.

Copying an entire DB2 subsystem

Copying a DB2 subsystem from one z/OS system to another involves the
following:
v All the user data and object definitions
v The DB2 system data sets:

– The log
– The bootstrap data set
– Image copy data sets
– The DB2 catalog
– The integrated catalog that records all the DB2 data sets

Although you can have two DB2 subsystems on the same z/OS system, one cannot
be a copy of the other.

Only two of the tools listed are applicable: DFSMSdss DUMP and RESTORE, and
DFSMSdfp EXPORT and IMPORT.

The tasks and tools associated with moving data within your DB2 subsystem
include:
v “Tools for moving DB2 data” on page 139
v “Moving a DB2 data set”
Related information

DFSMSdss and DFSMSdfp programs

Moving a DB2 data set
You can move DB2 data by using the RECOVER, REORG, or DSN1COPY utilities,
or by using non-DB2 facilities, such as DFSMSdss.

Both the DB2 utilities and the non-DB2 tools can be used while DB2 is running,
but the space to be moved should be stopped to prevent users from accessing it.

If you use storage groups, then you can change the storage group definition to
include the new volumes.

The following procedures differ mainly in that the first procedure assumes that
you do not want to reorganize or recover the data. Generally, this means that the
first procedure is faster. In all cases, make sure that there is enough space on the
target volume to accommodate the data set.

Choose between the following methods for moving data sets:
v “Moving data without REORG or RECOVER” on page 143
v “Moving DB2-managed data with REORG, RECOVER, or REBUILD” on page

143

142 Administration Guide

http://www-1.ibm.com/servers/eserver/zseries/zos/bkserv/


Moving data without REORG or RECOVER
You can move data that you do not want to reorganize or recover.

To move data without using the REORG or RECOVER utilities, complete the
following steps:
1. Stop the database by issuing a STOP DATABASE command.

-STOP DATABASE(dbname) SPACENAM(*)

2. Move the data, using DSN1COPY or a non-DB2 facility.
3. Issue the ALTER INDEX or ALTER TABLESPACE statement to use the new

integrated catalog facility catalog name or DB2 storage group name.
4. Start the database by issuing a START DATABASE command.

-START DATABASE(dbname) SPACENAM(*)

Moving DB2-managed data with REORG, RECOVER, or REBUILD
You can create a storage group (possibly using a new catalog alias) and move the
data to that new storage group.

To create a new storage group that uses the correct volumes and the new alias:
1. Issue the CREATE STOGROUP statement. For example:

CREATE STOGROUP stogroup-name
VOLUMES (VOL1,VOL2)
VCAT (newcat);

2. Prevent access to the data sets you are going to move.
-STOP DATABASE(dbname) SPACENAM(*)

3. Enter the ALTER TABLESPACE and ALTER INDEX SQL statements to use the
new storage group name.
ALTER TABLESPACE dbname.tsname

USING STOGROUP stogroup-name;

ALTER INDEX creator.index-name
USING STOGROUP stogroup-name;

4. Using IDCAMS, rename the data sets for the index spaces and table spaces to
use the new high-level qualifier. Also, be sure to specify the instance qualifier
of your data set, y, which can be either I or J. If you have run REORG with
SHRLEVEL CHANGE or SHRLEVEL REFERENCE on any table spaces or index
spaces, the fifth-level qualifier might be J0001.

ALTER oldcat.DSNDBC.dbname.*.y0001.A001 -
NEWNAME newcat.DSNDBC.dbname.*.y0001.A001

ALTER oldcat.DSNDBD.dbname.*.y0001.A001 -
NEWNAME newcat.DSNDBD.dbname.*.y0001.A001

5. Start the database for utility processing only.
-START DATABASE(dbname) SPACENAM(*) ACCESS(UT)

6. Use the REORG utility or the RECOVER utility on the table space or index
space, or use the REBUILD utility on the index space.

7. Start the database.
-START DATABASE(dbname) SPACENAM(*)

Scenario: Moving from index-controlled to table-controlled
partitioning

You can change an existing index-controlled partitioned table space to a
table-controlled partitioned table space and implement a DPSI.

Chapter 3. Altering your database design 143



Assume that you have a very large transaction table named TRANS that
contains one row for each transaction. The table includes the following columns:
v ACCTID, which is the customer account ID
v POSTED, which holds the date of the transaction

The table space that contains TRANS is divided into 13 partitions, each of which
contains one month of data. Two existing indexes are defined as follows:
v A partitioning index is defined on the transaction date by the following CREATE

INDEX statement with a PARTITION ENDING AT clause:
CREATE INDEX IX1 ON TRANS(POSTED)

CLUSTER
(PARTITION 1 ENDING AT ('01/31/2002'),
PARTITION 2 ENDING AT ('02/28/2002'),
...
PARTITION 13 ENDING AT ('01/31/2003'));

The partitioning index is the clustering index, and the data rows in the table are
in order by the transaction date. The partitioning index controls the partitioning
of the data in the table space.

v A nonpartitioning index is defined on the customer account ID:
CREATE INDEX IX2 ON TRANS(ACCTID);

DB2 usually accesses the transaction table through the customer account ID by
using the nonpartitioning index IX2. The partitioning index IX1 is not used for
data access and is wasting space. In addition, you have a critical requirement for
availability on the table, and you want to be able to run an online REORG job at
the partition level with minimal disruption to data availability.

To save space and to facilitate reorganization of the table space, you can drop the
partitioning index IX1, and you can replace the access index IX2 with a partitioned
clustering index that matches the 13 data partitions in the table.

Issue the following statements:
DROP INDEX IX1;
CREATE INDEX IX3 ON TRANS(ACCTID)

PARTITIONED CLUSTER;
COMMIT;

DROP INDEX IX2;
COMMIT;

What happens:

v When you drop the partitioning index IX1, DB2 converts the table space from
index-controlled partitioning to table-controlled partitioning. DB2 changes the
high limit key value that was originally specified to the highest value for the key
column.

v When you create the index IX3, DB2 creates a partitioned index with 13
partitions that match the 13 data partitions in the table. Each index partition
contains the account numbers for the transactions during that month, and those
account numbers are ordered within each partition. For example, partition 11 of
the index matches the table partition that contains the transactions for
November, 2002, and it contains the ordered account numbers of those
transactions.

144 Administration Guide



v You drop the nonpartitioning index IX2 because it has been replaced by IX3.

You can now run an online REORG at the partition level with minimal impact on
availability. For example:
REORG TABLESPACE dbname.tsname PART 11

SHRLEVEL CHANGE

Running this utility reorganizes the data for partition 11 of dbname.tsname. The data
rows are ordered within each partition to match the ordering of the clustering
index.

Recommendations:

v Drop a partitioning index if it is used only to define partitions. When you drop
a partitioning index, DB2 automatically converts the associated index-controlled
partitioned table space to a table-controlled partitioned table space.

v You can create a data-partitioned secondary index (DPSI) as the clustering index
so that the data rows are ordered within each partition of the table space to
match the ordering of the keys of the DPSI.

v Create any new tables in a partitioned table space by using the
PARTITION BY clause and the PARTITION ENDING AT clause in the CREATE

TABLE statement to specify the partitioning key and the limit key values.

Chapter 3. Altering your database design 145



146 Administration Guide



Part 2. Security and auditing

© Copyright IBM Corp. 1982, 2009 147



148 Administration Guide



Chapter 4. Getting started with DB2 security

DB2 security refers to the protection of sensitive data, operation systems, and other
resources that are critical to your business by controlling access to DB2 objects,
subsystems, and other assets.

DB2 security is set through a security plan, implemented through privilege and
authority management, and reinforced through the audit of accesses to protected
data. A security plan defines the security objectives of your organization and
specifies the policies and techniques that you use to meet these objectives. A
security audit traces all data access and determines whether your security plan
works as designed and implemented.

If you are new to DB2 security, skim through the succeeding topics for a brief
overview of the techniques that you can use to manage access to your DB2 and
protect your data before reading the scenario.

DB2 security solutions
With each new release, DB2 gets bigger, faster, and more secure.

Over the years, DB2 recognizes and addresses the following security problems:
v Privilege theft or mismanagement
v Application or application server tampering
v Data or log tampering
v Storage media theft
v Unauthorized access to objects

DB2 offers the following security solutions to address the problems:
v Authentication
v Authorization
v Data integrity
v Confidentiality
v System integrity
v Audit

What’s new in DB2 Version 9.1 security?
DB2 Version 9.1 provides critical enhancements to security and auditing. These
enhancements strengthen DB2 security in the z/OS environment.

Trusted contexts

A trusted context is a database entity based on a system authorization ID and a set
of connection trust attributes. You can create and use a trusted context to establish
a trusted connection between DB2 and an external entity, such as a middleware
server. When a trusted connection is established, you can reuse the authorization,
switch users of the connection, and manage objects by other users without the
database server needing to authenticate the IDs; these authorization IDs already

© Copyright IBM Corp. 1982, 2009 149

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|
|
|
|
|



acquire the necessary database privileges that are associated with the specific
trusted context.

Roles

A role is a database entity, available only in a trusted context, that groups together
one or more privileges. A role can own database objects which helps eliminate the
need for individual users to own and control database objects.

You can assign a role to an individual user or a group of users by defining a
trusted context. A role thus offers a mechanism other than authorization IDs
through which you can assign privileges and authorities. As a result, it provides
the flexibility of authorization methods and helps simplify the management of
authentication.

Improved auditing

The flexibility of granting dynamic SQL privileges to roles provides improved
auditing controls. Other improvements include new filtering keywords, such as the
ROLE keyword, to provide ″exclude″ trace-filtering capabilities. In addition,
application servers can provide the non-RACF user IDs to be included in both DB2
accounting and RACF audit ICTX records.

Secure Socket Layer support

DB2 exploits the z/OS Application Transparent - Transport Layer Security (AT-TLS)
function in the TCP/IP stack and provides TLS for DB2 clients that require secure
connections. AT-TLS performs TLS on behalf of the application by invoking the
z/OS system Secure Socket Layer (SSL) in the TCP transport layer of the stack.

The DB2 SSL support provides protected connections between DB2 servers. With
SSL support, a DB2 server can optionally listen on a secondary secure port for
inbound SSL connections. Similarly, a DB2 requester can optionally send encrypted
data across the network through an SSL connection to the server.

Protection against denial-of-service attacks

In a denial-of-service attack, an attacker attempts to prevent legitimate users from
accessing information or services. By targeting a DB2 server and its network
connection, an attacker might be able to prevent you from accessing data or other
services that the server provides. If this situation occurs, the DB2 server guards
against the attacks and provide a more secure operating environment for legitimate
users.
Related concepts

“Trusted contexts” on page 311
“Roles in a trusted context” on page 166
“AT-TLS configuration” on page 341
Related tasks

“Managing denial-of-service attacks” on page 295

DB2 data access control
You can enable or disable data access control within DB2.

150 Administration Guide

|
|

|

|
|
|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|

|

|

|

|

|



Access to data can originate from a user through an interactive terminal session, an
application program that is running in batch mode, or an IMS or CICS transaction.
Given the variety of access originators, the term process is used to represent all
access to data. For example, within a DB2 subsystem, a process can be a primary
authorization ID, one or more secondary IDs, a role, or an SQL ID.

Aprocess can gain access to DB2 data through several routines. As shown in the
following diagram, DB2 provides different ways for you to control access from all
but the data set protection route.

One of the ways that DB2 controls access to data is by using authorization IDs or
roles. DB2 relies on IDs or roles to determine whether to allow or prohibit certain
processes. DB2 assigns privileges and authorities to IDs or roles so that the owning
users can take actions on objects. In this sense, it is an ID or a role, not a user, that
owns an object. In other words, DB2 does not base access control on a specific user
or person who need access. For example, if you allow other users to use your IDs,
DB2 recognizes only the IDs, not the people or programs that use them.

ID-based access control within DB2
DB2 provides a wide range of granularity when you grant privileges to an ID
within DB2. You can grant privileges and authorities to groups, secondary IDs, or
to roles.

For example, you could, separately and specifically, grant to an ID the privilege to
retrieve data from the table, to insert rows, to delete rows, or to update specific
columns. By granting or not granting privileges on views of the table, you can
specify exactly what an ID can do to the table, down to the granularity of specific
fields. You can also grant to an ID specific privileges on databases, plans, packages,
and the entire DB2 subsystem. If you grant or revoke privileges on a procedure or
procedure package, all versions of that procedure or procedure package have those
privileges.

DB2 also defines sets of related privileges, called administrative authorities. When
you grant one of the administrative authorities to a person’s ID, that person has all
of the privileges that are associated with that administrative authority. You can
efficiently grant many privileges by granting one administrative authority.

Figure 14. DB2 data access control

Chapter 4. Getting started with DB2 security 151

|

|
|
|
|
|
|
|
|



You can also efficiently grant multiple privileges by granting the privilege to
execute an application plan or a package. When an ID executes a plan or package,
the ID implicitly uses all of the privileges that the owner needed when binding the
plan or package. Therefore, granting to an ID the privilege to execute a plan or
package can provide a finely detailed set of privileges and can eliminate the need
to grant other privileges separately.

Example: Assume that an application plan issues the INSERT and SELECT
statements on several tables. You need to grant INSERT and SELECT privileges
only to the plan owner. However, any authorization ID that is later granted the
EXECUTE privilege on the plan can perform those same INSERT and SELECT
statements by executing the plan. You do not need to explicitly grant the INSERT
and SELECT privileges to the ID.

Recommendation: Instead of granting privileges to many primary authorization
IDs, consider associating each of those primary IDs with the same secondary ID or
a role if running in a trusted context. Then grant the privileges to the secondary ID
or role. You can associate a primary ID with one or more secondary IDs or roles
when the primary ID gains access to the DB2 subsystem. DB2 makes the
association within an exit routine. The assignment of privileges to the secondary ID
or role is controlled entirely within DB2.

Role-based access control within DB2
A privilege, which is assigned to an ID, enables the user of that ID to execute
particular types of SQL statements or to access the objects of another user. A role
groups the privileges together so that they can be simultaneously granted to and
revoked from multiple users.

RACF does not manage roles. A role is defined through the SQL CREATE ROLE
statement and a trusted connection. A role cannot be used outside of a trusted
context unless the user in a role grants privileges to an ID.

Ownership-based access control within DB2
Ownership of an object carries with it a set of related privileges on the object. DB2
provides separate controls for creation and ownership of objects.

When you create an object, you can grant the ownership of the object to your ID,
another ID, or the role that is assigned to the ID.

Access control through multilevel security
Multilevel security allows you to classify objects and users with security labels that
are based on hierarchical security levels and non-hierarchical security categories.

Multilevel security prevents unauthorized users from accessing information at a
higher classification than their authorization, and it prevents users from
declassifying information. Using multilevel security with row-level granularity, you
can define security for DB2 objects and perform security checks, including
row-level security checks. Row-level security checks allow you to control which
users have authorization to view, modify, or perform other actions on specific rows
of data.

Access control through exit routines
You can control access to DB2 by using a DB2-supplied exit routine or an exit
routine that you write.

152 Administration Guide

|

|
|
|
|

|
|
|



If your installation uses one of the access control authorization exit routines, you
can use it to control authorization and authentication checking, instead of using
other techniques and methods.

DB2 subsystem access control
You can control whether a process can gain access to a specific DB2 subsystem
from outside of DB2. A common approach is to grant access through RACF or a
similar security system.

A RACF system provides several advantages. For example, you can use RACF for
the following objectives:
v Identify and verify the identifier that is associated with a process
v Connect those identifiers to RACF group names
v Log and report unauthorized attempts to access protected resources

Profiles for access to DB2 from various environments and DB2 address spaces are
defined as resources to RACF. Each request to access DB2 is associated with an ID.
RACF determines whether the ID is authorized for DB2 resources. If the ID is
authorized, RACF permits access to DB2.

You can also consider using the security capabilities of IMS or CICS to manage
access to DB2:
v IMS terminal security lets you limit the entry of a transaction code to a particular

logical terminal (LTERM) or group of LTERMs in the system. To protect a
particular program, you can authorize a transaction code that is to be entered
only from any terminal on a list of LTERMs. Alternatively, you can associate
each LTERM with a list of the transaction codes that a user can enter from that
LTERM. IMS then passes the validated LTERM name to DB2 as the initial
primary authorization ID

v CICS transaction code security works with RACF to control the transactions and
programs that can access DB2. Within DB2, you can use the ENABLE and
DISABLE options of the bind operation to limit access to specific CICS
subsystems.

Managing access requests from local applications
If you request access to a local DB2 subsystem, your request is often subject to
several checks before you are granted access.

If you run DB2 under TSO and use the TSO logon ID as the DB2 primary
authorization ID, TSO verifies your ID when you log on. When you gain access to
DB2, you can use a self-written or IBM-supplied DSN3@ATH exit routine that is
connected to DB2 to perform the following actions:
v Check the authorization ID again
v Change the authorization ID
v Associate the authorization ID with secondary IDs

After these actions are performed, the authorization ID can use the services of an
external security system again.

Managing access requests from remote applications
You can require remote users to pass several access checks before they reach DB2.
You can use RACF or a similar security subsystem to control access from a remote
location.

Chapter 4. Getting started with DB2 security 153



While controlling access from a remote locations, RACF can do the following:
v Verify an ID that is associated with a remote attachment request and check the

ID with a password
v Generate PassTickets on the sending side. PassTickets can be used instead of

passwords. A PassTicket lets a user gain access to a host system without sending
the RACF password across the network.

v Verify a Kerberos ticket if your distributed environment uses Kerberos to
manage user access and perform user authentication

You can also control access authentication by using the DB2 communications database
(CDB). The CDB is a set of tables in the DB2 catalog that are used to establish
conversations with remote database management systems. The CDB can translate
IDs before it sends them to the remote system.

You can use the RACF DSNR general resource class for DB2 for access
authentication. With RACF DSNR, you can control access to the DB2 server by the
IDs that are defined to the ssnm.DIST profile with READ. In addition, you can use
the port of entry (POE) checking by RACF and the z/OS communications server to
protect against unauthorized remote connections to DB2.

Data set protection
The data in a DB2 subsystem is contained in data sets. The data sets can be
accessed without going through DB2. If your data is sensitive, you need to control
all routes to DB2 data that DB2 does not control.

RACF for data protection
If you use RACF or a similar security system to control access to DB2, the most
effective way is to control access to your data sets.

If you want to use RACF for data set protection outside of DB2, define RACF
profiles for data sets, and permit access to the data sets for certain DB2 IDs.

Data encryption
If your data is very sensitive, consider encrypting the data. Encryption protects
against unauthorized access to data sets and to backup copies outside of DB2.

You have the following encryption options for protecting sensitive data:
v Built-in data encryption functions
v DB2 support for the Secure Socket Layer (SSL) protocol through the z/OS

Communications Server IP Application Transparent Transport Layer (AT-TLS)
service

v DB2 edit procedures or field procedures, which can use the Integrated
Cryptographic Service Facility (ICSF)

v IBM Data Encryption for IMS and DB2 Databases tool
v IBM Encryption Facility for z/OS
v IBM System Storage™ TS1120 encryption solution

You can consider compressing your data sets before encrypting the data. Data
compression is not a substitute for encryption. In some cases, the compression
method does not actually shorten the data. In those cases, the data is left
uncompressed and readable. If you encrypt and compress your data, compress it

154 Administration Guide

|
|
|
|
|



first. After you obtain the maximum compression, encrypt the result. When you
retrieve your data, first decrypt the data. After the data is decrypted, decompress
the result.

Scenario: Securing data access at Spiffy Computer
This scenario describes a simple approach to secure local and remote access to the
sensitive data of employees, payroll operations, and payroll management at Spiffy
Computer. It shows how to enforce a security plan by using authorization IDs,
privileges and authorities, and the audit trace.

You should base your security plan, techniques, and procedures on your actual
security objectives; do not view this sample security plan as an exact model for
your security needs. Instead, use it to understand various possibilities and address
problem areas that you might encounter when you implement your security plan.

Determining security objectives
An important step to defining and implementing an effective security plan is to
determine your security objectives.

Suppose that the Spiffy Computer Company management team determines the
following security objectives:
v Managers can see, but not update, all of the employee data for members of their

own departments.
v Managers of managers can see all of the data for employees of departments that

report to them.
v The employee table resides at a central location. Managers at remote locations

can query the data in the table.
v The payroll operations department makes changes to the employee table.

Members of the payroll operations department can update any column of the
employee table except for the salary, bonus, and commission columns.

v Members of payroll operations can update any row except for rows that are for
members of their own department. Because changes to the table are made only
from a central location, distributed access does not affect payroll operations.

v Changes to the salary, bonus, and commission columns are made through a
process that involves the payroll update table. When an employee’s
compensation changes, a member of the payroll operations department can
insert rows in the payroll update table. For example, a member of the payroll
operations department might insert a row in the compensation table that lists an
employee ID and an updated salary. Next, the payroll management group can
verify inserted rows and transfer the changes to the employee table.

v No one else can see the employee data. The security plan cannot fully achieve
this objective because some ID must occasionally exercise SYSADM authority.
While exercising SYSADM authority, an ID can retrieve any data in the system.
The security plan uses the trace facility to monitor the use of that power.

Securing manager access to employee data
As a security measurement, the Spiffy Computer Company sets clear restrictions
on how its managers can access employee data.

Specifically, it imposes the following security restrictions on managers:
v Managers can retrieve, but not change, all information in the employee table for

members of their own departments.

Chapter 4. Getting started with DB2 security 155



v Managers of managers have the same privileges for their own departments and
for the departments that directly report to them.

Creating views of employee data
The Spiffy security planners decide to use views for implementing the restrictions
on managers’ access to employee data.

To create a view of employee data for every employee that reports to a manager,
the Spiffy security planners perform the following steps:
1. Add a column that contains manager IDs to DSN8910.DEPT, as shown in the

following statement:
ALTER TABLE DSN8910.DEPT

ADD MGRID CHAR(8) FOR SBCS DATA NOT NULL WITH DEFAULT;

2. Create a view that selects employee information about employees that work for
a given manager, as shown in the following statement:
CREATE VIEW DEPTMGR AS

SELECT * FROM DSN8910.EMP, DSN8910.DEPT
WHERE WORKDEPT = DEPTNO
AND MGRID = USER;

3. Ensure that every manager has the SELECT privilege on the view.

Granting managers the SELECT privilege
The security planners for Spiffy Computer Company can take an ″individual″ or
″functional″ approach when they grant the SELECT privilege on a view to
managers.

With an individual approach, they can grant privileges to individual IDs and
revoke them if the user of the ID leaves the company or transfers to another
position. With a functional approach, they can create RACF groups, and grant
privileges to the group IDs, with the intention of never revoking them. When an
individual ID needs those privileges, connect that ID to the group; disconnect the
ID when its user leaves or transfers.

The Spiffy security planners know that the functional approach is usually more
convenient in the following situations:
v Each function, such as the manager function, requires many different privileges.

When functional privileges are revoked from one user, they must be granted to
another user.

v Several users need the same set of privileges.
v The privileges are given with the grant option, or the privileges let users create

objects that must persist after their original owners leave or transfer. In both
cases, revoking the privileges might not be appropriate. The revokes cascade to
other users. To change ownership, you might need to drop objects and re-create
them.

Some of the Spiffy requirements for securing manager access suggest the functional
approach. However, in this case, the function needs only one privilege. The
privilege does not carry the grant option, and the privilege does not allow new
objects to be created.

Therefore, the Spiffy security planners choose the individual approach, and plan to
re-examine their decision later. Spiffy security planners grant all managers the
SELECT privilege on the views for their departments.

156 Administration Guide



Example: To grant the SELECT privilege on the DEPTMGR view to the manager
with ID EMP0060, the planners use the following GRANT statement:
GRANT SELECT ON DEPTMGR TO EMP0060;

Managing distributed access
Some managers must use views to query data in the central employee table from
remote locations. The security plan must ensure that this type of distributed access
is secure. The Spiffy security planners must implement a sound plan for
distributed access.

Planning for distributed access:

The Spiffy security plan needs to define how the managers can securely access
employee data in a distributed environment.

To secure distributed access to employee data, the Spiffy security planners must
address the following questions:
v Which IDs should hold privileges on which views?
v How do the central location and the remote locations divide security

responsibilities for IDs?

The Spiffy security planners answer those questions with the following decisions:
v IDs that are managed at the central location hold privileges on views for

departments that are at remote locations. For example, the ID MGRD11 has the
SELECT privilege on the view DEPTD11.

v If the manager of Department D11 uses a remote system, the ID at that system
must be translated to MGRD11. Then a request is sent to the central system. All
other IDs are translated to CLERK before they are sent to the central system.

v The communications database (CDB) manages the translated IDs, like MGRD11.
v An ID from a remote system must be authenticated on any request to the central

system.

Implementing distributed access at the central server:

To enable distributed access to sensitive employee data, the Spiffy security plan
requires certain security measures to be implemented at the central server location.

The following actions must occur at the central server location:
v The central DB2 subsystem must authenticate every incoming ID with RACF.
v For SNA connections, the Spiffy security planners must include an entry in table

SYSIBM.LUNAMES in the CDB; the entry in the LUNAME column identifies the
LU name of every remote location. The entry must specify that connections must
be verified.
Example: The following table shows an entry in SYSIBM.LUNAMES for
LUREMOTE.

Table 29. The SYSIBM.LUNAMES table at the central location

LUNAME USERNAMES SECURITY_IN ENCRYPTPSWDS

LUREMOTE blank V N

The value of V for SECURITY_IN indicates that incoming remote connections
must include verification. The value of N for ENCRYPTPSWDS indicates that
passwords are not in internal RACF encrypted format.

Chapter 4. Getting started with DB2 security 157



The security plan treats all remote locations alike, so it does not require
encrypted passwords. The option to require encrypted passwords is available
only between two DB2 subsystems that use SNA connections.

v For TCP/IP connections, the Spiffy security planners must set the TCP/IP
ALREADY VERIFIED field of installation panel DSNTIP5 to NO. This setting
ensures that the incoming requests that use TCP/IP are not accepted without
authentication.

v The Spiffy security planners must grant all privileges and authorities that are
required by the manager of Department D11 to the ID, MGRD11. The security
planners must grant similar privileges to IDs that correspond to the remaining
managers.

Implementing distributed access at remote locations:

To enable distributed access to sensitive employee data, the Spiffy security plan
requires certain security measures to be implemented at the remote locations.

The following actions must occur at the remote locations to enable distributed
access for the Spiffy security plan:
v For SNA connections, the Spiffy security planners must include an entry in table

SYSIBM.LUNAMES for the LU name of the central location. The entry must
specify an outbound ID translation for attachment requests to that location.
Example: The following table shows an entry in SYSIBM.LUNAMES for
LUCENTRAL.

Table 30. The SYSIBM.LUNAMES table at the remote location

LUNAME USERNAMES SECURITY_OUT

LUCENTRAL O P

The value of O for USERNAMES indicates that translation checking is
performed on outbound IDs, but not on inbound IDs. The value of P for
SECURITY_OUT indicates that outbound connection requests contain a user
password and a RACF PassTicket.

v For TCP/IP connections, the Spiffy security planners must include an entry in
table SYSIBM.IPNAMES for the LU name that is used by the central location.
The content of the LUNAME column is used to generate RACF PassTickets. The
entry must specify outbound ID translation for requests to that location.
Example: The following table shows an entry in SYSIBM.IPNAMES for
LUCENTRAL.

Table 31. The SYSIBM.IPNAMES table at the remote location

LINKNAME USERNAMES SECURITY_OUT IPADDR

LUCENTRAL R central.vnet.ibm.com

v The Spiffy security planners must include entries in table SYSIBM.USERNAMES
to translate outbound IDs.
Example: The following table shows two entries in SYSIBM.USERNAMES.

Table 32. The SYSIBM.USERNAMES table at the remote location

TYPE AUTHID LINKNAME NEWAUTHID

O MEL1234 LUCENTRAL MGRD11

O blank LUCENTRAL CLERK

158 Administration Guide



MEL1234 is translated to MGRD11 before it is sent to the LU that is specified in
the LINKNAME column. All other IDs are translated to CLERK before they are
sent to that LU.

Exception: For a product other than DB2 for z/OS, the actions at the remote
location might be different. If you use a different product, check the documentation
for that product. The remote product must satisfy the requirements that are
imposed by the central subsystem.

Auditing manager access
The Spiffy payroll data is extremely sensitive. The security plan requires the audit
trace to be automatically started for all classes whenever DB2 is started.

To ensure that an audit record exists for every access to the employee table, the
Spiffy security planners create the employee table with AUDIT ALL. Every week,
the security planners scan the records and determine the number of accesses by
each manager.

The report highlights any number of accesses outside an expected range. The
Spiffy system operator makes a summary of the reports every two months, and
scans it for unusual patterns of access. A large number of accesses or an unusual
pattern might reveal use of a manager’s logon ID by an unauthorized employee.

Securing access to payroll operations and management
As a security measurement, the Spiffy security plan sets clear restrictions on how
members of the payroll operations department access and handle sensitive payroll
information.

The plan imposes the following restrictions on members of the payroll operations
department:
v Members of the payroll operations department can update any column of the

employee table except for SALARY, BONUS, and COMM.
v Members of payroll operations can update any row except for rows that are for

members of their own department.

Because changes to the table are made only from the central location, distributed
access does not affect payroll operations.

Creating views of payroll operations
The Spiffy security planners decide to use views for implementing the security
objectives for members of the payroll operations department.

The PAYDEPT view shows all the columns of the employee table except for job,
salary, bonus, and commission. The view does not show the rows for members of
the payroll operations department.

Example: The WORKDEPT value for the payroll operations department is P013.
The owner of the employee table uses the following statement to create the
PAYDEPT view:
CREATE VIEW PAYDEPT AS

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT,
PHONENO, HIREDATE, JOB, EDLEVEL, SEX, BIRTHDATE

FROM DSN8910.EMP
WHERE WORKDEPT<>'P013'

WITH CHECK OPTION;

Chapter 4. Getting started with DB2 security 159



The CHECK OPTION ensures that every row that is inserted or updated through
the view conforms to the definition of the view.

A second view, the PAYMGR view, gives Spiffy payroll managers access to any
record, including records for the members of the payroll operations department.

Example: The owner of the employee table uses the following statement to create
the PAYMGR view:
CREATE VIEW PAYMGR AS

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT,
PHONENO, HIREDATE, JOB, EDLEVEL, SEX, BIRTHDATE

FROM DSN8910.EMP
WITH CHECK OPTION;

Neither PAYDEPT nor PAYMGR provides access to compensation amounts. When
a row is inserted for a new employee, the compensation amounts remain null. An
update process can change these values at a later time. The owner of the employee
table creates, owns, and grants privileges on both views.

Securing compensation accounts with update tables
The Spiffy security plan does not allow members of payroll operations to update
compensation amounts directly. Instead, a separate payroll update table contains
the employee ID, job, salary, bonus, and commission.

Members of payroll operations make all job, salary, and bonus changes to the
payroll update table, except those for their own department. After they verify the
prospective changes, the managers of payroll operations run an application
program. The program reads the payroll update table and makes the
corresponding changes to the employee table. Only the payroll update program
has the privilege of updating job, salary, and bonus in the employee table.

The Spiffy Computer Company calculates commission amounts separately by using
a complicated formula. The formula considers the employee’s job, department,
years of service with the company, and responsibilities for various projects. The
formula is embedded in the commission program, which is run regularly to insert
new commission amounts in the payroll update table. The plan owner must have
the SELECT privilege on the employee table and other tables to run the
commission program.

Securing compensation updates with other measures
By separating potential salary changes into the payroll update table, the Spiffy
security planners allow payroll management to verify changes before they go into
effect.

At Spiffy Computer Company, managers check the changes against a written
change request that is signed by a required level of management. The Spiffy
security planners consider that check to be the most important control on salary
updates, but the plan also includes the following controls:
v The employee ID in the payroll update table is a foreign key column that refers

to the employee ID in the employee table. Enforcing the referential constraint
prevents an employee ID from being changed to an invalid value.

v The employee ID in the payroll update table is also a primary key for that table.
Therefore, the values in the employee ID column must be unique. Because of
enforced uniqueness, every change that is made for any one employee during a
given operating period must appear in the same row of the table. No two rows
can carry conflicting changes.

160 Administration Guide



The Spiffy security plan documents an allowable range of salaries, bonuses, and
commissions for each job level. To keep the values within the allowable ranges, the
Spiffy security planners use table check constraints for the salaries, bonuses, and
commissions. The planners use this approach because it is both simple and easy to
control.

In a similar situation, you might also consider the following ways to ensure that
updates and inserts stay within certain ranges:
v Keep the ranges in a separate DB2 table. To verify changes, query the payroll

update table and the table of ranges. Retrieve any rows for which the planned
update is outside the allowed range.

v Build the ranges into a validation routine. Apply the validation routine to the
payroll update table to automatically reject any insert or update that is outside
the allowed range.

v Embody the ranges in a view of the payroll table, using WITH CHECK
OPTION, and make all updates to the view. The ID that owns the employee
table also owns the view.

v Create a trigger to prevent salaries, bonuses, and commissions from increasing
by more than the percent that is allowed for each job level.

Granting privileges to payroll operations and management
The Spiffy security plan for the payroll operations department strongly suggests
the functional approach, for the following reasons:
v Payroll operations members require several privileges, including the SELECT,

INSERT, UPDATE, and DELETE privileges on the PAYDEPT view.
v Several members of the department require the same set of privileges.
v If members of the department leave, others are hired or transferred to replace

the departing members.

Therefore, the security plan calls for the creation of two RACF groups, with one for
the payroll operations and another for the payroll management.

Creating a RACF group for payroll operations:

The security plan calls for the creation of a RACF group for the payroll operations
department. DB2USER can define the group and retain its ownership, or it can
assign the ownership to an ID that is used by payroll management.

The owner of the employee table can grant the privileges that the group requires.
The owner grants all required privileges to the group ID, with the intent not to
revoke them. The primary IDs of new members of the department are connected to
the group ID, which becomes a secondary ID for each of them. The primary IDs of
members who leave the department are disconnected from the group ID.

Example: The following statement grants the SELECT, INSERT, UPDATE, and
DELETE privileges on the PAYDEPT view to the payroll operations group ID
PAYOPS:
GRANT SELECT, INSERT, UPDATE, DELETE ON PAYDEPT TO PAYOPS;

This statement grants the privileges without the GRANT OPTION to keep
members of payroll operations from granting privileges to other users.

Creating a RACF group for payroll management:

Chapter 4. Getting started with DB2 security 161



The payroll managers require different privileges and a different RACF group ID.
The Spiffy security planners add a RACF group for payroll managers and name it
PAYMGRS.

The security planners associate the payroll managers’ primary IDs with the
PAYMGRS secondary ID. Next, privileges on the PAYMGR view, the compensation
application, and the payroll update application are granted to PAYMGRS. The
payroll update application must have the appropriate privileges on the update
table.

Example: The following statement grants the SELECT, INSERT, UPDATE, and
DELETE privileges on the PAYMGR view to the payroll managers’ group ID
PAYMGRS:
GRANT SELECT, INSERT, UPDATE, DELETE ON PAYMGR TO PAYMGRS;

Example: The following statement grants the EXECUTE privilege on the
compensation application:
GRANT EXECUTE ON PLAN COMPENS TO PAYMGRS;

Auditing payroll operations and management
Like the employee table, you can create the payroll update table with the AUDIT
ALL option for auditing payroll operation and management activities.

The audit trace records the number of accesses by the payroll operations and
payroll management groups. The Spiffy security planners scan the reports of
payroll access for large numbers or unusual patterns of access.

Managing access privileges of other authorities
In addition to the privileges of managers, the payroll operations department, and
payroll management, the security plan considers the privileges of the following
roles:

Managing access by the DBADM authority
An ID with the DBADM authority on a database has many privileges on that
database and its tables. These privileges include the SELECT, INSERT, DELETE,
UPDATE, and ALTER statements on any table in the database, and the CREATE
and DROP statements on indexes for those tables.

For security reasons, the Spiffy security planners prefer not to grant all of the
privileges that come with DBADM authority on DSN8D91A. DSN8D91A is the
database that holds the employee table and the payroll update table.

The Spiffy security planners prefer to grant DBCTRL authority on the database
because granting DBCTRL authority does not expose as many security risks as
granting DBADM authority. DBCTRL authority allows an ID to support the
database without allowing the ID to retrieve or change the data in the tables.
However, database DSN8D91A contains several additional tables. These additional
tables require some of the privileges that are included in DBADM authority but
not included in DBCTRL authority.

The Spiffy security planners decide to compromise between the greater security of
granting DBCTRL authority and the greater flexibility of granting DBADM
authority. To balance the benefits of each authority, the Spiffy security planners

162 Administration Guide



create an administrative ID with some, but not all of the DBADM privileges. The
security plan calls for a RACF group ID with the following authorities and
privileges:
v DBCTRL authority over DSN8D81A
v The INDEX privilege on all tables in the database except the employee table and

the payroll update table
v The SELECT, INSERT, UPDATE, and DELETE privileges on certain tables,

excluding the employee table and the payroll update table

An ID with SYSADM authority grants the privileges to the group ID.

In a similar situation, you also might consider putting the employee table and the
payroll update table in a separate database. Then you can grant DBADM authority
on DSN8D91A, and grant DBCTRL authority on the database that contains the
employee table and the payroll update table.

Managing access by the SYSADM authority
An ID with SYSADM authority can access data from any table in the entire DB2
subsystem, including the employee table and the payroll update table. The Spiffy
security planners want to minimize the security risk that is associated with
granting SYSADM authority by granting the authority to as few users as possible.

The planners know that the subsystem might require SYSADM authority only for
certain tasks and only for relatively short periods. They also know that the
privileges that are associated with the SYSADM authority give an ID control over
all of the data in a subsystem.

To limit the number of users with SYSADM authority, the Spiffy security plan
grants the authority to DB2OWNER, the ID that is responsible for DB2 security.
That does not mean that only IDs that are connected to DB2OWNER can exercise
privileges that are associated with SYSADM authority. Instead, DB2OWNER can
grant privileges to a group, connect other IDs to the group as needed, and later
disconnect them.

The Spiffy security planners prefer to have multiple IDs with SYSCTRL authority
instead of multiple IDs with SYSADM authority. IDs with SYSCTRL authority can
exercise most of the SYSADM privileges and can assume much of the day-to-day
work. IDs with SYSCTRL authority cannot access data directly or run plans unless
the privileges for those actions are explicitly granted to them. However, they can
run utilities, examine the output data sets, and grant privileges that allow other
IDs to access data. Therefore, IDs with SYSCTRL authority can access some
sensitive data, but they cannot easily access the data. As part of the Spiffy security
plan, DB2OWNER grants SYSCTRL authority to selected IDs.

The Spiffy security planners also use ROLEs, RACF group IDs, and secondary IDs
to relieve the need to have SYSADM authority continuously available. SYSADM
grants the necessary privileges to a ROLE, RACF group ID, or secondary ID. IDs
that have this ROLE, RACF group ID, or secondary ID can then bind plans and
packages it owns.

Managing access by object owners
The Spiffy security plan must consider the ID that owns and grants privileges on
the tables, views, and programs. The ID that owns these objects has many implicit

Chapter 4. Getting started with DB2 security 163



privileges on the objects, including the SELECT and UPDATE privileges on the
employee table. The owner of the objects can also grant privileges on the objects to
other users.

The Spiffy security planners want to limit the number of IDs that have privileges
on the employee table and the payroll update table to the smallest convenient
value. To meet that objective, they decide that the owner of the employee table
should issue all of the CREATE VIEW and GRANT statements. They also decide to
have the owner of the employee table own the plans and packages that are
associated with employee data. The employee table owner implicitly has the
following privileges, which the plans and packages require:
v The owner of the payroll update program must have the SELECT privilege on

the payroll update table and the UPDATE privilege on the employee table.
v The owner of the commission program must have the UPDATE privilege on the

payroll update table and the SELECT privilege on the employee table.
v The owners of several other payroll programs must have the proper privileges to

do payroll processing, such as printing payroll checks, writing summary reports,
and so on.

To bind these plans and packages, an ID must have the BIND or BINDADD
privileges. The list of privileges that are required by the owner of the employee
table suggests the functional approach. The Spiffy security planners create a RACF
group for the owner of the employee table.

Managing access by other users
Users must be authorized to access the employee table or the payroll table.
Exceptions occur when any authorized user tries to access the tables.

The following users are authorized to access the employee and payroll tables:
v Department managers
v Members of the payroll operations department
v Payroll managers
v The payroll update program

The audit report lists each exception in full. Auditors check each exception to
determine whether it was a planned operation by the users with SYSADM or
DBADM authority, or the employee table owner.

The audit report also lists denials of access to the tables. Those denials represent
attempts by unauthorized IDs to use the tables. Some are possibly accidental;
others can be attempts to violate the security system.

After running the periodic reports, the security planners archive the audit records.
The archives provide a complete audit trail of access to the employee data through
DB2.

164 Administration Guide



Chapter 5. Managing access through authorization IDs or
roles

DB2 controls access to its objects and data through authorization identifiers (IDs)
or roles and the privileges that are assigned to them. Each privilege and its
associated authorities enable you to take specific actions on an object. Therefore,
you can manage access to DB2 objects through authorization IDs or roles.

As the following diagram shows, you can grant privileges and authorities to IDs or
roles and control access to data in four primary ways:

1. Granting and revoking explicit privileges through authorization IDs or roles.
DB2 has primary authorization IDs, secondary authorization IDs, roles, and
SQL IDs. Some privileges can be exercised by only one type of ID or a role;
other privileges can be exercised by multiple IDs or roles. The DB2 catalog
records the privileges that IDs are granted and the objects that IDs own.

2. Managing implicit privileges through ownership of objects other than plans
and packages.

3. Managing implicit privileges through ownership of plans and packages.
4. Controlling access through security labels.

Certain privileges and authorities are assigned when you install DB2. You can
reassign these authorities by changing the DSNZPARM subsystem parameter.

ID

Privilege:
controlled by explicit
granting and revoking

Ownership:
controlled by privileges
needed to create objects

Plan and package execution:
controlled by privilege
to execute

Data

Security label:
controlled by multilevel security

Role:
controlled by trusted context

Figure 15. Access to objects and data within DB2

© Copyright IBM Corp. 1982, 2009 165



As a security planner, you must be aware of these ways to manage privileges and
authorities through authorization IDs and roles before you write a security plan.
After you decide how to authorize access to data, you can implement it through
your security plan.

Authorization IDs and roles
You can control access to DB2 objects by assigning privileges and authorities to an
authorization ID or a role.

Authorization IDs
Every process that connects to or signs on to DB2 is represented by one or more
DB2 short identifiers (IDs), which are called authorization IDs. Authorization IDs are
assigned to a process by default procedures or by user-written exit routines.

When authorization IDs are assigned, every process receives exactly one ID that is
called the primary authorization ID. All other IDs are secondary authorization IDs.
Furthermore, one ID (either primary or secondary) is designated as the current
SQL ID. You can change the value of the SQL ID during your session. More details
about these IDs are as follows:

Role A role is available within a trusted context. You can define a role and
assign it to authorization IDs in a trusted context. When associated with a
role and using the trusted connection, an authorization ID inherits all the
privileges granted to that role.

Primary authorization ID
Generally, the primary authorization ID identifies a process. For example,
statistics and performance trace records use a primary authorization ID to
identify a process.

Secondary authorization ID
A secondary authorization ID, which is optional, can hold additional
privileges that are available to the process. For example, a secondary
authorization ID can be a Resource Access Control Facility (RACF) group
ID.

SQL ID
An SQL ID holds the privileges that are exercised when certain dynamic
SQL statements are issued. The SQL ID can be set equal to the primary ID
or any of the secondary IDs. If an authorization ID of a process has
SYSADM authority, the process can set its SQL ID to any authorization ID.

RACF ID
The RACF ID is generally the source of the primary and secondary
authorization IDs (RACF groups). When you use the RACF Access Control
Module or multilevel security, the RACF ID is used directly.

Roles in a trusted context
A role is a database entity that groups one or more privileges together in a trusted
context. System administrators can use roles to control access to enterprise objects
in a way that parallels the structure of the enterprise.

A role is available only in a trusted context. A trusted context is an independent
database entity that you can define based on a system authorization ID and
connection trust attributes. The trust attributes specify a set of characteristics about

166 Administration Guide

||
|
|
|

|

|
|
|

|
|
|



a specific connection. These attributes include the IP address, domain name, or
SERVAUTH security zone name of a remote client and the job or task name of a
local client.

DB2 for z/OS extends the trusted context concept to allow for the assignment of a
role to a trusted context. An authorization ID that uses the trusted context can
inherit the privileges that are assigned to this role, in addition to the privileges that
are granted to the ID.

Using roles provides the flexibility for managing context-specific privileges and
simplifies the processing of authorization. Specific roles can be assigned to the
authorization IDs that use the trusted connection. When your authorization ID is
associated with an assigned role in the trusted context, you inherit all privileges
that are granted by that role, instead of those by the default role, because the
role-based privileges override the privileges that are associated with the default
role.

Privileges and authorities
You can control access within DB2 by granting or revoking privileges and related
authorities that you assign to authorization IDs or roles. A privilege allows the
capability to perform a specific operation, sometimes on a specific object.

Privileges can be explicit or implicit. An explicit privilege is a specific type of
privilege. Each explicit privilege has a name and is the result of a GRANT
statement or a REVOKE statement.

An implicit privilege comes from the ownership of objects, including plans and
packages. For example, users are granted implicit privileges on objects that are
referenced by a plan or package when they are authorized to execute the plan or
package.

An administrative authority is a set of privileges, often covering a related set of
objects. Authorities often include privileges that are not explicit, have no name,
and cannot be specifically granted. For example, when an ID is granted the
SYSOPR administrative authority, the ID is implicitly granted the ability to
terminate any utility job.

Explicit privileges
You can explicitly grant privileges on objects to authorization IDs or roles.

You can explicitly grant privileges on the following objects:
v Collections
v Databases
v Distinct types or JAR
v Functions or procedures
v Packages
v Plans
v Routines
v Schemas
v Sequences
v Systems
v Tables and views
v Usage
v Use

Chapter 5. Managing access through authorization IDs or roles 167

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|



Explicit collection privileges
You can explicitly grant privileges on collections.

DB2 supports the following collection privileges:

Table 33. Explicit collection privileges

Collection
privilege

Operations allowed for a named package collection

CREATE IN The BIND PACKAGE subcommand, to name the collection

Explicit database privileges
You can explicitly grant privileges on databases.

DB2 supports the following database privileges:

Table 34. Explicit database privileges

Database privilege Operations allowed on a named database

CREATETAB The CREATE TABLE statement, to create tables in the database.

CREATETS The CREATE TABLESPACE statement, to create table spaces in the
database

DISPLAYDB The DISPLAY DATABASE command, to display the database status

DROP The DROP and ALTER DATABASE statements, to drop or alter the
database

IMAGCOPY The QUIESCE, COPY, and MERGECOPY utilities, to prepare for, make,
and merge copies of table spaces in the database; the MODIFY
RECOVERY utility, to remove records of copies

LOAD The LOAD utility, to load tables in the database

RECOVERDB The RECOVER, REBUILD INDEX, and REPORT utilities, to recover
objects in the database and report their recovery status

REORG The REORG utility, to reorganize objects in the database

REPAIR The REPAIR and DIAGNOSE utilities (except REPAIR DBD and
DIAGNOSE WAIT) to generate diagnostic information about, and
repair data in, objects in the database

STARTDB The START DATABASE command, to start the database

STATS The RUNSTATS, CHECK, LOAD, REBUILD INDEX, REORG INDEX,
and REORG TABLESPACE, and MODIFY STATISTICS utilities, to
gather statistics, check indexes and referential constraints for objects in
the database, and delete unwanted statistics history records from the
corresponding catalog tables

STOPDB The STOP DATABASE command, to stop the database

Database privileges that are granted on DSNDB04 apply to all implicitly created
databases. For example, if you have the DBADM authority on DSNDB04, you can

168 Administration Guide

|
|

|
|
|
|
|

|
|



select data from any table in any implicitly created database. If you have the
STOPDB privilege on DSNDB04, you can stop any implicitly created database.
However, you cannot grant the same authorities or privileges to others on any
implicitly created database.

Explicit package privileges
You can explicitly grant privileges on packages.

DB2 supports the following package privileges:

Table 35. Explicit package privileges

Package privilege Operations allowed for a named package

BIND The BIND, REBIND, and FREE PACKAGE subcommands, and the
DROP PACKAGE statement, to bind or free the package, and,
depending on the installation option BIND NEW PACKAGE, to bind a
new version of a package

COPY The COPY option of BIND PACKAGE, to copy a package

EXECUTE Inclusion of the package in the PKLIST option of BIND PLAN

GRANT ALL All package privileges

Explicit plan privileges
You can explicitly grant privileges on plans.

DB2 supports the following plan privileges:

Table 36. Explicit plan privileges

Plan privilege Subcommands allowed for a named application plan

BIND BIND, REBIND, and FREE PLAN, to bind or free the plan

EXECUTE RUN, to use the plan when running the application

Explicit routine privileges
You can explicitly grant privileges on routines.

Chapter 5. Managing access through authorization IDs or roles 169

|
|
|
|



DB2 supports the following routine privileges:

Table 37. Explicit routine privileges

Routine privileges Objects available for usage

EXECUTE ON
FUNCTION

A user-defined function

EXECUTE ON
PROCEDURE

A stored procedure

Explicit schema privileges
You can explicitly grant privileges on schemas.

DB2 supports the following schema privileges:

Table 38. Explicit schema privileges

Schema privileges Operations available for usage

CREATEIN Create distinct types, user-defined functions, triggers, and stored
procedures in the designated schemas

ALTERIN Alter user-defined functions or stored procedures, or specify a
comment for distinct types, user-defined functions, triggers, and stored
procedures in the designated schemas

DROPIN Drop distinct types, user-defined functions, triggers, and stored
procedures in the designated schemas

Explicit system privileges
You can explicitly grant privileges on systems.

DB2 supports the following system privileges:

Table 39. Explicit system privileges

System privilege Operations allowed on the system

ARCHIVE The ARCHIVE LOG command, to archive the current active log, the
DISPLAY ARCHIVE command, to give information about input
archive logs, the SET LOG command, to modify the checkpoint
frequency specified during installation, and the SET ARCHIVE
command, to control allocation and deallocation of tape units for
archive processing.

BINDADD The BIND subcommand with the ADD option, to create new plans
and packages

170 Administration Guide



Table 39. Explicit system privileges (continued)

System privilege Operations allowed on the system

BINDAGENT The BIND, REBIND, and FREE subcommands, and the DROP
PACKAGE statement, to bind, rebind, or free a plan or package, or
copy a package, on behalf of the grantor. The BINDAGENT privilege
is intended for separation of function, not for added security. A bind
agent with the EXECUTE privilege might be able to gain all the
authority of the grantor of BINDAGENT.

BSDS The RECOVER BSDS command, to recover the bootstrap data set

CREATEALIAS The CREATE ALIAS statement, to create an alias for a table or view
name

CREATEDBA The CREATE DATABASE statement, to create a database and have
DBADM authority over it

CREATEDBC The CREATE DATABASE statement, to create a database and have
DBCTRL authority over it

CREATESG The CREATE STOGROUP statement, to create a storage group

CREATETMTAB The CREATE GLOBAL TEMPORARY TABLE statement, to define a
created temporary table

DEBUGSESSION The DEBUGINFO connection attribute, to control debug session
activity for SQL stored procedures, non-inline SQL functions, and
Java™ stored procedures

DISPLAY The DISPLAY ARCHIVE, DISPLAY BUFFERPOOL, DISPLAY
DATABASE, DISPLAY LOCATION, DISPLAY LOG, DISPLAY
THREAD, and DISPLAY TRACE commands, to display system
information

MONITOR1 Receive trace data that is not potentially sensitive

MONITOR2 Receive all trace data

RECOVER The RECOVER INDOUBT command, to recover threads

STOPALL The STOP DB2 command, to stop DB2

STOSPACE The STOSPACE utility, to obtain data about space usage

TRACE The START TRACE, STOP TRACE, and MODIFY TRACE commands,
to control tracing

Explicit table and view privileges
You can explicitly grant privileges on tables and views.

DB2 supports the following table and view privileges:

Table 40. Explicit table and view privileges

Table or view
privilege SQL statements allowed for a named table or view

ALTER ALTER TABLE, to change the table definition

DELETE DELETE, to delete rows

INDEX CREATE INDEX, to create an index on the table

Chapter 5. Managing access through authorization IDs or roles 171

||
|
|



Table 40. Explicit table and view privileges (continued)

Table or view
privilege SQL statements allowed for a named table or view

INSERT INSERT, to insert rows

REFERENCES ALTER or CREATE TABLE, to add or remove a referential constraint
that refers to the named table or to a list of columns in the table

SELECT SELECT, to retrieve data

TRIGGER CREATE TRIGGER, to define a trigger on a table

UPDATE UPDATE, to update all columns or a specific list of columns

GRANT ALL SQL statements of all privileges

Explicit usage privileges
You can explicitly grant privileges on usage.

DB2 supports the following usage privileges:

Table 41. Explicit usage privileges

Usage privileges Objects available for usage

USAGE ON DISTINCT TYPE A distinct type

USAGE ON JAR (Java class for a
routine)

A Java class

USAGE ON SEQUENCE A sequence

Explicit use privileges
You can explicitly grant privileges on use.

DB2 supports the following use privileges:

Table 42. Explicit use privileges

Use privileges Objects available for use

USE OF
BUFFERPOOL

A buffer pool

USE OF STOGROUP A storage group

USE OF
TABLESPACE

A table space

172 Administration Guide



Implicit privileges through object ownership
When you create a DB2 object by issuing an SQL statement, you establish its name
and its ownership. By default, the owner implicitly holds certain privileges on the
object.

However, this general rule does not apply to a plan or package that is not
created with SQL CREATE statements. In other words, when you own an object
other than a plan or package, you have implicit privileges over the object. The
following table describes the implicit privileges of ownership for each type of
object:

Table 43. Implicit privileges of ownership by object type

Object type Implicit privileges of ownership

Alias To drop the alias

Database DBCTRL or DBADM authority over the database, depending on the
privilege (CREATEDBC or CREATEDBA) that is used to create it.
DBCTRL authority does not include the privilege to access data in
tables in the database.

Distinct type To use or drop a distinct type

Index To alter, comment on, or drop the index

JAR (Java class for
a routine)

To replace, use, or drop the JAR

Package To bind, rebind, free, copy, execute, drop, or comment on the package

Plan To bind, rebind, free, execute, or comment on the plan

Role To create, alter, commit, drop, or comment on the role

Sequence To alter, comment on, use, or drop the sequence

Storage group To alter or drop the group and to name it in the USING clause of a
CREATE INDEX or CREATE TABLESPACE statement

Stored procedure To execute, alter, drop, start, stop, or display a stored procedure

Synonym To use or drop the synonym

Table v To alter or drop the table or any indexes on it
v To lock the table, comment on it, or label it
v To create an index or view for the table
v To select or update any row or column
v To insert or delete any row
v To use the LOAD utility for the table
v To define referential constraints on any table or set of columns
v To create a trigger on the table
v To comment on the table

Table space To alter or drop the table space and to name it in the IN clause of a
CREATE TABLE statement

Trusted context To create, alter, commit, revoke, or comment on the trusted context

User-defined
functions

To execute, alter, drop, start, stop, or display a user-defined function

View v To drop, comment on, or label the view, or to select any row or
column

v To execute UPDATE, INSERT, or DELETE on the view if the view is
defined with the INSTEAD OF TRIGGER clause

Chapter 5. Managing access through authorization IDs or roles 173

|

|

|
|



Administrative authorities
Within DB2, privileges are grouped into administrative authorities, and each
administrative authority is vested with a specific set of privileges.

The following table lists the administrative authorities and the specific
privileges that are vested in each of them:

Table 44. Administrative authorities and the privileges vested in them

Administrative
authority Included authorities

Installation
SYSADM

SYSADM, SYSCTRL, DBADM, Installation SYSOPR, SYSOPR,
PACKADM, DBADM, DBCTRL, DBMAINT

SYSADM SYSCTRL, DBADM, Installation SYSOPR, SYSOPR, PACKADM,
DBADM, DBCTRL, DBMAINT

SYSCTRL Installation SYSOPR, SYSOPR, DBCTRL, DBMAINT

Installation
SYSOPR

SYSOPR

SYSOPR (none)

DBADM DBCTRL, DBMAINT

DBCTRL DBMAINT

DBMAINT (none)

PACKADM (none)

The administrative authorities form a branched hierarchy based on their vested
privileges, and an authority at a higher level of the hierarchy has all the privileges
that the authorities at a lower level have. As shown in the following branch
hierarchy, the installation SYSADM authority is the top authority and also has all
the privileges that are vested in the authorities at the lower levels

174 Administration Guide



Installation SYSADM
The installation SYSADM authority is assigned to one or two IDs when DB2 is
installed; it cannot be assigned to a role. These IDs have all the privileges of the
SYSADM authority.

Authority: SYSCTRL

System privileges:
BINDADD CREATEDBC
BINDAGENT CREATESG
BSDS CREATETMTAB
CREATEALIAS MONITOR1
CREATEDBA MONITOR2
STOSPACE

Privileges on all tables:
ALTER INDEX
REFERENCES TRIGGER

Privileges on catalog tables*:
SELECT UPDATE
INSERT DELETE

Privileges on all plans:
BIND

Privileges on all packages:
BIND COPY

Privileges on all collections:
CREATE IN

Privileges on all schemas:
CREATE IN DROPIN
ALTERIN

Use privileges on:
BUFFERPOOL TABLESPACE
STOGROUP

Authority: Installation SYSADM

Authority: SYSADM

EXECUTE privilege on all plans;

and sequences
DEBUGSESSION privileges

All privileges on all packages;
EXECUTE privilege on all routines;
USAGE privilege on distinct types

Authority: PACKADM

Privileges on a collection:
CREATE IN

Privileges on all packages in the
collection:

BIND COPY
EXECUTE

Authority: DBADM

Privileges on tables in the
database:

ALTER INSERT
DELETE SELECT
INDEX UPDATE
REFERENCES TRIGGER

Authority: Installation SYSOPR

Privileges:
ARCHIVE STARTDB

(Cannot change
access mode)

Authority: SYSOPR

Privileges:
DISPLAY STOPALL
RECOVER TRACE

Privileges on routines:
START DISPLAY
STOP

Authority: DBCTRL

Privileges on one database:
DROP LOAD
RECOVERDB REORG
REPAIR

Authority: DBMAINT

Privileges on one database:
CREATETAB STARTDB
CREATETS STATS
DISPLAYDB STOPDB
IMAGCOPY

* For the applicable catalog tables and the operations that can be
performed on them by SYSCTRL, see the DB2 catalog appendix
in .DB2 SQL Reference

Figure 16. Administrative authority hierarchy with installation SYSADM as the top authority

Chapter 5. Managing access through authorization IDs or roles 175



No other IDs can revoke the installation SYSADM authority; you can
remove the authority only by changing the module that contains the subsystem
initialization parameters (typically DSNZPARM).

In addition, DB2 does not record the installation SYSADM authority in the catalog.
Therefore, the catalog does not need to be available to check installation SYSADM
authority. The authority outside of the catalog is crucial. For example, if the
directory table space DBD01 or the catalog table space SYSDBAUT is stopped, DB2
might not be able to check the authority to start it again. In this case, only an
installation SYSADM can start it.

IDs with the installation SYSADM authority can also perform the following
actions:
v Run the CATMAINT utility
v Access DB2 when the subsystem is started with ACCESS(MAINT)
v Start databases DSNDB01 and DSNDB06 when they are stopped or in restricted

status
v Run the DIAGNOSE utility with the WAIT statement
v Start and stop the database that contains the application registration table (ART)

and the object registration table (ORT).

SYSADM
The SYSADM authority includes all SYSCTRL, PACKADM, and DBADM
privileges, including access to all data.

With the SYSADM authority, an authorization ID can perform the
following actions and grant other IDs the privileges to perform them:
v Use all the privileges of DBADM over any database
v Use EXECUTE privileges on all packages
v Use EXECUTE privileges on all routines
v Use USAGE privilege on distinct types
v Use BIND on any plan and COPY on any package
v Use privileges over views that are owned by others
v Set the current SQL ID to any valid value
v Create and drop synonyms and views for other IDs on any table
v Use any valid value for OWNER in BIND or REBIND
v Drop database DSNDB07

An ID with the SYSADM authority can also perform the following actions but
cannot grant to other IDs the privileges to perform them:
v Drop or alter any DB2 object, except system databases
v Issue a COMMENT ON statement for any table, view, index, column, package,

plan
v Issue a LABEL ON statement for any table or view
v Terminate any utility job

Although an ID with the SYSADM authority cannot grant the preceding privileges
explicitly, it can accomplish this goal by granting to other IDs the SYSADM

authority.

176 Administration Guide



SYSCTRL
The SYSCTRL authority is designed for administering a system that contains
sensitive data. A user with the SYSCTRL authority has nearly complete control of
the DB2 subsystem. However, that user cannot access user data directly unless the
privilege to do so is explicitly granted.

A user with the SYSCTRL authority can perform the following actions:
v Act as installation SYSOPR (when the catalog is available) or DBCTRL over any

database
v Run any allowable utility on any database
v Issue a COMMENT ON, LABEL ON, or LOCK TABLE statement for any table
v Create a view on any catalog table for itself or for other IDs
v Create tables and aliases for itself or for others IDs
v Bind a new plan or package and name any ID as the owner of the plan or

package

Without additional privileges, A user with the SYSCTRL authority cannot perform
the following actions:
v Execute SQL statements that change data in any user tables or views
v Run plans or packages
v Set the current SQL ID to a value that is not one of its primary or secondary IDs
v Start or stop the database that contains the application registration table (ART)

and the object registration table (ORT)
v Act fully as SYSADM or as DBADM over any database
v Access DB2 when the subsystem is started with ACCESS(MAINT)

The SYSCTRL authority is intended to separate system control functions from
administrative functions. However, SYSCTRL is not a complete solution for a
high-security system. If any plans have their EXECUTE privilege granted to
PUBLIC, an ID with the SYSCTRL authority can grant itself the SYSADM
authority. The only control over such actions is to audit the activity of IDs with

high levels of authority.

Installation SYSOPR
The installation SYSOPR authority is assigned to one or two IDs when DB2 is
installed; it cannot be assigned to a role. These IDs have all the privileges of the
SYSOPR authority.

No IDs can revoke the installation SYSOPR authority; you can remove it
only by changing the module that contains the subsystem initialization parameters
(typically DSNZPARM).

In addition, the installation SYSOPR authority is not recorded in the DB2 catalog.
Therefore, the catalog does not need to be available to check the installation
SYSOPR authority.

IDs with the installation SYSOPR authority can perform the following actions:
v Access DB2 when the subsystem is started with ACCESS(MAINT).
v Run all allowable utilities on the directory and catalog databases (DSNDB01 and

DSNDB06).
v Run the REPAIR utility with the DBD statement.

Chapter 5. Managing access through authorization IDs or roles 177



v Start and stop the database that contains the application registration table (ART)
and the object registration table (ORT).

v Issue dynamic SQL statements that are not controlled by the DB2 governor.
v Issue a START DATABASE command to recover objects that have LPL entries or

group buffer pool RECOVERY-pending status. These IDs cannot change the

access mode.

SYSOPR
A user with the SYSOPR authority can issue all DB2 commands except ARCHIVE
LOG, START DATABASE, STOP DATABASE, and RECOVER BSDS.

In addition, that user can run the DSN1SDMP utility and terminate any
utility job. With the GRANT option, that user can grant these privileges to others.

DBADM
The DBADM authority includes the DBCTRL privileges over a specific database. A
user with the DBADM authority can access any tables in a specific database by
using SQL statements.

With the DBADM authority, you can also perform the following actions:
v Drop or alter any table space, table, or index in the database
v Issue a COMMENT, LABEL, or LOCK TABLE statement for any table in the

database
v Issue a COMMENT statement for any index in the database

If the value of the DBADM CREATE AUTH field on the DSNTIPP installation
panel is set to YES during the DB2 installation, an ID with the DBADM authority
can create the following objects:
v A view for another ID. The view must be based on at least one table, and that

table must be in the database under DBADM authority.
v An alias for another ID on any table in the database.

An ID with DBADM authority on one database can create a view on tables and
views in that database and other databases only if the ID has all the privileges that
are required to create the view. For example, an ID with DBADM authority cannot
create a view on a view that is owned by another ID.

If a user has the DBADM authority with the GRANT option, that user can grant

these privileges to others.

DBCTRL
The DBCTRL authority includes the DBMAINT privileges on a specific database. A
user with the DBCTRL authority can run utilities that can change the data.

If the value of the DBADM CREATE AUTH field on the DSNTIPP
installation panel is set to YES during the DB2 installation, an ID with DBCTRL
authority can create an alias for another user ID on any table in the database.

If a user has the DBCTRL authority with the GRANT option, that user can grant

those privileges to others.

178 Administration Guide



DBMAINT
A user with the DBMAINT authority can grant to an ID the privileges on a specific
database.

With the DBMAINT authority, that user can perform the following actions
within that database:
v Create objects
v Run utilities that don’t change data
v Issue commands
v Terminate all utilities on the database except DIAGNOSE, REPORT, and

STOSPACE

If a user has the DBMAINT authority with the GRANT option, that user can grant

those privileges to others.

PACKADM
The PACKADM authority has the package privileges on all packages in specific
collections and the CREATE IN privilege on these collections.

If the BIND NEW PACKAGE installation option is set to BIND, the
PACKADM authority also has the privilege to add new packages or new versions
of existing packages.

If a user has the PACKADM authority with the GRANT option, that user can grant

those privileges to others.

Utility authorities for DB2 catalog and directory
The DB2 catalog is in the DSNDB06 database. Authorities that are granted on
DSNDB06 also cover database DSNDB01, which contains the DB2 directory.

An ID with the SYSCTRL or SYSADM authority can control access to the
catalog in the following ways:
v By granting privileges or authorities on that database or on its tables or views
v By binding plans or packages that access the catalog

An ID with the SYSADM authority can control access to the directory by granting
privileges to run utilities on DSNDB06, but that ID cannot grant privileges on
DSNDB01 directly.

The following table shows the utilities IDs with different authorities that can run
on the DSNDB01 and DSNDB06 databases. Do not run REPAIR DBD against
DSNDB01 and DSNDB06 because they are system databases; you will receive a
system restriction violation message if you do. Also, you can use the LOAD utility
to add lines to SYSIBM.SYSSTRINGS, but you cannot run it on other DSNDB01 or
DSNDB06 tables.

Chapter 5. Managing access through authorization IDs or roles 179

|
|
|



Table 45. Utility privileges on the DB2 catalog and directory

Utilities

Authorities

Installation SYSOPR,
SYSCTRL, SYSADM,
Installation SYSADM

DBCTRL,
DBADM on
DSNDB06

DBMAINT on
DSNDB06

LOAD No No No

REPAIR DBD No No No

CHECK DATA Yes No No

CHECK LOB Yes No No

REORG TABLESPACE Yes No No

STOSPACE Yes No No

REBUILD INDEX Yes Yes No

RECOVER Yes Yes No

REORG INDEX Yes Yes No

REPAIR Yes Yes No

REPORT Yes Yes No

CHECK INDEX Yes Yes Yes

COPY Yes Yes Yes

MERGECOPY Yes Yes Yes

MODIFY Yes Yes Yes

QUIESCE Yes Yes Yes

RUNSTATS Yes Yes Yes

Privileges by authorization ID and authority
When a process gains access to DB2, it has a primary authorization ID, one or
more secondary authorization IDs, an SQL ID, and perhaps a specific role if
running in a trusted context. A plan or package also has an owner that can be an
authorization ID or role. To be able to perform certain actions, a single ID or role
must hold the required privileges. To perform other actions, a set of IDs or roles
must hold the required privileges.

For better performance, consider limiting the number of secondary IDs in
your catalog table. A process can have up to 1012 secondary IDs. The more
secondary IDs that must be checked, the longer the check takes. Also, make sure
that the role and the current SQL ID have the necessary privileges for dynamic
SQL statements. Because the role and the current SQL ID are checked first, the

operation is fastest if they have all the necessary privileges.

Privileges required for common job roles and tasks
The labels of the administrative authorities often suggest the job roles and
responsibilities of the users who are empowered with the authorities.

For example, you might expect a system administrator to have the
SYSADM authority. However, some organizations do not divide job responsibilities

180 Administration Guide

|



in the same way. The following table lists some of common job roles, the tasks that
usually accompany them, and the DB2 authorities or privileges that are needed to
perform those tasks.

Table 46. Required privileges for common jobs and tasks

Job title Tasks Required privileges

System operator Issues commands to:
v Start and stop DB2
v Control traces
v Display databases and threads
v Recover indoubt threads
v Start, stop, and display routines

SYSOPR authority

System administrator Performs emergency backup, with
access to all data.

SYSADM authority

Security
administrator

Authorizes other users, for some or all
levels below.

SYSCTRL authority

Database
administrator

Designs, creates, loads, reorganizes,
and monitors databases, tables, and
other objects.

v DBADM authority on a database. The DBADM
authority on DSNDB04 allows you access to objects
in all implicitly created databases.

v Use of storage groups and buffer pools

System programmer v Installs a DB2 subsystem.
v Recovers the DB2 catalog.
v Repairs data.

Installation SYSADM, which is assigned when DB2 is
installed. (Consider securing the password for an ID
with this authority so that the authority is available
only when needed.)

Application
programmer

v Develops and tests DB2 application
programs.

v Creates tables of test data.

v BIND on existing plans or packages, or BINDADD

v CREATE IN on some collections

v Privileges on some objects

v CREATETAB on some database, with a default
table space provided

v CREATETAB on DSNDB04. It enables you to create
tables in DSNDB04 and all implicitly created
databases

Production binder Binds, rebinds, and frees application
packages and plans

A ROLE, secondary ID, or RACF group of which the
binder has BINDADD, CREATE IN on collections
privileges required by application packages and plans

Package
administrator

Manages collections and the packages
in them, and delegates the
responsibilities.

PACKADM authority

User analyst Defines the data requirements for an
application program, by examining the
DB2 catalog.

v SELECT on the SYSTABLES, SYSCOLUMNS, and
SYSVIEWS catalog tables

v CREATETMTAB system privilege to create
temporary tables

Program end user Executes an application program. EXECUTE for the application plan

Information center
consultant

v Defines the data requirements for a
query user.

v Provides the data by creating tables
and views, loading tables, and
granting access.

v DBADM authority over some databases

v SELECT on the SYSTABLES, SYSCOLUMNS, and
SYSVIEWS catalog tables

Chapter 5. Managing access through authorization IDs or roles 181

|
|
|



Table 46. Required privileges for common jobs and tasks (continued)

Job title Tasks Required privileges

Query user v Issues SQL statements to retrieve,
add, or change data.

v Saves results as tables or in global
temporary tables.

v SELECT, INSERT, UPDATE, DELETE on some
tables and views

v CREATETAB, to create tables in other than the
default database

v CREATETAB, to create tables in the implicitly
created database

v CREATETMTAB system privilege to create
temporary tables

v SELECT on SYSTABLES, SYSCOLUMNS, or views
thereof. QMF™ provides the views.

Checking access authorization for data definition statements
DB2 checks for the necessary authorization privileges and authorities when you
use data definition statements on certain DB2 objects.

At both bind and run time, DB2 determines whether the authorization ID
that you are using has the necessary privileges to access the following objects:
v Alias
v Table
v Explicitly created auxiliary table
v Explicitly created table space
v Explicitly created index
v Storage group
v Database

At run time, DB2 determines whether the authorization ID that you are using has
the necessary privileges to access the following objects:
v Buffer pool that is involved with an implicitly created table space
v Buffer pool and storage group that are involved with an implicitly created

auxiliary index and LOB table space
v Buffer pool and storage group that are involved with implicitly created XML

indexes and XML table space
v Trigger
v Function
v Procedure
v Sequence
v View
v Trusted context
v JAR
v Role
v Distinct type
v Table, buffer pool, and storage group for an implicitly created unique key index,

primary key index, or ROWID index.

182 Administration Guide

|
|

|
|
|

|
|

|

|

|

|

|

|

|

|
|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|



Privileges required for handling plans and packages
An ID, or a role if running in a trusted context, needs specific privileges to
perform actions on plans and packages.

The following table lists the IDs and describes the privileges that they need
for performing each type of plan or package operation. A user-defined function,
stored procedure, or trigger package does not need to be included in a package
list. A trigger package cannot be deleted by FREE PACKAGE or DROP PACKAGE.
The DROP TRIGGER statement must be used to delete the trigger package.

Table 47. Required privileges for basic operations on plans and packages

Operation ID or role Required privileges

Execute a plan Primary ID, any
secondary ID, or role

Any of the following privileges:
v Ownership of the plan
v EXECUTE privilege for the plan
v SYSADM authority

Bind embedded
SQL statements,
for any bind
operation

Plan or package owner Any of the following privileges:
v Applicable privileges required by the

statements
v Authorities that include the privileges
v Ownership that implicitly includes the

privileges

Object names include the value of
QUALIFIER, where it applies.

Include package in
PKLIST1

Plan owner Any of the following privileges:
v Ownership of the package
v EXECUTE privilege for the package
v PACKADM authority over the package

collection
v SYSADM authority

BIND a new plan
using the default
owner or primary
authorization ID

Primary ID or role BINDADD privilege, or SYSCTRL or SYSADM
authority

BIND a new
package using the
default owner or
primary
authorization ID

Primary ID or role If the value of the field BIND NEW PACKAGE
on installation panel DSNTIPP is BIND, any of
the following privileges:
v BIND privilege and CREATE IN privilege

for the collection
v PACKADM authority for the collection
v SYSADM or SYSCTRL authority

If BIND NEW PACKAGE is BINDADD, any of
the following privileges:
v BINDADD privilege and either the CREATE

IN or PACKADM privilege for the collection
v SYSADM or SYSCTRL authority

BIND REPLACE
or REBIND for a
plan or package
using the default
owner or primary
authorization ID

Primary ID, any
secondary ID, or role

Any of the following privileges:
v Ownership of the plan or package
v BIND privilege for the plan or package
v BINDAGENT from the plan or package

owner
v PACKADM authority for the collection (for

a package only)
v SYSADM or SYSCTRL authority.

Chapter 5. Managing access through authorization IDs or roles 183



Table 47. Required privileges for basic operations on plans and packages (continued)

Operation ID or role Required privileges

BIND a new
version of a
package, with
default owner

Primary ID or role If BIND NEW PACKAGE is BIND, any of the
following privileges:
v BIND privilege on the package or collection
v BINDADD privilege and CREATE IN

privilege for the collection
v PACKADM authority for the collection
v SYSADM or SYSCTRL authority

If BIND NEW PACKAGE is BINDADD, any of
the following:
v BINDADD privilege and either the CREATE

IN or PACKADM privilege for the collection
v SYSADM or SYSCTRL authority

FREE or DROP a
package2

Primary ID, any
secondary ID, or role

Any of the following privileges:
v Ownership of the package
v BINDAGENT from the package owner
v PACKADM authority for the collection
v SYSADM or SYSCTRL authority

COPY a package Primary ID, any
secondary ID, or role

Any of the following:
v Ownership of the package
v COPY privilege for the package
v BINDAGENT from the package owner
v PACKADM authority for the collection
v SYSADM or SYSCTRL authority

FREE a plan Primary ID, any
secondary ID, or role

Any of the following privileges:
v Ownership of the plan
v BIND privilege for the plan
v BINDAGENT from the plan owner
v SYSADM or SYSCTRL authority

Name a new
OWNER other
than the primary
authorization ID
for any bind
operation

Primary ID, any
secondary ID, or role

Any of the following privileges:
v New owner is the primary or any secondary

ID
v BINDAGENT from the new owner
v SYSADM or SYSCTRL authority

Privileges required for using dynamic SQL statements
An ID needs specific privileges to issue dynamic SQL statements.

The following table lists the IDs and describes the privileges that they need
for issuing each type of SQL statement:

184 Administration Guide



Table 48. Required privileges for basic operations on dynamic SQL statements

Operation ID or role Required privileges

GRANT Current SQL ID or role Any of the following privileges:
v The applicable privilege with the grant

option
v An authority that includes the privilege,

with the grant option (not needed for
SYSADM or SYSCTRL)

v Ownership that implicitly includes the
privilege

REVOKE Current SQL ID or role Must either have granted the privilege that is
being revoked, or hold SYSCTRL or SYSADM
authority.

CREATE, for
unqualified object
name

Current SQL ID or role Applicable table, database, or schema privilege

Qualify name of
object created

ID or role named as
owner

Applicable table or database privilege. If not in
a trusted context defined with the ROLE AS
OBJECT OWNER clause, the current SQL ID
has the SYSADM authority, the qualifier can
be any ID at all, and the ID does not need to
have any privilege. If in a trusted context
defined with the ROLE AS OBJECT OWNER
clause, the role requires the CREATEIN
privilege on the qualifier. In this case the role
is the owner of the object to be created.

Other dynamic
SQL if
DYNAMICRULES
uses run behavior

All primary IDs, role,
secondary IDs, and the
current SQL ID
together

As required by the statement. Unqualified
object names are qualified by the value of the
special register CURRENT SQLID.

Other dynamic
SQL if
DYNAMICRULES
uses bind behavior

Plan or package owner As required by the statement.
DYNAMICRULES behavior determines how
unqualified object names are qualified.

Other dynamic
SQL if
DYNAMICRULES
uses define
behavior

Function or procedure
owner

As required by the statement.
DYNAMICRULES behavior determines how
unqualified object names are qualified.

Other dynamic
SQL if
DYNAMICRULES
uses invoke
behavior

ID of the SQL
statement that invoked
the function or
procedure or role

As required by the statement.
DYNAMICRULES behavior determines how
unqualified object names are qualified.

Managing explicit privileges
You can use the SQL GRANT or REVOKE statements to grant and remove
privileges if you enable authorization checking during the DB2 installation. You
can grant or revoke privileges to and from authorization IDs or roles if running in
a trusted context. You can revoke only privileges that are explicitly granted.

Chapter 5. Managing access through authorization IDs or roles 185



You can grant privileges in the following ways:
v Grant a specific privilege on one object in a single statement
v Grant a list of privileges
v Grant privileges on a list of objects
v Grant ALL, for all the privileges of accessing a single table, or for all privileges

that are associated with a specific package

If you grant privileges on a procedure or a package, all versions of that procedure
or package have those privileges. DB2 ignores duplicate grants and keeps only one
record of a grant in the catalog. The suppression of duplicate records applies not
only to explicit grants, but also to the implicit grants of privileges that are made
when a package is created.

For example, suppose that Susan grants the SELECT privilege on the EMP table to
Ray. Then suppose that Susan grants the same privilege to Ray again, without
revoking the first grant. When Susan issues the second grant, DB2 ignores it and
maintains the record of the first grant in the catalog.

Database privileges that are granted on DSNDB04 apply to all implicitly created
databases. For example, if you have the DBADM authority on DSNDB04, you can
select data from any table in any implicitly created database. If you have the
STOPDB privilege on DSNDB04, you can stop any implicitly created database.
However, you cannot grant the same authorities or privileges to others on any
implicitly created database.

Granting privileges to a role
You can grant privileges to a role by using the GRANT statement. You can
associate primary authorization IDs with a role in the definition of the trusted
context and then use the GRANT statement with the ROLE option to grant
privileges to the role.

You can improve access control by granting privileges to roles. When you grant
certain privileges to a role, you make those privileges available to all users that are
associated with the role in the specific trusted context.

You can also simplify the administration of granting privileges by using roles
rather than individual authorization IDs. To make a role a grantor, you need to
specify the ROLE AS OBJECT OWNER clause when you define the trusted context.
For a static GRANT statement, the grantor is the role that owns the plan or
package. For a dynamic GRANT statement, the role for the primary authorization
ID that executes the GRANT statement becomes the grantor.

Granting privileges to the PUBLIC ID
You can grant privileges to the PUBLIC ID. When you grant privileges to PUBLIC,
the privileges become available to all IDs at the local DB2 site, including the owner
IDs of packages that are bound from a remote location.

When you grant any privilege to the PUBLIC ID, DB2 catalog tables record the
grantee of the privilege as PUBLIC. DB2 also grants the following implicit table
privileges to PUBLIC for declared temporary tables:
v All table privileges on the tables and the authority to drop the tables
v The CREATETAB privilege to define temporary tables in the work file database
v The USE privilege to use the table spaces in the work file database

186 Administration Guide

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|



You do not need any additional privileges to access the work file database and the
temporary tables that are in it. You cannot grant or revoke table privileges for
temporary tables. The DB2 catalog does not record these implicit privileges for
declared temporary tables.

Because PUBLIC is a special identifier that is used by DB2 internally, you should
not use PUBLIC as a primary ID or secondary ID. When a privilege is revoked
from PUBLIC, authorization IDs to which the privilege was specifically granted
retain the privilege.

However, when an ID uses PUBLIC privileges to perform actions, the actions and
the resulting objects depend on the privileges that are currently in effect for
PUBLIC. If PUBLIC loses a privilege, objects that are created with that privilege
can be dropped or invalidated. The following examples demonstrate how certain
objects depend on PUBLIC not losing its privileges.

Example: Suppose that Juan has the ID USER1 and that Meg has the ID USER2.
Juan creates a table TAB1 and grants ALL PRIVILEGES on it to PUBLIC. Juan does
not explicitly grant any privileges on the table to Meg’s ID, USER2. Using the
PUBLIC privileges, Meg creates a view on TAB1. Because the ID USER2 requires
the SELECT privilege on TAB1 to create the view, the view is dropped if PUBLIC
loses the privilege.

Example: Suppose that Kim has the ID USER3. Kim binds a plan and names it
PLAN1. PLAN1 contains a program that refers to TAB1 from the previous
example. PLAN1 is not valid unless all of the proper privileges are held on objects
to which the plan refers, including TAB1. Although Kim does not have any
privileges on TAB1, Kim can bind the plan by using the PUBLIC privileges on
TAB1. However, if PUBLIC loses its privilege, the plan is invalidated.

Granting privileges to remote users
A query that arrives at your local DB2 through the distributed data facility (DDF)
is accompanied by an authorization ID. After connection processing, the ID can be
translated to another value and associated with secondary authorization IDs. DB2
also uses the ID to determine if the connection is associated with a trusted context.

As the end result of these processes, the remote query is associated with a
set of IDs that is known to your local DB2 subsystem. You assign privileges to
these IDs in the same way that you assign privileges to IDs that are associated
with local queries.

You can issue the following command to grant SELECT, INSERT, UPDATE, and
DELETE table privileges to any ID anywhere that uses DB2 private protocol access
to your data:
GRANT privilege TO PUBLIC AT ALL LOCATIONS;

Some differences exist in the privileges for a query that uses system-directed
access:
v Although the query can use privileges granted TO PUBLIC AT ALL

LOCATIONS, it cannot use privileges granted TO PUBLIC.
v The query can exercise only the SELECT, INSERT, UPDATE, and DELETE

privileges at the remote location.

Chapter 5. Managing access through authorization IDs or roles 187



These restrictions do not apply to queries that are run by a package that is bound
at your local DB2 subsystem. Those queries can use any privilege that is granted to

their associated IDs or any privilege that is granted to PUBLIC.

Granting privileges through views
You can grant most table privileges (except ALTER, REFERENCES, TRIGGER, and
INDEX) on a view. By creating a view and granting privileges through it, you can
give an ID access to only a specific combination of data.

The ability to grant privileges through views is sometimes called field-level
access control or field-level sensitivity.

Suppose that you want the ID MATH110 to be able to extract the following column
data from the sample employee table for statistical investigation: HIREDATE, JOB,
EDLEVEL, SEX, SALARY, BONUS, and COMM for DSN8910.EMP. However, you
want to impose the following restrictions:
v No access to employee names or identification numbers
v No access to data for employees hired before 1996
v No access to data for employees with an education level less than 13
v No access to data for employees whose job is MANAGER or PRES

You can create and name a view that shows exactly that combination of data.
Perform the following steps to grant privileges to the view that you create:
1. Issue the following CREATE statement to create the desired view:

CREATE VIEW SALARIES AS
SELECT HIREDATE, JOB, EDLEVEL, SEX, SALARY, BONUS, COMM

FROM DSN8910.EMP
WHERE HIREDATE > '1995-12-31' AND

EDLEVEL >= 13 AND
JOB <> 'MANAGER' AND
JOB <> 'PRES';

2. Issue the following statement to grant the SELECT privilege on the SALARIES
view to MATH110:
GRANT SELECT ON SALARIES TO MATH110;

After you grant the privilege, MATH110 can execute SELECT statements on the
restricted set of data only. Alternatively, you can give an ID access to only a
specific combination of data by using multilevel security with row-level

granularity.

Granting privileges with the GRANT statement
You can assign privileges to an ID or a role by issuing the GRANT statement.

Suppose that the Spiffy Computer Company wants to create a database to hold
information that is usually posted on hallway bulletin boards. For example, the
database might hold notices of upcoming holidays and bowling scores.

To create and maintain the tables and programs that are needed for this
application, the Spiffy Computer Company develops the security plan shown in
the following diagram.

188 Administration Guide



The Spiffy Computer Company’s system of privileges and authorities associates
each role with an authorization ID. For example, the System Administrator role has
the ADMIN authorization ID.

The system administrator uses the ADMIN authorization ID, which has the
SYSADM authority, to create a storage group (SG1) and to issue the following
statements:
1. GRANT PACKADM ON COLLECTION BOWLS TO PKA01 WITH GRANT OPTION;

This statement grants to PKA01 the CREATE IN privilege on the collection
BOWLS and BIND, EXECUTE, and COPY privileges on all packages in the
collection. Because ADMIN used the WITH GRANT OPTION clause, PKA01
can grant those privileges to others.

2. GRANT CREATEDBA TO DBA01;

This statement grants to DBA01 the privilege to create a database and to have
DBADM authority over that database.

3. GRANT USE OF STOGROUP SG1 TO DBA01 WITH GRANT OPTION;

This statement allows DBA01 to use storage group SG1 and to grant that
privilege to others.

4. GRANT USE OF BUFFERPOOL BP0, BP1 TO DBA01 WITH GRANT OPTION;

This statement allows DBA01 to use buffer pools BP0 and BP1 and to grant that
privilege to others.

5. GRANT CREATE IN COLLECTION DSN8CC91 TO ROLE ROLE1;

This statement grants to ROLE1 the privilege to create new packages in

collections DSN8CC91.

System administrator
ID: ADMIN

Package administrator
ID: PKA01

Database administrator
ID: PKA01

Application programmers
IDs: PGMR01, PGMR02

PGMR03

Production binder
ID: BINDER

Database controllers
IDs: DBUTIL1, DBUTIL2

Figure 17. Security plan for the Spiffy Computer Company

Privileges: Ownership of SG1
Authority: SYSADM

User ID: ADMIN

Authority: PACKADM over the collection BOWLS
User ID: PKA01

Chapter 5. Managing access through authorization IDs or roles 189



The package administrator, PKA01, controls the binding of packages into
collections. PKA01 can use the CREATE IN privilege on the collection BOWLS and
the BIND, EXECUTE, and COPY privileges on all packages in the collection.
PKA01 also has the authority to grant these privileges to others.

The database administrator, DBA01, using the CREATEDBA privilege, creates the
database DB1. When DBA01 creates DB1, DBA01 automatically has DBADM
authority over the database.

The database administrator at Spiffy Computer Company wants help with running
the COPY and RECOVER utilities. Therefore DBA01 grants DBCTRL authority over
database DB1 to DBUTIL1 and DBUTIL2.

To grant DBCTRL authority, the database administrator issues the
following statement:
GRANT DBCTRL ON DATABASE DB1 TO DBUTIL1, DBUTIL2;

Granting privileges to secondary IDs
The Spiffy Computer Company uses RACF to manage external access to DB2.
Therefore, Spiffy can use secondary authorization IDs to define user groups and
associate primary authorization IDs with those user groups.

The primary authorization IDs are the RACF user IDs. The secondary
authorization IDs are the names of the groups with which the primary IDs are
associated.

Spiffy can grant DB2 privileges to primary IDs indirectly, by granting privileges to
secondary IDs that are associated with the primary IDs. This approach associates
privileges with a functional ID rather than an individual ID. Functional IDs, also
called group IDs, are granted privileges based on the function that certain job roles
serve in the system. Multiple primary IDs can be associated with a functional ID
and receive the privileges that are granted to that functional ID. In contrast,
individual IDs are connected to specific people. Their privileges need to be
updated as people join the company, leave the company, or serve different roles
within the company. Functional IDs have the following advantages:
v Functional IDs reduce system maintenance because they are more permanent

than individual IDs. Individual IDs require frequent updates, but each functional
ID can remain in place until Spiffy redesigns its procedures.
Example: Suppose that Joe retires from the Spiffy Computer Company. Joe is
replaced by Mary. If Joe’s privileges are associated with functional ID DEPT4,

Privi leges: CREATEDBA
Use of SG1 with GRANT

Ownership of DB1
Use of BP0 and BP1 with GRANT

Authority: DBADM over DB1
User ID: DBA01

Authority: DBCTRL over DB1
User ID: DBUTIL1, DBUTIL2

190 Administration Guide



those privileges are maintained in the system even after Joe’s individual ID is
removed from the system. When Mary enters the system, she will have all of
Joe’s privileges after her ID is associated with the functional ID DEPT4.

v Functional IDs reduce the number of grants that are needed because functional
IDs often represent groups of individuals.

v Functional IDs reduce the need to revoke privileges and re-create objects when
they change ownership.
Example: Suppose that Bob changes jobs within the Spiffy Computer Company.
Bob’s individual ID has privileges on many objects in the system and owns three
databases. When Bob’s job changes, he no longer needs privileges over these
objects or ownership of these databases. Because Bob’s privileges are associated
with his individual ID, a system administrator needs to revoke all of Bob’s
privileges on objects and drop and re-create Bob’s databases with a new owner.
If Bob received privileges by association with a functional ID, the system
administrator would only need to remove Bob’s association with the functional
ID.

Granting privileges to user groups
You can simplify the assignment and management of privileges by creating user
groups and granting privileges to the groups. In this way, you can simply assign
the same set of privileges to all the users of a given group at the same time.

Suppose that the database administrator at Spiffy wants several employees in the
Software Support department to create tables in the DB1 database. The database
administrator creates DEVGROUP as a RACF group ID for this purpose. To
simplify the process, the database administrator decides that each CREATE TABLE
statement should implicitly create a unique table space for the table. Hence,
DEVGROUP needs the CREATETAB privilege, the CREATETS privilege, the
privilege to use the SG1 storage group and, the privilege to use one of the buffer
pools, BP0, for the implicitly created table spaces. The following diagram shows
this group and their privileges:

The database administrator, DBA01, owns database DB1 and has the
privileges to use storage group SG1 and buffer pool BP0. The database
administrator holds both of these privileges with the GRANT option. The database
administrator issues the following statements:
1. GRANT CREATETAB, CREATETS ON DATABASE DB1 TO DEVGROUP;
2. GRANT USE OF STOGROUP SG1 TO DEVGROUP;

3. GRANT USE OF BUFFERPOOL BP0 TO DEVGROUP;

Because the system and database administrators at Spiffy still need to control the
use of those resources, the preceding statements are issued without the GRANT
option.

Three programmers in the Software Support department write and test a new
program, PROGRAM1. Their IDs are PGMR01, PGMR02, and PGMR03. Each

Use of BP0
Use of SG1
CREATETS on DB1
CREATETAB on DB1

Privileges: (All without GRANT)
RACF Group ID: DEVGROUP

Chapter 5. Managing access through authorization IDs or roles 191



programmer needs to create test tables, use the SG1 storage group, and use one of
the buffer pools. All of those resources are controlled by DEVGROUP, which is a
RACF group ID.

Therefore, granting privileges over those resources specifically to PGMR01,
PGMR02, and PGMR03 is unnecessary. Each ID should be associated with the
RACF group DEVGROUP and receive the privileges that are associated with that
functional ID. The following diagram shows the DEVGROUP and its members:

The security administrator connects as many members as desired to the group
DEVGROUP. Each member can exercise all the privileges that are granted to the
group ID.

Granting privileges for binding plans
Three programmers can share the tasks that are done by the DEVGROUP ID.
Someone creates a test table, DEVGROUP.T1, in database DB1 and loads it with
test data. Someone writes a program, PROGRAM1, to display bowling scores that
are contained in T1.Someone must bind the plan and packages that accompany the
program.

Binding requires an additional privilege. ADMIN, who has SYSADM
authority, grants the required privilege by issuing the following statement:
GRANT BINDADD TO DEVGROUP;

With that privilege, any member of the RACF group DEVGROUP can bind plans
and packages that are to be owned by DEVGROUP. Any member of the group can
rebind a plan or package that is owned by DEVGROUP. The following diagram
shows the BINDADD privilege granted to the group:

The Software Support department proceeds to create and test the program.

Granting privileges for rebinding plans and packages
Spiffy has a different set of tables, which contain actual data that is owned by the
ROLE PRODCTN. PROGRAM1 was written with unqualified table names.

For example, table T1 was referred to as simply T1, not DEVGROUP.T1. The new
packages and plan must refer to table PRODCTN.T1. To move the completed
program into production, someone must perform the following steps:
v Rebind the application plan with the owner PRODCTN.
v Rebind the packages into the collection BOWLS, again with the owner

PRODCTN.

RACF group ID: DEVGROUP
Group members: PGMR01, PGMR02, PGMR03

Privilege: BINDADD
RACF group ID: DEVGROUP

192 Administration Guide



Spiffy gives that job to a production binder with the ID BINDER. BINDER needs
privileges to bind a plan or package that DEVGROUP owns, to bind a plan or
package with OWNER (PRODCTN), and to add a package to the collection
BOWLS. BINDER acquires these abilities through its RACF DEVGROUP group and
ROLE PRODCTN. ROLE PRODCTN needs to have all the necessary privileges.

Suppose that ID BINDER has ROLE PRODCTN when binding in a trusted
context and that ROLE PRODCTN has the following privileges:

BINDER can bind plans and packages for owner ROLE PRODCTN because it
performs binds in a trusted context with ROLE PRODCTN.

PACKADM, the package administrator for BOWLS, can grant the CREATE
privilege with the following statement:
GRANT CREATE ON COLLECTION BOWLS TO ROLE PRODCTN;

With the plan in place, the database administrator at Spiffy wants to make the
PROGRAM1 plan available to all employees by issuing the following statement:
GRANT EXECUTE ON PLAN PROGRAM1 TO PUBLIC;

More than one ID has the authority or privileges that are necessary to issue this
statement. For example, ADMIN has SYSADM authority and can grant the
EXECUTE privilege. Also, any ID in a trusted context with ROLE PRODCTN that
owns PROGRAM1 can issue the statement. When EXECUTE is granted to PUBLIC,
other IDs do not need any explicit authority on T1.

Finally, the plan to display bowling scores at Spiffy Computer Company is
complete. The production plan, PROGRAM1, is created, and all IDs have the

authority to execute the plan.

Granting privileges for accessing distributed data
Some time after the system and database administrators at Spiffy install their
security plan, the president of Spiffy Computer Company tells them that other
applications on other systems must connect to the local DB2 subsystem. She wants
people at every location to be able to access bowling scores through PROGRAM1
on the local subsystem.

The administrators perform the following steps to enable access from all
Spiffy locations:
1. Add a CONNECT statement to the program, naming the location at which

table PRODCTN.T1 resides. In this case, the table and the package reside at
only the central location.

2. Issue the following statement so that PKA01, who has PACKADM authority,
can grant the required privileges to DEVGROUP:
GRANT CREATE IN COLLECTION BOWLS TO DEVGROUP;

3. Bind the SQL statements in PROGRAM1 as a package.

DB2 Role: PRODCTN
Privileges: BINDADD

CREATE IN collection BOWLS
Privileges on SQL objects referenced in application

Chapter 5. Managing access through authorization IDs or roles 193



4. Bind the SQL statements in PROGRAM1 as a package by the package owner:
GRANT EXECUTE ON PACKAGE PROGRAM1 TO PUBLIC;

Any system that is connected to the original DB2 location can run PROGRAM1
and execute the package by using DRDA® access. However, if the remote system is
another DB2, a plan must be bound there that includes the package in its package

list.

Revoking privileges with the REVOKE statement
You can use the REVOKE statement to remove the privileges that you explicitly
grant to an ID or a role.

For example, you can revoke the privilege that you grant to an ID by
issuing the following statement:
REVOKE authorization-specification FROM auth-id

Generally, you can revoke only the privileges that you grant. If you revoke
privileges on a procedure or package, the privileges are revoked from all versions
of that procedure or package.

However, an ID with the SYSADM or SYSCTRL authority can revoke a privilege
that has been granted by another ID with the following statement:
REVOKE authorization-specification FROM auth-id BY auth-id

The BY clause specifies the authorization ID that originally granted the privilege. If
two or more grantors grant the same privilege to an ID, executing a single
REVOKE statement does not remove the privilege. To remove it, each grant of the

privilege must be revoked.

The WITH GRANT OPTION clause of the GRANT statement allows an ID to pass
the granted privilege to others. If the privilege is removed from the ID, its deletion
can cascade to others, with side effects that are not immediately evident. For
example, when a privilege is removed from authorization ID X, it is also removed
from any ID to which X granted it, unless that ID also has the privilege from some
other source.

Example: Suppose that DBA01 grants DBCTRL authority with the GRANT option
on database DB1 to DBUTIL1. Then DBUTIL1 grants the CREATETAB privilege on
DB1 to PGMR01. If DBA01 revokes DBCTRL from DBUTIL1, PGMR01 loses the
CREATETAB privilege. If PGMR01 also granted the CREATETAB privilege to
OPER1 and OPER2, they also lose the privilege.

Example: Suppose that PGMR01 from the preceding example created table T1
while holding the CREATETAB privilege. If PGMR01 loses the CREATETAB
privilege, table T1 is not dropped, and the privileges that PGMR01 has as owner of
the table are not deleted. Furthermore, the privileges that PGMR01 grants on T1
are not deleted. For example, PGMR01 can grant SELECT on T1 to OPER1 as long
as PGMR01 owns of the table. Even when the privilege to create the table is
revoked, the table remains, the privilege remains, and OPER1 can still access T1.

Example: Consider the following REVOKE scenario:

1. DB2 does not cascade a revoke of the SYSADM authority from the installation SYSADM authorization IDs.

194 Administration Guide



1. Grant #1: SYSADM, SA01, grants SELECT on TABLE1 to USER01 with the
GRANT option.

2. Grant #2: USER01 grants SELECT on TABLE1 to USER02 with the GRANT
option.

3. Grant #3: USER02 grants SELECT on TABLE1 back to SA01.
4. USER02 then revokes SELECT on TABLE1 from SA01.

The cascade REVOKE process of Grant #3 determines if SA01 granted SELECT to
anyone else. It locates Grant #1. Because SA01 did not have SELECT from any
other source, this grant is revoked. The cascade REVOKE process then locates
Grant #2 and revokes it for the same reason. In this scenario, the single REVOKE
action by USER02 triggers and results in the cascade removal of all the grants even
though SA01 has the SYSADM authority. The SYSADM authority is not
considered.

Revoking privileges granted by multiple IDs
You can revoke the same privileges that are granted to multiple IDs at the same
time.

Suppose that DBUTIL1 grants the CREATETAB privilege to PGMR01 and
that DBUTIL2 also grants the CREATETAB privilege to PGMR01. The second grant
is recorded in the catalog, with its date and time, but it has no other effect until the
grant from DBUTIL1 to PGMR01 is revoked. After the first grant is revoked, DB2
must determine the authority that PGMR01 used to grant CREATETAB to OPER1.
The following diagram illustrates the situation; the arrows represent the granting
of the CREATETAB privilege.

Suppose that DBUTIL1 issues the GRANT statement at Time 1 and that DBUTIL2
issues the GRANT statement at Time 2. DBUTIL1 and DBUTIL2 both use the
following statement to issue the grant:
GRANT CREATETAB ON DATABASE DB1 TO PGMR01 WITH GRANT OPTION;

At Time 3, PGMR01 grants the privilege to OPER1 by using the following
statement:
GRANT CREATETAB ON DATABASE DB1 TO OPER1;

After Time 3, DBUTIL1’s authority is revoked, along with all of the privileges and
authorities that DBUTIL1 granted. However, PGMR01 also has the CREATETAB
privilege from DBUTIL2, so PGMR01 does not lose the privilege. The following
criteria determine whether OPER1 loses the CREATETAB privilege when
DBUTIL1’s authority is revoked:
v If Time 3 comes after Time 2, OPER1 does not lose the privilege. The recorded

dates and times show that, at Time 3, PGMR01 could have granted the privilege
entirely on the basis of the privilege that was granted by DBUTIL2. That
privilege was not revoked.

v If Time 3 is precedes Time 2, OPER1 does lose the privilege. The recorded dates
and times show that, at Time 3, PGMR01 could have granted the privilege only

DBUTIL2

Time 2

Time 3Time 1
DBUTIL1 PGMR01 OPER1

Figure 18. Authorization granted by two or more IDs

Chapter 5. Managing access through authorization IDs or roles 195



on the basis of the privilege that was granted by DBUTIL1. That privilege was

revoked, so the privileges that are dependent on it are also revoked.

Revoking privileges granted by all IDs
An ID with the SYSADM or SYSCTRL authority can revoke privileges that are
granted by other IDs.

To revoke the CREATETAB privileges that are granted to PGMR01 on
database DB1 by all IDs, use the following statement:
REVOKE CREATETAB ON DATABASE DB1 FROM PGMR01 BY ALL;

However, you might want to revoke only privileges that are granted by a specific
ID. To revoke privileges that are granted by DBUTIL1 and to leave intact the same
privileges if they were granted by any other ID, use the following statement:
REVOKE CREATETAB, CREATETS ON DATABASE DB1 FROM PGMR01 BY DBUTIL1;

Revoking privileges granted by a role
You can use the REVOKE statement to revoke privileges that are granted by a role
in a trusted context.

To revoke privileges that are granted by a role, you can issue the REVOKE
statement in the trusted context that was defined with the ROLE AS OBJECT
OWNER clause. Also, make sure the role that revokes a privilege matches the one
that grants the privilege. For a static REVOKE statement, the revoker is the role
that owns the plan or package. For a dynamic REVOKE statement, the role for the
primary authorization ID that executes the REVOKE statement becomes the
revoker.

An authorization ID or role that has the SYSADM or SYSCTRL authority can use
the BY (ROLE role-name) clause of the REVOKE statement to revoke privileges that
are granted by a role.

Revoking all privileges from a role
You can revoke all privileges that are assigned to a role by dropping the role itself
or by using the REVOKE statement.

When you attempt to drop a role, make sure that the role does not own
any objects. If the role owns objects, the DROP statement is terminated. If the role
does not own any objects, the role is dropped. As a result, all privileges that are

held by this role are revoked, and the revocation is cascaded.

Revoking privileges for views
If a table privilege is revoked from the owner of a view on the table, the
corresponding privilege on the view is revoked. The privilege on the view is
revoked not only from the owner of the view, but also from all other IDs to which
the owner granted the privilege.

If the SELECT privilege on the base table is revoked from the owner of the
view, the view is dropped. However, if another grantor granted the SELECT
privilege to the view owner before the view was created, the view is not dropped.

196 Administration Guide

|
|
|

|
|
|

|



Example: Suppose that OPER2 has the SELECT and INSERT privileges on table T1
and creates a view of the table. If the INSERT privilege on T1 is revoked from
OPER2, all insert privileges on the view are revoked. If the SELECT privilege on
T1 is revoked from OPER2, and if OPER2 did not have the SELECT privilege from
another grantor before the view was created, the view is dropped.

If a view uses a user-defined function, the view owner must have the EXECUTE
privilege on the function. If the EXECUTE privilege is revoked, the revoke fails
because the view is using the privilege and the RESTRICT clause prevents the
revoke.

An authorization ID with the SYSADM authority can create a view for another
authorization ID. In this case, the view could have both a creator and an owner.
The owner is automatically given the SELECT privilege on the view. However, the
privilege on the base table determines whether the view is dropped.

Example: Suppose that IDADM, with SYSADM authority, creates a view on TABLX
with OPER as the owner of the view. OPER now has the SELECT privilege on the
view, but not necessarily any privileges on the base table. If SYSADM is revoked
from IDADM, the SELECT privilege on TABLX is gone and the view is dropped.

If one ID creates a view for another ID, the catalog table SYSIBM.SYSTABAUTH
needs either one or two rows to record the associated privileges. The number of
rows that DB2 uses to record the privilege is determined by the following criteria:
v If IDADM creates a view for OPER when OPER has enough privileges to create

the view by itself, only one row is inserted in SYSTABAUTH. The row shows
only that OPER granted the required privileges.

v If IDADM creates a view for OPER when OPER does not have enough
privileges to create the view by itself, two rows are inserted in SYSTABAUTH.
One row shows IDADM as GRANTOR and OPER as GRANTEE of the SELECT
privilege. The other row shows any other privileges that OPER might have on

the view because of privileges that are held on the base table.

Revoking privileges for materialized query tables
If the SELECT privilege on a source table is revoked from the owner of a
materialized query table, the corresponding privilege on the materialized query
table is revoked. The SELECT privilege on the materialized query table is revoked
not only from the owner of the materialized query table, but also from all other
IDs to which the owner granted the SELECT privilege.

If the SELECT privilege on the source table is revoked from the owner of a
materialized query table, the materialized query table is dropped. However, if
another grantor granted the SELECT privilege to the materialized query table
owner before the materialized query table was created, the materialized query
table is not dropped.

Example: Suppose that OPER7 has the SELECT privilege on table T1 and creates a
materialized query table T2 by selecting from T1. If the SELECT privilege on T1 is
revoked from OPER7, and if OPER7 did not have the SELECT privilege from
another grantor before T2 was created, T2 is dropped.

If a materialized query table uses a user-defined function, the owner of the
materialized query table must have the EXECUTE privilege on the function. If the

Chapter 5. Managing access through authorization IDs or roles 197



EXECUTE privilege is revoked, the revoke fails because the materialized query

table is using the privilege and the RESTRICT clause prevents the revoke.

Revoking privileges for plans or packages
If the owner of an application plan or package loses a privilege that is required by
the plan or package, and the owner does not have that privilege from another
source, DB2 invalidates the plan or package.

Example: Suppose that OPER2 has the SELECT and INSERT privileges on
table T1 and creates a plan that uses SELECT, but not INSERT. When privileges are
revoked from OPER2, the plan is affected in the following ways:
v If the SELECT privilege is revoked, DB2 invalidates the plan.
v If the INSERT privilege is revoked, the plan is unaffected.
v If the revoked privilege was EXECUTE on a user-defined function, DB2 marks

the plan or package inoperative instead of invalid.

If authorization data is cached for a package and an ID loses EXECUTE authority
on the package, that ID is removed from the cache. Similarly, if authorization data
is cached for routines, a revoke or cascaded revoke of EXECUTE authority on a
routine, or on all routines in a schema (schema.*), from any ID causes the ID to be
removed from the cache.

If authorization data is cached for plans, a revoke of EXECUTE authority on the
plan from any ID causes the authorization cache to be invalidated.

If an application is caching dynamic SQL statements, and a privilege is revoked
that was needed when the statement was originally prepared and cached, that
statement is removed from the cache. Subsequent PREPARE requests for that
statement do not find it in the cache and therefore execute a full PREPARE. If the
plan or package is bound with KEEPDYNAMIC(YES), which means that the
application does not need to explicitly re-prepare the statement after a commit
operation, you might get an error on an OPEN, DESCRIBE, or EXECUTE of that
statement following the next commit operation. The error can occur because a
prepare operation is performed implicitly by DB2. If you no longer have sufficient

authority for the prepare, the OPEN, DESCRIBE, or EXECUTE request fails.

Revoking the SYSADM authority from IDs with the installation
SYSADM authority
If you revoke the SYSADM authority from an ID with the installation SYSADM
authority, DB2 does not cascade the revoke.

You can change the ID that holds the installation SYSADM authority or delete
extraneous IDs with the SYSADM authority without cascading the revoke that
these processes required.

Changing IDs with the installation SYSADM authority:

Perform these steps to change the ID that holds the installation SYSADM authority.

To change the ID that holds the installation SYSADM authority:
1. Select a new ID that you want it to have the installation SYSADM authority.
2. Grant SYSADM authority to the ID that you selected.

198 Administration Guide



3. Revoke SYSADM authority from the ID that currently holds the installation
SYSADM authority.

4. Update the SYSTEM ADMIN 1 or SYSTEM ADMIN 2 field on installation panel
DSNTIPP with the new ID that you want to grant installation SYSADM
authority.
Related information

Protection panel: DSNTIPP (Installation Guide)

Deleting extraneous IDs with the SYSADM authority:

You can perform the following steps to delete extraneous IDs with the SYSADM
authority:
1. Write down the ID that currently holds installation SYSADM authority.
2. Change the authority of the ID that you want to delete from SYSADM to

installation SYSADM. You can change the authority by updating the SYSTEM
ADMIN 1 or SYSTEM ADMIN 2 field on installation panel DSNTIPP. Replace
the ID that you write down in step 1 with the ID that you want to delete.

3. Revoke SYSADM authority from the ID that you want to delete.
4. Change the SYSTEM ADMIN 1 or SYSTEM ADMIN 2 field on installation

panel DSNTIPP back to its original value.
Related information

Protection panel: DSNTIPP (Installation Guide)

Restrictions on privilege revocation
You can specify the RESTRICT clause of the REVOKE statement to impose
limitations on privilege revocation.

Whether specified or not, the RESTRICT clause of the REVOKE statement
always applies to the following objects:
v User-defined functions
v JARs (Java classes for a routine)
v Stored procedures
v Distinct types
v Sequences

When an attempt is made to revoke a privilege on one of these objects, DB2
determines whether the revokee owns an object that is dependent on the privilege.
If such a dependency exists, the REVOKE statement proceeds only if the revokee
also holds this privilege from another grantor or holds this privilege indirectly
(such as if PUBLIC has this privilege, or if the revokee has SYSADM authority).

Example: Consider the following scenario:
1. UserA creates a user-defined function named UserA.UDFA.
2. UserA grants EXECUTE on UserA.UDFA to UserB.
3. User B then creates a user-defined function UserB.UDFB that is sourced on

UserA.UDFA.

At this point, UserA attempts to revoke the EXECUTE privilege on UserA.UDFA
from UserB. The revoke succeeds or fails based on the following criteria:
v If UserB has the EXECUTE privilege on UserA.UDFA only from UserA, the

revoke fails with an accompanying message that indicates that a dependency on
this privilege.

Chapter 5. Managing access through authorization IDs or roles 199

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.inst/db2z_dsntipp.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.inst/db2z_dsntipp.htm


v If UserB has the EXECUTE privilege on UserA.UDFA from another source,
directly or indirectly, the EXECUTE privilege that was granted by UserA is
revoked successfully.

For distinct types, the following objects that are owned by the revokee can have
dependencies:
v A table that has a column that is defined as a distinct type
v A user-defined function that has a parameter that is defined as a distinct type
v A stored procedure that has a parameter that is defined as a distinct type
v A sequence that has a parameter that is defined as a distinct type

For user-defined functions, the following objects that are owned by the revokee can
have dependencies:
v Another user-defined function that is sourced on the user-defined function
v A view that uses the user-defined function
v A table that uses the user-defined function in a check constraint or user-defined

default clause
v A trigger package that uses the user-defined function

For JARs (Java classes for a routine), the following objects that are owned by the
revokee can have dependencies:
v A Java user-defined function that uses a JAR
v A Java stored procedure that uses a JAR

For stored procedures, a trigger package that refers to the stored procedure in a
CALL statement can have dependencies.

For sequences, the following objects that are owned by the revokee can have
dependencies:
v Triggers that contain NEXT VALUE or PREVIOUS VALUE expressions that

specify a sequence
v Inline SQL routines that contain NEXT VALUE or PREVIOUS VALUE

expressions that specify a sequence

One way to ensure that the REVOKE statement succeeds is to drop the object that
has a dependency on the privilege. To determine which objects are dependent on
which privileges before attempting the revoke, use the following SELECT
statements.

For a distinct type:
v List all tables that are owned by the revokee USRT002 that contain columns that

use the distinct type USRT001.UDT1:
SELECT * FROM SYSIBM.SYSCOLUMNS WHERE

TBCREATOR = 'USRT002' AND
TYPESCHEMA = 'USRT001' AND
TYPENAME = 'UDT1' AND
COLTYPE = 'DISTINCT';

v List the user-defined functions that are owned by the revokee USRT002 that
contain a parameter that is defined as distinct type USRT001.UDT1:
SELECT * FROM SYSIBM.SYSPARMS WHERE

OWNER = 'USRT002' AND
TYPESCHEMA = 'USRT001' AND
TYPENAME = 'UDT1' AND
ROUTINETYPE = 'F';

200 Administration Guide



v List the stored procedures that are owned by the revokee USRT002 that contain
a parameter that is defined as distinct type USRT001.UDT1:
SELECT * FROM SYSIBM.SYSPARMS WHERE

OWNER = 'USRT002' AND
TYPESCHEMA = 'USRT001' AND
TYPENAME = 'UDT1' AND
ROUTINETYPE = 'P';

v List the sequences that are owned by the revokee USRT002 that contain a
parameter that is defined as distinct type USRT001.UDT1:
SELECT SYSIBM.SYSSEQUENCES.SCHEMA, SYSIBM.SYSSEQUENCES.NAME

FROM SYSIBM.SYSSEQUENCES, SYSIBM.SYSDATATYPES WHERE
SYSIBM.SYSSEQUENCES.DATATYPEID = SYSIBM.SYSDATATYPES.DATATYPEID AND
SYSIBM.SYSDATATYPES.SCHEMA ='USRT001' AND
SYSIBM.SYSDATATYPES.NAME ='UDT1';

For a user-defined function:
v List the user-defined functions that are owned by the revokee USRT002 that are

sourced on user-defined function USRT001.SPECUDF1:
SELECT * FROM SYSIBM.SYSROUTINES WHERE

OWNER = 'USRTOO2' AND
SOURCESCHEMA = 'USRTOO1' AND
SOURCESPECIFIC = 'SPECUDF1' AND
ROUTINETYPE = 'F';

v List the views that are owned by the revokee USRT002 that use user-defined
function USRT001.SPECUDF1:
SELECT * FROM SYSIBM.SYSVIEWDEP WHERE

DCREATOR = 'USRTOO2' AND
BSCHEMA = 'USRT001' AND
BNAME = 'SPECUDF1' AND
BTYPE = 'F';

v List the tables that are owned by the revokee USRT002 that use user-defined
function USRT001.A_INTEGER in a check constraint or user-defined default
clause:
SELECT * FROM SYSIBM.SYSCONSTDEP WHERE

DTBCREATOR = 'USRT002' AND
BSCHEMA = 'USRT001' AND
BNAME = 'A_INTEGER' AND
BTYPE = 'F';

v List the trigger packages that are owned by the revokee USRT002 that use
user-defined function USRT001.UDF4:
SELECT * FROM SYSIBM.SYSPACKDEP WHERE

DOWNER = 'USRT002' AND
BQUALIFIER = 'USRT001' AND
BNAME = 'UDF4' AND
BTYPE = 'F';

For a JAR (Java class for a routine), list the routines that are owned by the revokee
USRT002 and that use a JAR named USRT001.SPJAR:
SELECT * FROM SYSIBM.SYSROUTINES WHERE

OWNER = 'USRT002' AND
JARCHEMA = 'USRT001' AND
JAR_ID = 'SPJAR';

For a stored procedure that is used in a trigger package, list the trigger packages
that refer to the stored procedure USRT001.WLMLOCN2 that is owned by the
revokee USRT002:

Chapter 5. Managing access through authorization IDs or roles 201



SELECT * FROM SYSIBM.SYSPACKDEP WHERE
DOWNER = 'USRT002' AND
BQUALIFIER = 'USRT001' AND
BNAME = 'WLMLOCN2' AND
BTYPE = 'O';

For a sequence:
v List the sequences that are owned by the revokee USRT002 and that use a

trigger named USRT001.SEQ1:
SELECT * FROM SYSIBM.SYSPACKDEP WHERE

BNAME = 'SEQ1'
BQUALIFIER = 'USRT001'
BTYPE = 'Q'
DOWNER = 'USRT002'
DTYPE = 'T';

v List the sequences that are owned by the revokee USRT002 and that use a inline
SQL routine named USRT001.SEQ1:
SELECT * FROM SYSIBM.SYSSEQUENCESDEP WHERE

DCREATOR = 'USRT002'
DTYPE = 'F'
BNAME = 'SEQ1'
BSCHEMA = 'USRT001';

Managing implicit privileges
You acquire privileges implicitly through ownership of objects, including
ownership of plans and packages. You can control access to data by managing
those privileges through object ownership and stored procedures, also known as
routines.

Managing implicit privileges through object ownership
Ownership of an object carries with it a set of related privileges on the object. DB2
provides separate controls for creation and ownership of objects.

In general, when you create an object, the owner of the object can be your primary
authorization ID, one of your secondary authorization IDs, or the role that you are
associated with in a trusted context.

Ownership of objects with unqualified names
If an object name is unqualified, the object type and the way it is created
determine its ownership.

If the name of a table, view, index, alias, or synonym is unqualified, you
can establish the object’s ownership in the following ways:
v If you issue the CREATE statement dynamically, perhaps using SPUFI, QMF, or

some similar program, the owner of the created object is your current SQL ID.
That ID must have the privileges that are needed to create the object.

v If you issue the CREATE statement statically, by running a plan or package that
contains it, the ownership of the created object depends on the option that is
used for the bind operation. You can bind the plan or package with either the
QUALIFIER option, the OWNER option, or both.
– If the plan or package is bound with the QUALIFIER option only, the

authorization ID in the QUALIFIER option is the owner of the object. The

202 Administration Guide

|
|
|

|
|
|
|

|
|



QUALIFIER option allows the binder to name a qualifier to use for all
unqualified names of tables, views, indexes, aliases, or synonyms that appear
in the plan or package.

– If the plan or package is bound with the OWNER option only, the
authorization ID in the OWNER option is the owner of the object.

– If the plan or package is bound with both the QUALIFIER option and the
OWNER option, the authorization ID in the QUALIFIER option is the owner
of the object.

– If neither option is specified, the authorization ID of the binder of the plan or
package is implicitly the object owner.

If the name of a user-defined function, stored procedure, distinct type, sequence, or
trigger is unqualified, you can establish the ownership of one of these objects in
these ways:
v If you issue the CREATE statement dynamically, the owner of the created object

is your current SQL ID. That ID must have the privileges that are needed to
create the object.

v If you issue the CREATE statement statically, by running a plan or package that
contains it, the owner of the object is the plan or package owner. You can use
the OWNER bind option to explicitly name the object owner. If you do not use
the OWNER bind option, the binder of the package or plan is implicitly the
object owner.

If the name of a user-defined function, stored procedure, distinct type, sequence, or
trigger is unqualified, the implicit qualifier is determined based on the schema
name in dynamic statements and the PATH bind option in static statements. The
owner of a JAR (Java class for a routine) that is used by a stored procedure or a
user-defined function is the current SQL ID of the process that performs the

INSTALL_JAR function.

Ownership of objects with qualified names
If an object name is qualified, the type of object indicates its ownership.

If you create a table, view, index, or alias with a qualified name, the owner
of the object is the schema name. The schema name identifies the schema to which
the object belongs. You can consider all of the objects that are qualified by the
same schema name as a group of related objects.

If you create a distinct type, user-defined function, stored procedure, sequence, or
trigger with a qualified name, the owner of the object is the authorization ID of the
process. The owner of a JAR (Java class for a routine) that is used by a stored
procedure or a user-defined function is the current SQL ID of the process that

performs the INSTALL_JAR function.

Ownership of objects within a trusted context
You can simplify the administration of authorization by having roles as object
owners.

If the owner of an object is an authorization ID and you need to transfer
the ownership to another ID, you need to drop the object first and re-create it with
the new authorization ID as the owner. You don’t need to take these steps if the
owner is a role because all users that are associated with that role have the owner
privilege.

Chapter 5. Managing access through authorization IDs or roles 203

|
|
|

|
|

|
|
|

|
|

|

|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|



The definition of a trusted context determines the ownership of objects that are
created in the trusted context. Assume that you issue the CREATE statement
dynamically and that the trusted context is defined with the ROLE AS OBJECT
OWNER clause. In this case, the associated role is the owner of the objects,
regardless of whether the objects are explicitly qualified.

In contrast, assume that you issue the CREATE statement statically and that the
plan or package is bound in the trusted context with the ROLE AS OBJECT
OWNER clause. In this case, the role that owns the plan or package also owns the
objects that are created, regardless of whether the objects are explicitly qualified.

Changing object ownership
The privileges that are implicit in ownership cannot be revoked; you cannot
replace an object’s owner while the object exists. Therefore, you can change
package or plan ownership only when a package or plan exists.

You might want to share ownership privileges on an object instead of
replacing its owner. If so, make the owning ID a secondary ID to which several
primary IDs are connected. You can change the list of primary IDs connected to the
secondary ID without dropping and re-creating the object.

To change ownership of an object:
1. Drop the object, which usually deletes all privileges on it2.

2. Re-create the object with a new owner.

You can change an object owner from an authorization ID to a role by using the
CATMAINT UPDATE utility with the OWNER option. To do so, you must also
have the installation SYSADM authority, define a trusted context with the ROLE
AS OBJECT OWNER clause, and run the process in the new function mode.

For more information about this new function and its limitations, see DB2 Utility
Guide and Reference.

Granting implicit privileges of object ownership
Certain implicit privileges of ownership correspond to the privileges that can be
granted by a GRANT statement. For those that do correspond, the owner of the
object can grant the privilege to another user.

Example: The owner of a table can grant the SELECT privilege on the table
to any other user. To grant the SELECT privilege on TABLE3 to USER4, the owner
of the table can issue the following statement:
GRANT SELECT ON TABLE3 TO USER4

2. Dropping a package does not delete all privileges on it if another version of the package still remains in the catalog.

204 Administration Guide

|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|



Managing implicit privileges through plan or package
ownership

If you are a plan or package owner, you must hold privileges to perform actions
on a plan or package. You can grant to any ID the privileges to execute a plan or
package.

When the EXECUTE privilege on a plan or package is granted to an ID,
the ID can execute a plan or package without holding the privileges for every
action that the plan or package performs. However, the ID is restricted by the SQL
statements in the original program.

Example: The program might contain the following statement:
EXEC SQL

SELECT * INTO :EMPREC FROM DSN8910.EMP
WHERE EMPNO='000010';

The statement puts the data for employee number 000010 into the host structure
EMPREC. The data comes from table DSN8910.EMP, but the ID does not have
unlimited access to DSN8910.EMP. Instead, the ID that has EXECUTE privilege for
this plan can access rows in the DSN8910.EMP table only when EMPNO =
’000010’.

If any of the privileges that are required by the plan or package are revoked from
the owner, the plan or the package is invalidated. The plan or package must be

rebound, and the new owner must have the required privileges.

Establishing or changing plan or package ownership
You can use the BIND and REBIND subcommands to create or change an
application plan or a package.

On either subcommand, you can use the OWNER option to name the
owner of the resulting plan or package. Consider the following factors when
naming an owner:
v Any user can name the primary ID or any secondary ID.
v An ID with the BINDAGENT privilege can name the grantor of that privilege.
v An ID with SYSCTRL or SYSADM authority can name any authorization ID on

a BIND command, but not on a REBIND command.

If you omit the OWNER option, your primary ID becomes the owner on BIND,
and the previous owner retains ownership on REBIND.

Some systems that can bind a package at a DB2 system do not support the
OWNER option. When the OWNER option is not supported, the primary
authorization ID is always the owner of the package because a secondary ID

cannot be named as the owner.

Establishing plan and package ownership in a trusted context
You can issue the BIND and REBIND commands in a trusted context with the
ROLE AS OBJECT OWNER clause to specify the ownership of a plan or package.
In this trusted context, you can specify only a role, not an authorization ID, as the
OWNER of a plan or package.

Chapter 5. Managing access through authorization IDs or roles 205

|
|
|
|
|



If you specify the OWNER option, the specified role becomes the owner of
the plan or package. If you don’t specify the OWNER option, the role that is
associated with the binder becomes the owner. If the ROLE AS OBJECT OWNER
clause is omitted for the trusted context, the current rules for plan and package
ownership apply.

Considerations: If you want a role to own the package at the remote DB2, you
need to define the role ownership in the trusted context at the remote server. Make
sure to establish the connection to the remote DB2 as trusted when binding or
re-binding the package at the remote server.

If you specify the OWNER option in a trusted connection during the remote BIND
processing, the outbound authorization ID translation is not performed for the
OWNER.

If the plan owner is a role and the application uses a package bound at a remote
DB2 for z/OS server, the privilege of the plan owner to execute the package is not
considered at the remote DB2 server. The privilege set of the authorization ID
(either the package owner or the process runner determined by the
DYNAMICRULES behavior) at the DB2 for z/OS server must have the EXECUTE

privilege on the package at the DB2 server.

How DB2 resolves unqualified names
A plan or package can contain SQL statements that use unqualified table and view
names.

For static SQL, the default qualifier for those names is the owner of the
plan or package. However, you can use the QUALIFIER option of the BIND
command to specify a different qualifier. For static statements, the PATH bind
option determines the path that DB2 searches to resolve unqualified distinct types,
user-defined functions, stored procedures, sequences, and trigger names.

When you perform bind operations on packages or plans that contain static SQL,
you should use group and ROLE authority rather than individual ID authority
whenever possible. The combinations of OWNER, QUALIFIER, SCHEMA, and
ROLE ownership provide you more flexibility.

For plans or packages that contain dynamic SQL, DYNAMICRULES behavior
determines how DB2 qualifies unqualified object names. For unqualified distinct
types, user-defined functions, stored procedures, sequences, and trigger names in
dynamic SQL statements, DB2 uses the schema name as the qualifier. DB2 finds the
schema name in the CURRENT PATH special register. For unqualified tables,
views, aliases, and indexes, DB2 uses the CURRENT SCHEMA special register as
the qualifier.

Exception: ALTER, CREATE, DROP, COMMENT ON, GRANT, and REVOKE
statements follow different conventions for assigning qualifiers. For static SQL, you
must specify the qualifier for these statements in the QUALIFIER bind option. For
dynamic SQL, the qualifier for these statements is the value in the CURRENT

SCHEMA special register.

206 Administration Guide

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|

|

|
|
|
|



Validating authorization for executing plans or packages
The plan or package owner must have authorization to execute all static SQL
statements that are embedded in the plan or package. A bind operation always
checks whether a local object exists and whether the owner has the required
privileges on it.

However, you do not need to have the authorization when the plan or
package is bound. The objects to which the plan or package refers do not even
need to exist at bind time. If the initial checking fails, an error message is returned.
You can choose whether the failure prevents the bind operation from completion
by using the VALIDATE option on the BIND PLAN and BIND PACKAGE
commands.

The following values for the VALIDATE option determine how DB2 is to handle
existence and authorization errors:

RUN If you choose RUN for the VALIDATE option, the bind succeeds even
when existence or authorization errors exist. DB2 checks existence and
authorization at run time.

BIND If you choose BIND for the VALIDATE option, which is recommended, the
bind fails when existence or authorization errors exist. Exception: If you
use the SQLERROR(CONTINUE) option on the BIND PACKAGE
command, the bind succeeds, but the package’s SQL statements that have
errors cannot execute.

The corresponding existence and authorization checks for remote objects are
always made at run time. Authorization to execute dynamic SQL statements is also
checked at run time. Applications that use the Resource Recovery Services

attachment facility (RRSAF) to connect to DB2 do not require a plan.

Checking authorization at a DB2 database server:

A remote requester, either a DB2 for z/OS server or other requesting system, runs
a package at the DB2 intermediate server. As shown in the following diagram, a
statement in the package uses an alias or a three-part name to request services
from a DB2 database server.

The ID that is checked for the required privileges to run at the DB2 database server
can be:

Requester

DB2 intermediate server
(Process runner)

DB2 database server

Runs a package

Figure 19. Execution at a second DB2 server

Chapter 5. Managing access through authorization IDs or roles 207



v The owner of the plan, if not a role, that is running at the requester site (if the
requester is DB2 for z/OS)
If the owner of the plan is a role and the application uses a package bound at a
remote DB2 for z/OS server, the authorization ID at the DB2 for z/OS server
must have the EXECUTE privilege on the package at the DB2 server. The
authorization ID can be the package owner or the process runner that is
determined by the DYNAMICRULES behavior.

v The owner of the package that is running at the DB2 server

In addition, if a remote alias is used in the SQL statement, the alias must be
defined at the requester site. The ID that is used depends on the following factors:
v Whether the requester is a DB2 for z/OS server or a different system
v The value of the DYNAMICRULES bind option
v Whether the HOPAUTH parameter at the DB2 server site is set to BOTH or

RUNNER when the DSNTIJUZ installation job is run. The default value is
BOTH.

v Whether the SQL statement that is executed at the DB2 database server is static
or dynamic

Note: When the DBPROTOCOL(PRIVATE) bind option is in effect for execution at
the DB2 database server or the second DB2 server, the ID that is checked for the
privileges that are needed to run at the second server can be:
v The owner of the plan that is running at the requester (if the requester is DB2

for z/OS)
v The owner of the package that is running at the DB2 server
v The authorization ID of the process that runs the package at the first DB2 server

(the “process runner”)

Checking authorization for executing an RRSAF application without a plan:

RRSAF provides the capability for an application to connect to DB2 and run
without a DB2 plan.

If an RRSAF application does not have a plan, the following authorization rules are
true:
v For the following types of packages, the primary or secondary authorization ID

and role of the process are used for checking authorization to execute the
package:
– A local package
– A remote package that is on a DB2 for z/OS system and is accessed using

DRDA
v At a DB2 for z/OS system, the authorization to execute the DESCRIBE TABLE

statement includes checking the primary and secondary authorization IDs.
v For a double hop situation, the authorization ID that must hold the required

privileges to execute SQL statements at the second server is determined as if the
requester is not a DB2 for z/OS system.

Caching authorization IDs for better performance
You can specify that DB2 is to cache authorization IDs for plans, packages, or
routines (user-defined functions and stored procedures). Caching IDs can help
improve performance, especially when IDs are frequently reused.

208 Administration Guide

|



One cache exists for each plan, one global cache exists for packages, and a global
cache exists for routines. The global cache for packages and routines are allocated
at the DB2 startup. For a data sharing group, each member does its own
authorization caching.

Caching authorization IDs for plans:

Authorization checking is fastest when the EXECUTE privilege is granted to
PUBLIC and when the plan is reused by an ID or role that already appears in the
cache.

You can set the size of the plan authorization cache by using the BIND
PLAN subcommand. The default cache size is specified by an installation option,

with an initial default setting of 3072 bytes.

Caching authorization IDs for packages:

Caching authorization IDs for packages can provide runtime benefits for handling
certain objects.

The following objects can benefit from package authorization cache at run time:

v Stored procedures
v Remotely bound packages
v Local packages in a package list in which the plan owner does not have execute

authority on the package at bind time, but does at run time
v Local packages that are not explicitly listed in a package list, but are implicitly

listed by collection-id.*, *.*, or *.package-id

You can set the size of the package authorization cache by using the PACKAGE
AUTH CACHE field on the DSNTIPP installation panel. The default value, 100 KB,
is enough storage to support about 690 collection-id.package-id entries or
collection-id.* entries.

You can cache more package authorization information by using any of the
following strategies:
v Granting package execute authority to collection.*
v Granting package execute authority to PUBLIC for some packages or collections
v Increasing the size of the cache
v Granting package authority to a secondary ID or role when running in a trusted

context.

The QTPACAUT field in the package accounting trace indicates how often DB2

succeeds at reading package authorization information from the cache.

Caching authorization IDs for routines:

The routine authorization cache stores authorization IDs with the EXECUTE
privilege on a specific routine.

A routine is identified as schema.routine-name.type, where the routine name
is one of the following names:
v The specific function name for user-defined functions
v The procedure name for stored procedures

Chapter 5. Managing access through authorization IDs or roles 209

|



v ’*’ for all routines in the schema

You can set the size of the routine authorization cache by using the ROUTINE
AUTH CACHE field on the DSNTIPP installation panel. The initial default size of
100 KB is enough storage to support about 690schema.routine.type or
schema.*.typeentries.

You can cache more authorization information about routines by using the
following strategies:
v Granting EXECUTE on schema.*

v Granting routine execute authority to PUBLIC for some or all routines in the
schema

v Increasing the size of the cache
v Granting package authority to a secondary ID or role when running in a trusted

context.

Authorizing plan or package access through applications
Because an ID executes a package or plan by running an application program,
implementing control measures in an application program can be useful.

Example: Consider the following SQL statement:
EXEC SQL

SELECT * INTO :EMPREC FROM DSN8910.EMP
WHERE EMPNO='000010';

The statement permits access to the row of the employee table WHERE
EMPNO=’000010’. If you replace the value 000010 with a host variable, the
program could supply the value of the variable and permit access to various
employee numbers. Routines in the program could limit that access to certain IDs,
certain times of the day, certain days of the week, or other special circumstances.

Stored procedures provide an alternative to controls in the application. By
encapsulating several SQL statements into a single message to the DB2 server, a
stored procedure can protect sensitive portions of the application program. Also,
stored procedures can include access to non-DB2 resources, as well as DB2.

Recommendation: Do not use programs to extend security. Whenever possible, use
other techniques, such as stored procedures or views, as a security mechanism.
Using programs to extend security has the following drawbacks:
v Program controls are separate from other access controls, can be difficult to

implement properly, are difficult to audit, and are relatively simple to bypass.
v Almost any debugging facility can be used to bypass security checks in a

program.
v Other programs might use the plan without doing the needed checking.
v Errors in the program checks might allow unauthorized access.
v Because the routines that check security might be quite separate from the SQL

statement, the security check could be entirely disabled without requiring a bind
operation for a new plan.

v A BIND REPLACE operation for an existing plan does not necessarily revoke the
existing EXECUTE privileges on the plan. (Revoking those privileges is the
default, but the plan owner has the option to retain them. For packages, the
EXECUTE privileges are always retained.)

210 Administration Guide



For those reasons, if the program accesses any sensitive data, the EXECUTE
privileges on the plan and on packages are also sensitive. They should be granted

only to a carefully planned list of IDs.

Restricting access of plans or packages to particular systems:

If you use controls in an application program, you can limit the access of a plan or
package to the particular systems for which it was designed.

DB2 does not ensure that only specific programs are used with a plan, but
program-to-plan control can be enforced in IMS and CICS. DB2 provides a
consistency check to avoid accidental mismatches between program and plan, but
the consistency check is not a security check.

You can use the the ENABLE and DISABLE options on the BIND and REBIND
subcommands to restrict access of plans and packages to a particular system.

Example: The ENABLE IMS option allows the plan or package to run from any
IMS connection. Unless other systems are also named, ENABLE IMS does not
allow the plan or package to run from any other type of connection.

Example: DISABLE BATCH prevents a plan or package from running through a
batch job, but it allows the plan or package to run from all other types of
connection.

You can exercise even finer control with the ENABLE and DISABLE options. You
can enable or disable particular IMS connection names, CICS application IDs,

requesting locations, and so forth.

Authorization checking for executing packages remotely:

The privileges that are required for a remote bind (BIND PACKAGE
location.collection) must be granted at the server location.

The ID that owns the package must have all of the privileges that are
required to run the package at the server, and BINDADD3 and CREATE IN
privileges at the server.

Exceptions:

v For a BIND COPY operation, the owner must have the COPY privilege at the
local DB2 site or subsystem, where the package that is being copied resides.

v If the creator of the package is not the owner, the creator must have SYSCTRL
authority or higher, or must have been granted the BINDAGENT privilege by
the owner. That authority or privilege is granted at the local DB2.

Binding a plan with a package list (BIND PLAN PKLIST) is done at the local DB2,
and bind privileges must be held there. Authorization to execute a package at a
remote location is checked at execution time, as follows:
v For DB2 private protocol, the owner of the plan at the requesting DB2 must

have EXECUTE privilege for the package at the DB2 server.

3. Or BIND, depending on the installation option BIND NEW PACKAGE.

Chapter 5. Managing access through authorization IDs or roles 211



v For DRDA, if the server is a DB2 for z/OS subsystem, the authorization ID of
the process (primary ID or any secondary ID) must have EXECUTE privilege for
the package at the DB2 server.

v If the server is not DB2 for z/OS, the primary authorization ID must have

whatever privileges are needed. Check that product’s documentation.

Managing implicit privileges through routines
You can control authorization checking by using a DB2-supplied exit routine or an
exit routine that you write. If your installation uses one of these access control
authorization exit routines, you can use it, instead of other methods, to control
authorization checking.

Privileges required for executing routines
A number of steps are involved in implementing, defining, and invoking
user-defined functions and stored procedures, which are also called routines.

The following table summarizes the common tasks and the privileges that
are required for executing routines.

Table 49. Common tasks and required privileges for routines

Role Tasks Required privileges

Implementer If SQL is in the routine: codes, precompiles,
compiles, and link-edits the program to use as the
routine. Binds the program as the routine
package.

If no SQL is in the routine: codes, compiles, and
link-edits the program.

If binding a package, BINDADD system
privilege and CREATE IN on the collection.

Definer Issues a CREATE FUNCTION statement to define
a user-defined function or CREATE PROCEDURE
statement to define a stored procedure.

CREATEIN privilege on the schema. EXECUTE
authority on the routine package when
invoked.

Invoker Invokes a routine from an SQL application. EXECUTE authority on the routine.

The routine implementer typically codes the routine in a program and precompiles
the program. If the program contains SQL statements, the implementer binds the
DBRM. In general, the authorization ID that binds the DBRM into a package is the
package owner. The implementer is the routine package owner. As package owner,
the implementer implicitly has EXECUTE authority on the package and has the
authority to grant EXECUTE privileges to other users to execute the code within
the package.

The implementer grants EXECUTE authority on the routine package to the definer.
EXECUTE authority is necessary only if the package contains SQL. For
user-defined functions, the definer requires EXECUTE authority on the package.
For stored procedures, the EXECUTE privilege on the package is checked for the
definer and other IDs.

The routine definer owns the routine. The definer issues a CREATE FUNCTION
statement to define a user-defined function or a CREATE PROCEDURE statement
to define a stored procedure. The definer of a routine is determined as follows:
v If the SQL statement is embedded in an application program, the definer is the

authorization ID of the owner of the plan or package.

212 Administration Guide



v If the SQL statement is dynamically prepared, the definer is the SQL
authorization ID that is contained in the CURRENT SQLID special register. If the
SQL statement is executed in a trusted context that is specified with the ROLE
AS OBJECT OWNER clause, the definer is the role in effect.

The definer grants EXECUTE authority on the routine to the invoker, that is, any
user that needs to invoke the routine.

The routine invoker invokes the routine from an SQL statement in the invoking
plan or package. The invoker for a routine is determined as follows:
v For a static statement, the invoker is the plan or package owner.
v For a dynamic statement, the invoker depends on DYNAMICRULES behavior.

Granting privileges through routines
The following example describes how to get a routine up and running, and how to
use and assign the required privileges and authorizations. The routine in the
example is an external user-defined function. The steps in the example are divided
by the implementer, definer, and invoker roles.

Implementing a user-defined function:

To implement a user-defined function, the implementer performs the following
steps:

1. The implementer codes a program that implements the user-defined function.
Assume that the implementer codes the following external user-defined
function in C and names the function C_SALARY:
/**********************************************************************
* This routine accepts an employee serial number and a percent raise. *
* If the employee is a manager, the raise is not applied. Otherwise, *
* the new salary is computed, truncated if it exceeds the employee's *
* manager's salary, and then applied to the database. *
**********************************************************************/
void C_SALARY /* main routine */
( char *employeeSerial /* in: employee serial no. */

decimal *percentRaise /* in: percentage raise */
decimal *newSalary, /* out: employee's new salary */
short int *niEmployeeSerial /* in: indic var, empl ser */
short int *niPercentRaise /* in: indic var, % raise */
short int *niNewSalary, /* out: indic var, new salary */
char *sqlstate, /* out: SQLSTATE */
char *fnName, /* in: family name of function*/
char *specificName, /* in: specific name of func */
char *message /* out: diagnostic message */

)
{

EXEC SQL BEGIN DECLARE SECTION;
char hvEMPNO-7-; /* host var for empl serial */
decimal hvSALARY; /* host var for empl salary */
char hvWORKDEPT-3-; /* host var for empl dept no. */
decimal hvManagerSalary; /* host var,emp's mgr's salary*/
EXEC SQL END DECLARE SECTION;

sqlstate = 0;
memset( message,0,70 );
/*******************************************************************
* Copy the employee's serial into a host variable *

Chapter 5. Managing access through authorization IDs or roles 213

|
|
|



*******************************************************************/
strcpy( hvEMPNO,employeeSerial );
/*******************************************************************
* Get the employee's work department and current salary *
*******************************************************************/
EXEC SQL SELECT WORKDEPT, SALARY

INTO :hvWORKDEPT, :hvSALARY
FROM EMP
WHERE EMPNO = :hvEMPNO;

/*******************************************************************
* See if the employee is a manager *
*******************************************************************/
EXEC SQL SELECT DEPTNO

INTO :hvWORKDEPT
FROM DEPT
WHERE MGRNO = :hvEMPNO;

/*******************************************************************
* If the employee is a manager, do not apply the raise *
*******************************************************************/
if( SQLCODE == 0 )

{
newSalary = hvSALARY;

}
/*******************************************************************
* Otherwise, compute and apply the raise such that it does not *
* exceed the employee's manager's salary *
*******************************************************************/
else

{
/***************************************************************
* Get the employee's manager's salary *
***************************************************************/
EXEC SQL SELECT SALARY

INTO :hvManagerSalary
FROM EMP
WHERE EMPNO = (SELECT MGRNO

FROM DSN8610.DEPT
WHERE DEPTNO = :hvWORKDEPT);

/***************************************************************
* Compute proposed raise for the employee *
***************************************************************/
newSalary = hvSALARY * (1 + percentRaise/100);
/***************************************************************
* Don't let the proposed raise exceed the manager's salary *
***************************************************************/
if( newSalary > hvManagerSalary

newSalary = hvManagerSalary;
/***************************************************************
* Apply the raise *
***************************************************************/
hvSALARY = newSalary;
EXEC SQL UPDATE EMP

SET SALARY = :hvSALARY
WHERE EMPNO = :hvEMPNO;

}

return;
} /* end C_SALARY */

The implementer requires the UPDATE privilege on table EMP. Users with the
EXECUTE privilege on function C_SALARY do not need the UPDATE privilege
on the table.

2. Because this program contains SQL, the implementer performs the following
steps:
a. Precompile the program that implements the user-defined function.

214 Administration Guide



b. Link-edit the user-defined function with DSNRLI (RRS attachment facility),
and name the program’s load module C_SALARY.

c. Bind the DBRM into package MYCOLLID.C_SALARY.
After performing these steps, the implementer is the function package owner.

3. The implementer then grants EXECUTE privilege on the user-defined function
package to the definer.
GRANT EXECUTE ON PACKAGE MYCOLLID.C_SALARY
TO definer

As package owner, the implementer can grant execute privileges to other users,
which allows those users to execute code within the package. For example:
GRANT EXECUTE ON PACKAGE MYCOLLID.C_SALARY

TO other_user

Defining a user-defined function:

To define a user-defined function, the definer performs the following steps:

1. The definer executes the following CREATE FUNCTION statement to define
the user-defined function salary_change to DB2:
CREATE FUNCTION

SALARY_CHANGE(
VARCHAR( 6 )
DECIMAL( 5,2 ) )

RETURNS
DECIMAL( 9,2 )

SPECIFIC schema.SALCHANGE
LANGUAGE C
DETERMINISTIC
MODIFIES SQL DATA
EXTERNAL NAME C_SALARY
PARAMETER STYLE DB2SQL
RETURNS NULL ON NULL CALL
NO EXTERNAL ACTION
NO SCRATCHPAD
NO FINAL CALL
ALLOW PARALLEL
NO COLLID
ASUTIME LIMIT 1
STAY RESIDENT NO
PROGRAM TYPE SUB
WLM ENVIRONMENT WLMENV
SECURITY DB2
NO DBINFO;

After executing the CREATE FUNCTION statement, the definer owns the
user-defined function. The definer can execute the user-defined function
package because the user-defined function package owner, in this case the
implementer, granted to the definer the EXECUTE privilege on the package
that contains the user-defined function.

2. The definer then grants the EXECUTE privilege on SALARY_CHANGE to all
function invokers.
GRANT EXECUTE ON FUNCTION SALARY_CHANGE

TO invoker1, invoker2, invoker3, invoker4

Chapter 5. Managing access through authorization IDs or roles 215



Using a user-defined function:

To use a user-defined function, the invoker performs the following steps:

1. The invoker codes an application program, named SALARY_ADJ. The
application program contains a static SQL statement that invokes the
user-defined function SALARY_CHANGE. SALARY_CHANGE gives an
employee a 10% raise if the employee is not a manager. The static SQL
statement follows:
EXEC SQL SELECT FIRSTNME,

LASTNAME
SALARY_CHANGE( :hvEMPNO, 10.0 )

INTO :hvFIRSTNME,
:hvLASTNAME,
:hvSALARY

FROM EMP
WHERE EMPNO = :hvEMPNO;

2. The invoker then precompiles, compiles, link-edits, and binds the invoking
application’s DBRM into the invoking package or invoking plan. An invoking
package or invoking plan is the package or plan that contains the SQL that
invokes the user-defined function. After performing these steps, the invoker is
the owner of the invoking plan or package.
Restriction: The invoker must hold the SELECT privilege on the table EMP and

the EXECUTE privilege on the function SALARY_CHANGE.

Authorization ID validation:

DB2 uses the rules for static SQL to determine the authorization ID (invoker) that
executes the user-defined function package. For a static statement, the invoker is
the authorization ID of the plan or package owner.

The invoking package SALARY_ADJ contains a static SQL SELECT
statement that invokes the user-defined function SALARY_CHANGE.
v While execution occurs in invoking package SALARY_ADJ, DB2 uses the

authorization ID of the invoker (the package owner).
The invoker requires the EXECUTE privilege on the user-defined function
SALARY_CHANGE, which the package SALARY_ADJ invokes. Because the
user-defined function definer has the EXECUTE privilege on the user-defined
function package C_SALARY, the invoker does not require the explicit EXECUTE
privilege.

v When execution changes to the user-defined function package C_SALARY, DB2
uses the authorization ID of the implementer (the package owner). The package
owner is the authorization ID with authority to execute all static SQL in the

user-defined function package C_SALARY.

Authorization behaviors for dynamic SQL statements
The two key factors that influence authorization behaviors are the
DYNAMICRULES value and the runtime environment of a package. The
combination of the DYNAMICRULES value and the runtime environment
determine the values for the dynamic SQL attributes. Those attribute values are
called the authorization behaviors.

216 Administration Guide



The DYNAMICRULES option on the BIND or REBIND command
determines the values that apply at run time for the following dynamic SQL
attributes:
v The authorization ID or role that is used to check authorization
v The qualifier that is used for unqualified objects
v The source for application programming options that DB2 uses to parse and

semantically verify dynamic SQL statements

The DYNAMICRULES option also determines whether dynamic SQL statements
can include GRANT, REVOKE, ALTER, CREATE, DROP, and RENAME statements.

In addition to the DYNAMICRULES value, the runtime environment of a package
controls how dynamic SQL statements behave at run time. The two possible
runtime environments are:
v The package runs as part of a stand-alone program.
v The package runs as a stored procedure or user-defined function package, or

runs under a stored procedure or user-defined function.
A package that runs under a stored procedure or user-defined function is a
package whose associated program meets one of the following conditions:
– The program is called by a stored procedure or user-defined function.
– The program is in a series of nested calls that start with a stored procedure or

user-defined function.

Run behavior:

DB2 processes dynamic SQL statements by using their standard attribute values.
These attributes are collectively called the run behavior.

The run behavior consists of the following attributes:

v DB2 uses the authorization IDs (primary, secondary and the current SQL
ID) of the application process to check for authorization of dynamic SQL
statements. It also checks the role in effect if running in a trusted context.

v Dynamic SQL statements use the values of application programming options
that were specified during installation. The installation option USE FOR
DYNAMICRULES has no effect.

v The GRANT, REVOKE, CREATE, ALTER, DROP, and RENAME statements can

be executed dynamically.

Bind behavior:

DB2 uses the bind behavior to process dynamic SQL statements.

The bind behavior consists of the following attributes:
v DB2 uses the authorization ID or role of the plan or package for authorization

checking of dynamic SQL statements.
v Unqualified table, view, index, and alias names in dynamic SQL statements are

implicitly qualified by the default schema, which is the value of the bind option
QUALIFIER. If you do not specify the QUALIFIER bind option, DB2 uses the
plan or package owner as the qualifier.

Chapter 5. Managing access through authorization IDs or roles 217

|
|
|

|
|

|
|
|
|



The values of the authorization ID or role and the qualifier for unqualified
objects are the same as those that are used for embedded or static SQL
statements.

v The bind behavior consists of the common attribute values for bind, define, and

invoke behaviors.

Define behavior:

When the package is run as or under a stored procedure or a user-defined function
package, DB2 processes dynamic SQL statements by using the define behavior.

The define behavior consists of the following attribute values:
v DB2 uses the authorization ID or role of the user-defined function or the stored

procedure owner for authorization checking of dynamic SQL statements in the
application package.

v The default qualifier for unqualified objects is the user-defined function or the
stored procedure owner.

v Define behavior consists of the common attribute values for bind, define, and
invoke behaviors.

When the package is run as a stand-alone program, DB2 processes dynamic SQL
statements using bind behavior or run behavior, depending on the

DYNAMICRULES value specified.

Invoke behavior:

When the package is run as or under a stored procedure or a user-defined function
package, DB2 processes dynamic SQL statements by using the invoke behavior.

The invoke behavior consists of the following attribute values:
v DB2 uses the authorization ID of the user-defined function or the stored

procedure invoker to check the authorization for dynamic SQL statements in the
application package. It uses the following rules:
– The current SQL ID of the invoker is checked for the required authorization.
– Secondary authorization IDs and roles that are associated with the primary

authorization ID are also checked if they are needed for the required
authorization.

v The default qualifier for unqualified objects is the user-defined function or the
stored procedure invoker.

v Invoke behavior consists of the common attribute values for bind, define, and
invoke behaviors.

When the package is run as a stand-alone program, DB2 processes dynamic SQL
statements using bind behavior or run behavior, depending on the

DYNAMICRULES specified value.

Common attribute values for bind, define, and invoke behaviors:

Certain attribute values apply to dynamic SQL statements in plans or packages
that specify the bind, define, or invoke behavior.

218 Administration Guide

|
|
|



The following attribute values apply:

v You can execute the statement SET CURRENT SQLID in a package or
plan that is bound with any DYNAMICRULES value. However, DB2 does not
use the current SQL ID as the authorization ID for dynamic SQL statements.
DB2 always uses the current SQL ID as the qualifier for the EXPLAIN output
PLAN_TABLE.

v If the value of installation option USE FOR DYNAMICRULES is YES, DB2 uses
the application programming default values that were specified during
installation to parse and semantically verify dynamic SQL statements. If the
value of USE for DYNAMICRULES is NO, DB2 uses the precompiler options to
parse and semantically verify dynamic SQL statements.

v The GRANT, REVOKE, CREATE, ALTER, DROP, and RENAME statements
cannot be executed dynamically.

The following table shows the DYNAMICRULES values and runtime
environments, and the dynamic SQL behaviors that they yield.

Table 50. How DYNAMICRULES and the runtime environment determine dynamic SQL statement behavior

DYNAMICRULES value

Behavior of dynamic SQL statements

Stand-alone program environment
User-defined function or stored
procedure environment

BIND Bind behavior Bind behavior

RUN Run behavior Run behavior

DEFINEBIND Bind behavior Define behavior

DEFINERUN Run behavior Define behavior

INVOKEBIND Bind behavior Invoke behavior

INVOKERUN Run behavior Invoke behavior

The following table shows the dynamic SQL attribute values for each type of
dynamic SQL behavior.

Table 51. Definitions of dynamic SQL statement behaviors

Dynamic SQL attribute

Setting for dynamic SQL attributes

Bind behavior Run behavior Define behavior Invoke behavior

Authorization ID Plan or package
owner

Authorization IDs of
the process and role,
if applicable

User-defined
function or stored
procedure owner

Authorization ID of
invoker 1

Default qualifier for
unqualified objects

Bind OWNER or
QUALIFIER value

Current Schema
register determines
the qualifier

User-defined
function or stored
procedure owner

Authorization ID of
invoker or role

CURRENT SQLID 2 Not applicable Applies Not applicable Not applicable

Source for application
programming options

Determined by
DSNHDECP
parameter
DYNRULS 3

Install panel
DSNTIPF

Determined by
DSNHDECP
parameter
DYNRULS 3

Determined by
DSNHDECP
parameter
DYNRULS 3

Can execute GRANT,
REVOKE, CREATE,
ALTER, DROP, RENAME?

No Yes No No

Chapter 5. Managing access through authorization IDs or roles 219



1. If the invoker is the primary authorization ID of the process or the current SQL
ID, the following rules apply:
v The ID or role of the invoker is checked for the required authorization.
v Secondary authorization IDs are also checked if they are needed for the

required authorization.
2. DB2 uses the current SQL ID as the authorization ID for dynamic SQL

statements only for plans and packages that have DYNAMICRULES run
behavior. For the other dynamic SQL behaviors, DB2 uses the authorization ID
that is associated with each dynamic SQL behavior, as shown in this table.
The initial current SQL ID is independent of the dynamic SQL behavior. For
stand-alone programs, the current SQL ID is initialized to the primary
authorization ID.You can execute the SET CURRENT SQLID statement to
change the current SQL ID for packages with any dynamic SQL behavior, but
DB2 uses the current SQL ID only for plans and packages with run behavior.

3. The value of DSNHDECP parameter DYNRULS, which you specify in field
USE FOR DYNAMICRULES in installation panel DSNTIPF, determines whether
DB2 uses the precompiler options or the application programming defaults for

dynamic SQL statements.

Determining authorization IDs for dynamic SQL statements in routines:

You can determine the authorization IDs under which dynamic SQL statements in
routines run based on various factors. These factors include the ownership of the
stored procedure or the stored procedure package.

Suppose that A is a stored procedure and C is a program that is neither a
user-defined function nor a stored procedure. Also suppose that subroutine B is
called by both stored procedure A and program C. Subroutine B, which is invoked
by a language call, is neither a user-defined function nor a stored procedure. AP is
the package that is associated with stored procedure A, and BP is the package that
is associated with subroutine B. A, B, and C execute as shown in the following
diagram.

220 Administration Guide



Stored procedure A was defined by IDASP and is therefore owned by IDASP. The
stored procedure package AP was bound by IDA and is therefore owned by IDA.
Package BP was bound by IDB and is therefore owned by IDB. The authorization
ID under which EXEC SQL CALL A runs is IDD, the owner of plan DP.

The authorization ID under which dynamic SQL statements in package AP run is
determined in the following way:
v If package AP uses DYNAMICRULES bind behavior, the authorization ID for

dynamic SQL statements in package AP is IDA, the owner of package AP.
v If package AP uses DYNAMICRULES run behavior, the authorization ID for

dynamic SQL statements in package AP is the value of CURRENT SQLID when
the statements execute.

v If package AP uses DYNAMICRULES define behavior, the authorization ID for
dynamic SQL statements in package AP is IDASP, the definer (owner) of stored
procedure A.

v If package AP uses DYNAMICRULES invoke behavior, the authorization ID for
dynamic SQL statements in package AP is IDD, the invoker of stored procedure
A.

The authorization ID under which dynamic SQL statements in package BP run is
determined in the following way:
v If package BP uses DYNAMICRULES bind behavior, the authorization ID for

dynamic SQL statements in package BP is IDB, the owner of package BP.

Program C

Program D

Package AP

Plan DP

Package BP

Package owner: IDB
DYNAMICRULES(...)

Stored procedure A

EXEC SQL CALL A(...)
(Authorization ID IDD)

Definer (owner): IDASP

Package owner: IDA
DYNAMICRULES(...)

Plan owner: IDD

Subroutine B

Call B(...) Call B(...)

Figure 20. Authorization for dynamic SQL statements in programs and routines

Chapter 5. Managing access through authorization IDs or roles 221



v If package BP uses DYNAMICRULES run behavior, the authorization ID for
dynamic SQL statements in package BP is the value of CURRENT SQLID when
the statements execute.

v If package BP uses DYNAMICRULES define behavior:
– When subroutine B is called by stored procedure A, the authorization ID for

dynamic SQL statements in package BP is IDASP, the definer of stored
procedure A.

– When subroutine B is called by program C:
- If package BP uses the DYNAMICRULES option DEFINERUN, DB2

executes package BP using DYNAMICRULES run behavior, which means
that the authorization ID for dynamic SQL statements in package BP is the
value of CURRENT SQLID when the statements execute.

- If package BP uses the DYNAMICRULES option DEFINEBIND, DB2
executes package BP using DYNAMICRULES bind behavior, which means
that the authorization ID for dynamic SQL statements in package BP is IDB,
the owner of package BP.

v If package BP uses DYNAMICRULES invoke behavior:
– When subroutine B is called by stored procedure A, the authorization ID for

dynamic SQL statements in package BP is IDD, the authorization ID under
which EXEC SQL CALL A executed.

– When subroutine B is called by program C:
- If package BP uses the DYNAMICRULES option INVOKERUN, DB2

executes package BP using DYNAMICRULES run behavior, which means
that the authorization ID for dynamic SQL statements in package BP is the
value of CURRENT SQLID when the statements execute.

- If package BP uses the DYNAMICRULES option INVOKEBIND, DB2
executes package BP using DYNAMICRULES bind behavior, which means
that the authorization ID for dynamic SQL statements in package BP is IDB,
the owner of package BP.

Now suppose that B is a user-defined function, as shown in the following diagram.

222 Administration Guide



User-defined function B was defined by IDBUDF and is therefore owned by ID
IDBUDF. Stored procedure A invokes user-defined function B under authorization
ID IDA. Program C invokes user-defined function B under authorization ID IDC.
In both cases, the invoking SQL statement (EXEC SQL SELECT B) is static.

The authorization ID under which dynamic SQL statements in package BP run is
determined in the following way:
v If package BP uses DYNAMICRULES bind behavior, the authorization ID for

dynamic SQL statements in package BP is IDB, the owner of package BP.
v If package BP uses DYNAMICRULES run behavior, the authorization ID for

dynamic SQL statements in package BP is the value of CURRENT SQLID when
the statements execute.

v If package BP uses DYNAMICRULES define behavior, the authorization ID for
dynamic SQL statements in package BP is IDBUDF, the definer of user-defined
function B.

v If package BP uses DYNAMICRULES invoke behavior:
– When user-defined function B is invoked by stored procedure A, the

authorization ID for dynamic SQL statements in package BP is IDA, the
authorization ID under which B is invoked in stored procedure A.

– When user-defined function B is invoked by program C, the authorization ID
for dynamic SQL statements in package BP is IDC, the owner of package CP,

and is the authorization ID under which B is invoked in program C.

Program C

Program D

Package AP

Plan DP

Package CP

Package BP

Package owner: IDB
DYNAMICRULES(...)

Stored Procedure A

EXEC SQL CALL A(...)
(Authorization ID IDD)

Definer (owner): IDASP

Package owner: IDA
DYNAMICRULES(...)

Plan owner: IDD

Package
owner: IDC

User-defined
function B

UDF owner: IDBUDF

(Authorization ID IDA)

EXEC SQL
SELECT B(...)...

(Authorization ID IDC)

EXEC SQL
SELECT B(...)...

Figure 21. Authorization for dynamic SQL statements in programs and nested routines

Chapter 5. Managing access through authorization IDs or roles 223



Related tasks

“Simplifying access authorization for routines”
“Using composite privileges”
“Performing multiple actions in one statement”

Simplifying access authorization for routines:

You can simplify authorization for routines in several ways without violating any
of the authorization standards at your installation.

Consider the following strategies to simplify authorization:
v Have the implementer bind the user-defined function package using

DYNAMICRULES define behavior. With this behavior in effect, DB2 only needs
to check the definer’s ID to execute dynamic SQL statements in the routine.
Otherwise, DB2 needs to check the many different IDs that invoke the
user-defined function.

v If you have many different routines, group those routines into schemas. Then
grant EXECUTE on the routines in the schema to the appropriate users. Users
have execute authority on any functions that you add to that schema.
Example: To grant the EXECUTE privilege on a schema to PUBLIC, issue the
following statement:
GRANT EXECUTE ON FUNCTION schemaname.* TO PUBLIC;

Related reference

“Determining authorization IDs for dynamic SQL statements in routines” on page
220

Using composite privileges:

An SQL statement can name more than one object. A SELECT operation, for
example, can join two or more tables, or an INSERT statement can use a subquery.

These operations require privileges on all of the tables that are included in
the statement. However, you might be able to issue such a statement dynamically
even though one of your IDs alone does not have all the required privileges.

If the DYNAMICRULES run behavior is in effect when the dynamic statement is
prepared and your primary ID, any associated role, or any of your secondary IDs
has all the needed privileges, the statement is validated. However, if you embed
the same statement in a host program and try to bind it into a plan or package, the
validation fails. The validation also fails for the dynamic statement if
DYNAMICRULES bind, define, or invoke behavior is in effect when you issue the
dynamic statement. In each case, all the required privileges must be held by the

single authorization ID, determined by DYNAMICRULES behavior.
Related reference

“Determining authorization IDs for dynamic SQL statements in routines” on page
220

Performing multiple actions in one statement:

224 Administration Guide



A REBIND or FREE subcommand can name more than one plan or package. If no
owner is named, the set of privileges associated with the primary ID, the
associated role, and the secondary IDs must include the BIND privilege for each
object.

Example: Suppose that a user with a secondary ID of HQFINANCE has
the BIND privilege on plan P1 and that another user with a secondary ID of
HQHR has the BIND privilege on plan P2. Assume that someone with
HQFINANCE and HQHR as secondary authorization IDs issues the following
command:
REBIND PLAN(P1,P2)

P1 and P2 are successfully rebound, even though neither the HQFINANCE nor

HQHR has the BIND privilege for both plans.
Related reference

“Determining authorization IDs for dynamic SQL statements in routines” on page
220

Retrieving privilege records in the DB2 catalog
You can query the DB2 catalog tables by using the SQL SELECT statement.
Executing the SQL statement requires appropriate privileges and authorities. You
can control access to the catalog by granting and revoking these privileges and
authorities.

Catalog tables with privilege records
The following catalog tables contain information about the privileges that IDs can
hold.

Table 52. Privileges information in DB2 catalog tables

Table name Records privileges held for or authorization related to

SYSIBM.SYSCOLAUTH Updating columns

SYSIBM.SYSDBAUTH Databases

SYSIBM.SYSPLANAUTH Plans

SYSIBM.SYSPACKAUTH Packages

SYSIBM.SYSRESAUTH Buffer pools, storage groups, collections, table spaces,
JARs, and distinct types

SYSIBM.SYSROUTINEAUTH User-defined functions and stored procedures

SYSIBM.SYSSCHEMAAUTH Schemas

SYSIBM.SYSTABAUTH Tables and views

SYSIBM.SYSUSERAUTH System authorities

SYSIBM.SYSSEQUENCEAUTH Sequences

SYSIBM.SYSCONTEXT Associating a role with a trusted context

SYSIBM.SYSCTXTTRUSTATTRS Associating trust attributes with a trusted context

SYSIBM.SYSCONTEXTAUTHIDS Associating users with a trusted context

Chapter 5. Managing access through authorization IDs or roles 225

|

|

|



Retrieving all authorization IDs or roles with granted
privileges

All authorization catalog tables include columns named GRANTEE and
GRANTEETYPE. If GRANTEETYPE is blank, the value of GRANTEE is the
primary or secondary authorization ID that has been granted a privilege. If
GRANTEETYPE is ″L″, the value of GRANTEE is a role. You can modify the
WHERE clause to retrieve all roles with the same privileges.

No single catalog table contains information about all privileges. However,
to retrieve all IDs or roles with privileges, you can issue the SQL code as shown in
the following example:
SELECT GRANTEE, 'PACKAGE ' FROM SYSIBM.SYSPACKAUTH

WHERE GRANTEETYPE IN (' ','L')
UNION

SELECT GRANTEE, 'TABLE ' FROM SYSIBM.SYSTABAUTH
WHERE GRANTEETYPE IN (' ','L')

UNION
SELECT GRANTEE, 'COLUMN ' FROM SYSIBM.SYSCOLAUTH

WHERE GRANTEETYPE IN (' ','L')
UNION

SELECT GRANTEE, 'ROUTINE ' FROM SYSIBM.SYSROUTINEAUTH
WHERE GRANTEETYPE IN (' ','L')

UNION
SELECT GRANTEE, 'PLAN ' FROM SYSIBM.SYSPLANAUTH

WHERE GRANTEETYPE IN (' ','L')
UNION

SELECT GRANTEE, 'SYSTEM ' FROM SYSIBM.SYSUSERAUTH
WHERE GRANTEETYPE IN (' ','L')

UNION
SELECT GRANTEE, 'DATABASE' FROM SYSIBM.SYSDBAUTH

WHERE GRANTEETYPE IN (' ','L')
UNION

SELECT GRANTEE, 'SCHEMA ' FROM SYSIBM.SYSSCHEMAAUTH
WHERE GRANTEETYPE IN (' ','L')

UNION
SELECT GRANTEE, 'USER ' FROM SYSIBM.SYSRESAUTH

WHERE GRANTEETYPE IN (' ','L')
UNION

SELECT GRANTEE, 'SEQUENCE ' FROM SYSIBM.SYSSEQUENCEAUTH
WHERE GRANTEETYPE IN (' ','L');

Periodically, you should compare the list of IDs or roles that is retrieved by this
SQL code with the following lists:
v Lists of users from subsystems that connect to DB2 (such as IMS, CICS, and

TSO)
v Lists of RACF groups
v Lists of users from other DBMSs that access your DB2 subsystem

If DB2 lists IDs or roles that do not exist elsewhere, you should revoke their

privileges.

Retrieving multiple grants of the same privilege
You can query the catalog to find duplicate grants on objects. If multiple grants
clutter your catalog, consider eliminating unnecessary grants.

226 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



You can use the following SQL statement to retrieve duplicate grants on
plans:
SELECT GRANTEE, NAME, COUNT(*)

FROM SYSIBM.SYSPLANAUTH
GROUP BY GRANTEE, NAME
HAVING COUNT(*) > 2
ORDER BY 3 DESC;

This statement orders the duplicate grants by frequency, so that you can easily
identify the most duplicated grants. Similar statements for other catalog tables can
retrieve information about multiple grants on other types of objects.

If several grantors grant the same privilege to the same grantee, the DB2 catalog
can become cluttered with similar data. This similar data is often unnecessary, and
it might cause poor performance.

Example: Suppose that Judy, Kate, and Patti all grant the SELECT privilege on
TABLE1 to Chris. If you care that Chris’s ID has the privilege but not who granted
the privilege, you might consider two of the SELECT grants to be redundant and
unnecessary performance liabilities.

However, you might want to maintain information about authorities that are
granted from several different IDs, especially when privileges are revoked.

Example: Suppose that the SELECT privilege from the previous example is
revoked from Judy. If Chris has the SELECT privilege from only Judy, Chris loses
the SELECT privilege. However, Chris retains the SELECT privilege because Kate
and Patti also granted the SELECT privilege to Chris. In this case, the similar

grants prove not to be redundant.

Retrieving all authorization IDs or roles with the DBADM
authority

To retrieve all authorization IDs or roles that have the DBADM authority, issue the
following statement:

SELECT DISTINCT GRANTEE
FROM SYSIBM.SYSDBAUTH
WHERE DBADMAUTH <>' ' AND GRANTEETYPE IN (' ','L');

Retrieving all IDs or roles with access to the same table
You can retrieve all IDs or roles (GRANTEETYPE=″L″) that are explicitly
authorized to access the same object.

For example, to retrieve all IDs or roles (GRANTEETYPE=″L″) that are
explicitly authorized to access the sample employee table (DSN8910.EMP in
database DSN8D91A), issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE TTNAME='EMP' AND TCREATOR='DSN8910' AND
GRANTEETYPE IN (' ','L');

Chapter 5. Managing access through authorization IDs or roles 227

|
|
|



To retrieve all IDs or roles (GRANTEETYPE=″L″) that can change the sample
employee table (IDs with administrative authorities and IDs to which authority is
explicitly granted), issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE TTNAME='EMP' AND
TCREATOR='DSN8910' AND
GRANTEETYPE IN (' ','L') AND
(ALTERAUTH <> ' ' OR
DELETEAUTH <> ' ' OR
INSERTAUTH <> ' ' OR
UPDATEAUTH <> ' ')

UNION
SELECT GRANTEE FROM SYSIBM.SYSUSERAUTH

WHERE SYSADMAUTH <> ' '
UNION
SELECT GRANTEE FROM SYSIBM.SYSDBAUTH

WHERE DBADMAUTH <> ' ' AND NAME='DSN8D91A';

To retrieve the columns of DSN8910.EMP for which update privileges have been
granted on a specific set of columns, issue the following statement:
SELECT DISTINCT COLNAME, GRANTEE, GRANTEETYPE FROM SYSIBM.SYSCOLAUTH

WHERE CREATOR='DSN8910' AND TNAME='EMP'
ORDER BY COLNAME;

The character in the GRANTEETYPE column shows whether the privileges have
been granted to a primary or secondary authorization ID (blank), a role (L), or are
used by an application plan or package (P).

To retrieve the IDs that have been granted the privilege of updating one or more
columns of DSN8910.EMP, issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE TTNAME='EMP' AND
TCREATOR='DSN8910' AND
GRANTEETYPE IN (' ','L') AND
UPDATEAUTH <> ' ';

The query returns only the IDs or roles (GRANTEETYPE=″L″) to which update
privileges have been specifically granted. It does not return IDs or roles that have
the privilege because of SYSADM or DBADM authority. You could include them
by forming a union with additional queries, as shown in the following example:
SELECT DISTINCT GRANTEE GRANTEETYPE FROM SYSIBM.SYSTABAUTH

WHERE TTNAME='EMP' AND
TCREATOR='DSN8910' AND
GRANTEETYPE IN (' ','L') AND
UPDATEAUTH <> ' '

UNION
SELECT GRANTEE FROM SYSIBM.SYSUSERAUTH

WHERE SYSADMAUTH <> ' '
UNION
SELECT GRANTEE FROM SYSIBM.SYSDBAUTH

WHERE DBADMAUTH <> ' ' AND NAME='DSN8D91A';

Retrieving all IDs or roles with access to the same routine
You can retrieve the IDs or roles (GRANTEETYPE=″L″) that are authorized to
access the same routines.

228 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|



For example, to retrieve the IDs or roles (GRANTEETYPE=″L″) that are
authorized to access stored procedure PROCA in schema SCHEMA1, issue the
following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSROUTINEAUTH

WHERE SPECIFICNAME='PROCA' AND
SCHEMA='SCHEMA1' AND
GRANTEETYPE IN (' ','L') AND
ROUTINETYPE='P';

You can write a similar statement to retrieve the IDs or roles (GRANTEETYPE=″L″)
that are authorized to access a user-defined function. To retrieve the IDs or roles
that are authorized to access user-defined function UDFA in schema SCHEMA1,
issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSROUTINEAUTH

WHERE SPECIFICNAME='UDFA' AND
SCHEMA='SCHEMA1' AND
GRANTEETYPE IN (' ','L') AND
ROUTINETYPE='F';

Retrieving tables or views accessible by an ID
You can retrieve all tables or views that can be accessed by an ID.

For example, to retrieve the list of tables and views that PGMR001 can
access, issue the following statement:
SELECT DISTINCT TCREATOR, TTNAME FROM SYSIBM.SYSTABAUTH

WHERE GRANTEE = 'PGMR001' AND GRANTEETYPE =' ';

To retrieve the tables, views, and aliases that PGMR001 owns, issue the following
statement:
SELECT NAME FROM SYSIBM.SYSTABLES

WHERE CREATOR='PGMR001' OR
OWNER='PGMR001'; <--- needs mods:if owner> else=creator

Retrieving plans or packages with access to the same table
You can retrieve all the plans or packages that are granted access to the same table.

For example, to retrieve the names of application plans and packages that
refer to table DSN8910.EMP directly, issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE GRANTEETYPE = 'P' AND
TCREATOR = 'DSN8910' AND
TTNAME = 'EMP';

The preceding query does not distinguish between plans and packages. To identify
a package, use the COLLID column of table SYSTABAUTH, which names the
collection in which a package resides and is blank for a plan.

A plan or package can refer to the table indirectly, through a view.

To find all views that refer to the table:

Chapter 5. Managing access through authorization IDs or roles 229

|

|
|
|
|
|

|

|
|
|
|
|

|
|
|



1. Issue the following query:
SELECT DISTINCT DNAME FROM SYSIBM.SYSVIEWDEP

WHERE BTYPE = 'T' AND
BCREATOR = 'DSN8910' AND
BNAME = 'EMP';

2. Write down the names of the views that satisfy the query. These values are
instances of DNAME_list.

3. Find all plans and packages that refer to those views by issuing a series of SQL
statements. For each instance of DNAME_list, issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE GRANTEETYPE = 'P' AND
TCREATOR = 'DSN8910' AND
TTNAME = DNAME_list;

Retrieving privilege information through views
Only an ID with the SYSADM or SYSCTRL authority automatically has the
privilege of retrieving data from catalog tables. If you do not want to grant the
SELECT privilege on all catalog tables to PUBLIC, consider using views to let each
ID retrieve information about its own privileges.

For example, the following view includes the owner and the name of every
table on which a user’s primary authorization ID has the SELECT privilege:
CREATE VIEW MYSELECTS AS

SELECT TCREATOR, TTNAME FROM SYSIBM.SYSTABAUTH
WHERE SELECTAUTH <> ' ' AND

GRANTEETYPE = ' ' AND
GRANTEE IN (USER, 'PUBLIC', 'PUBLIC*', CURRENT SQLID);

The keyword USER in that statement is equal to the value of the primary
authorization ID. To include tables that can be read by a secondary ID, set the
current SQLID to that secondary ID before querying the view.

To make the view available to every ID, issue the following GRANT statement:
GRANT SELECT ON MYSELECTS TO PUBLIC;

Similar views can show other privileges. This view shows privileges over columns:
CREATE VIEW MYCOLS (OWNER, TNAME, CNAME, REMARKS, LABEL)

AS SELECT DISTINCT TBCREATOR, TBNAME, NAME, REMARKS, LABEL
FROM SYSIBM.SYSCOLUMNS, SYSIBM.SYSTABAUTH

WHERE TCREATOR = TBCREATOR AND
TTNAME = TBNAME AND
GRANTEETYPE = ' ' AND
GRANTEE IN (USER,'PUBLIC',CURRENT SQLID,'PUBLIC*');

Implementing multilevel security with DB2
Multilevel security allows you to classify objects and users with security labels that
are based on hierarchical security levels and non-hierarchical security categories.
Multilevel security prevents unauthorized users from accessing information at a
higher classification than their authorization, and prevents users from declassifying
information.

230 Administration Guide



Using multilevel security with row-level granularity, you can define security for
DB2 objects and perform security checks, including row-level security checks.
Row-level security checks allow you to control which users have authorization to
view, modify, or perform other actions on specific rows of data.

You can implement multilevel security with the following combinations:

DB2 authorization with multilevel security with row-level granularity
In this combination, DB2 grants are used for authorization at the DB2
object level (database, table, and so forth). Multilevel security is
implemented only at the row level within DB2.

External access control and multilevel security with row-level granularity
In this combination, external access control (such as the RACF access
control module) is used for authorization at the DB2 object level. External
access control also uses security labels to perform mandatory access
checking on DB2 objects as part of multilevel security. Multilevel security is
also implemented on the row level within DB2.

Important: The following information about multilevel security is specific to DB2.
It does not describe all aspects of multilevel security. However, this specific
information assumes that you have general knowledge of multilevel security.

Multilevel security
Multilevel security is a security policy that allows you to classify objects and users
based on a system of hierarchical security levels and a system of non-hierarchical
security categories.

Multilevel security provides the capability to prevent unauthorized users from
accessing information at a higher classification than their authorization, and
prevents users from declassifying information.

Multilevel security offers the following advantages:
v Multilevel security enforcement is mandatory and automatic.
v Multilevel security can use methods that are difficult to express through

traditional SQL views or queries.
v Multilevel security does not rely on special views or database variables to

provide row-level security control.
v Multilevel security controls are consistent and integrated across the system, so

that you can avoid defining users and authorizations more than once.
v Multilevel security does not allow users to declassify information.

Using multilevel security, you can define security for DB2 objects and perform
other checks, including row-level security checks. Row-level security checks allow
you to control which users have authorization to view, modify, or perform other
actions on specific rows of data.

Security labels
Multilevel security restricts access to an object or a row based on the security label
of the object or row and the security label of the user.

For local connections, the security label of the user is the security label that the
user specified during sign-on. This security label is associated with the DB2

Chapter 5. Managing access through authorization IDs or roles 231



primary authorization ID and accessed from the RACF ACEE control block. If no
security label is specified during sign-on, the security label is the user’s default
security label.

For normal TCP/IP connections, the security label of the user can be defined by
the security zone. IP addresses are grouped into security zones on the DB2 server.
For trusted TCP/IP connections, the security label of the user is the security label
established under the trusted context.

For SNA connections, the default security label for the user is used instead of the
security label that the user signed on with.

Security labels can be assigned to a user by establishing a trusted connection
within a trusted context. The trusted context definition specifies the security label
that is associated with a user on the trusted connection. You can define trusted
contexts if you have the SYSADM authority.

Security labels are based on security levels and security categories. You can use the
Common Criteria (COMCRIT) environment’s subsystem parameter to require that
all tables in the subsystem are defined with security labels.

When defining security labels, do not include national characters, such as @, #, and
$. Use of these characters in security labels may cause CCSID conversions to
terminate abnormally.

Determining the security label of a user
DB2 provides several built-in session variables that contain information about the
server and application process. You can obtain the value of a built-in session
variable by invoking the GETVARIABLE command with the name of the built-in
session variable.

One of the built-in session variables is the user’s security label. You can issue the
GETVARIABLE(’SYSIBM.SECLABEL’) command to obtain the security label of a
user.

Security levels
Along with security categories, hierarchical security levels are used as a basis for
mandatory access checking decisions.

When you define the security level of an object, you define the degree of
sensitivity of that object. Security levels ensure that an object of a certain security
level is protected from access by a user of a lower security level.

Security categories
Security categories are the non-hierarchical basis for mandatory access checking
decisions.

When making security decisions, mandatory access control checks whether one set
of security categories includes the security categories that are defined in a second
set of security categories.

Users and objects in multilevel security
In multilevel security, the relationship between users and objects is important. In
the context of multilevel security, user is any entity that requires access to system
resources; the entity can be a human user, a stored procedure, or a batch job. An

232 Administration Guide

|
|
|
|

|
|
|
|

|
|
|



object is any system resource to which access must be controlled; the resource can
be a data set, a table, a table row, or a command.

Global temporary tables with multilevel security
For a declared temporary table with a column definition, no syntax exists to
specify a security label on a DECLARE GLOBAL TEMPORARY TABLE statement.
An attempt to specify a security label results in an error.

If a DECLARE GLOBAL TEMPORARY TABLE statement uses a fullselect or a
LIKE predicate or a CREATE GLOBAL TEMPORARY TABLE statement uses a
LIKE predicate, the resulting temporary table can inherit the security label column
from the referenced table or view. However, the temporary table does not inherit
any security attributes on that column. That means that the inherited column in
the temporary table is not defined AS SECURITY LABEL. The column in the
temporary table is defined as NOT NULL, with no default. Therefore, any
statements that insert data in the temporary table must provide a value for the
inherited column.

Materialized query tables with multilevel security
Materialized query tables are tables that contain information that is derived and
summarized from other tables.

If one or more of the source tables for a materialized query table has multilevel
security with row-level granularity enabled, some additional rules apply to
working with the materialized query table and the source tables.

Constraints in a multilevel-secure environment
Constraints operate in an multilevel-secure environment in the following ways:
v A unique constraint is allowed on a security label column.
v A referential constraint is not allowed on a security label column.
v A check constraint is not allowed on a security label column.

Multilevel security with row-level checking is not enforced when DB2 checks a
referential constraint. Although a referential constraint is not allowed for the
security label column, DB2 enforces referential constraints for other columns in the
table that are not defined with a security label.

Field, edit, and validation procedures in a multilevel-secure
environment
In an multilevel-secure environment, field, edit, and validation procedures operate
in the following ways:
v Field procedures and edit procedures are not allowed on a security label

column.
v Validation procedures are allowed on a table that is defined with a security label

column. When an authorized user with write-down privilege makes an INSERT
or UPDATE request for a row, the validation procedure passes the new row with
the security label of the user. If the authorized user does not have write-down
privilege, the security label of the row remains the same.

Triggers in a multilevel-secure environment
When a transition table is generated as the result of a trigger, the security label of
the table or row from the original table is not inherited by the transition table.
Therefore, multilevel security with row-level checking is not enforced for transition
tables and transition values.

Chapter 5. Managing access through authorization IDs or roles 233



If an ALTER TABLE statement is used to add a security label column to a table
with a trigger on it, the same rules apply to the new security label column that
would apply to any column that is added to the table with the trigger on it.

When a BEFORE trigger is activated, the value of the NEW transition variable that
corresponds to the security label column is set to the security label of the user if
either of the following criteria are met:
v Write-down control is in effect and the user does not have the write-down

privilege
v The value of the security label column is not specified

Mandatory access checking
Mandatory access checking evaluates the dominance relationships between user
security labels and object security labels and determines whether to allow certain
actions, based on the following rules:
v If the security label of the user dominates the security label of the object, the

user can read from the object.
v If the security label of a user and the security label of the object are equivalent,

the user can read from and write to the object.
v If the security label of the user dominates the security label of the object, the

user cannot write to the object unless the user has the write-down RACF
privilege.

v If the security label of the user is disjoint with the security label of the object,
the user cannot read or write to that object.

Exception: IDs with the installation SYSADM authority bypass mandatory access
checking at the DB2 object level because actions by Install SYSADM do not invoke
the external access control exit routine (DSNX@XAC). However, multilevel security
with row-level granularity is enforced for IDs with Install SYSADM authority.

After the user passes the mandatory access check, a discretionary check follows.
The discretionary access check restricts access to objects based on the identity of a
user, the user’s role (if one exists), and the groups to which the user belongs. The
discretionary access check ensures that the user is identified as having a “need to
know” for the requested resource. The check is discretionary because a user with a
certain access permission is capable of passing that permission to any other user.

Dominance relationships between security labels
Mandatory access checking is based on the dominance relationships between user
security labels and object security labels. One security label dominates another
security label when both of the following conditions are true:
v The security level that defines the first security label is greater than or equal to

the security level that defines the second security label.
v The set of security categories that defines one security label includes the set of

security categories that defines the other security label.

Comparisons between user security labels and object security labels can result in
four types of relationships:

Dominant
One security label dominates another security label when both of the
following conditions are true:
v The security level that defines the first security label is greater than or

equal to the security level that defines the second security label.

234 Administration Guide



v The set of security categories that defines the first security label includes
the set of security categories that defines the other security label.

Reading data requires that the user security label dominates the data
security label.

Reverse dominant
One security label reverse dominates another security label when both of
the following conditions are true:
v The security level that defines the first security label is less than or equal

to the security level that defines the second security label.
v The set of security categories that defines the first security label is a

subset of the security categories that defines the other security label.

Equivalent
One security label is equivalent to another security label when they are the
same or have the same level and set of categories. If both dominance and
reverse dominance are true for two security labels, they are equivalent. The
user security label must be equivalent to the data security label to be able
to read and write data without being able to write down.

Disjoint
A security label is disjoint or incompatible with another security label if
incompatible security categories cause neither security label to dominate
the other security label. Two security labels are disjoint when each of them
has at least one category that the other does not have. Disjoint access is not
allowed, even when a user is allowed to write down. If a user security
label that is disjoint to the data security label issues an INSERT, UPDATE,
or LOAD command, DB2 issues an error.

Example: Suppose that the security level ″secret″ for the security label HIGH is
greater than the security level ″sensitive″ for the security label MEDIUM. Also,
suppose that the security label HIGH includes the security categories Project_A,
Project_B, and Project_C, and that the security label MEDIUM includes the security
categories Project_A and Project_B. The security label HIGH dominates the security
label MEDIUM because both conditions for dominance are true.

Example: Suppose that the security label HIGH includes the security categories
Project_A, Project_B, and Project_C, and that the security label MEDIUM includes
the security categories Project_A and Project_Z. In this case, the security label
HIGH does not dominate the security label MEDIUM because the set of security
categories that define the security label HIGH does not contain the security
category Project_Z.

Write-down control
Mandatory access checking prevents a user from declassifying information; it does
not allow a user to write to an object unless the security label of the user is
equivalent to or dominated by the security label of the object. DB2 requires either
the equivalence of the security labels or the write-down privilege of the user to write
to DB2 objects.

Example: Suppose that user1 has a security label of HIGH and that row_x
has a security label of MEDIUM. Because the security label of the user and the
security label of the row are not equivalent, user1 cannot write to row_x.
Therefore, write-down control prevents user1 from declassifying the information
that is in row_x.

Chapter 5. Managing access through authorization IDs or roles 235



Example: Suppose that user2 has a security label of MEDIUM and that row_x has
a security label of MEDIUM. Because the security label of the user and the security
label of the row are equivalent, user2 can read from and write to row_x. However,
user2 cannot change the security label for row_x unless user2 has write-down
privilege. Therefore write-down control prevents user2 from declassifying the

information that is in row_x.

Granting write-down privileges
To grant write-down privilege, you need to define a profile and then allow users to
access the profile.

To grant write-down privilege to users:
1. Issue the following RACF command to define an IRR.WRITEDOWN.BYUSER

profile.
RDEFINE FACILITY IRR.WRITEDOWN.BYUSER UACC(NONE)

2. Issue the following RACF command to allow users to access the
IRR.WRITEDOWN.BYUSER profile that you just created.
PERMIT IRR.WRITEDOWN.BYUSER ID(USRT051 USRT052 USRT054 USRT056 -

USRT058 USRT060 USRT062 USRT064 USRT066 USRT068 USRT041) -
ACCESS(UPDATE) CLASS(FACILITY)

Implementing multilevel security at the object level
Perform the following steps to implement multilevel security with DB2 at the
object level:

1. Define security labels in RACF for all DB2 objects that require mandatory
access checking by using the RDEFINE command.
Define security labels for the following RACF resource classes:
v DSNADM (administrative authorities)
v DSNR (access to DB2 subsystems)
v MDSNBP and GSNBP (buffer pools)
v MDSNCL and GDSNCL (collections)
v MDSNJR and MDSNJR (JAR)
v MDSNPN and GDSNPN (plans)
v MDSNSC and GDSNSC (schema)
v MDSNSG and GDSNSG (storage groups)
v MDSNSM and GDSNSM (system privileges)
v MDSNSP and GDSNSP (stored procedures)
v MDSNSQ and GDSNSQ (sequences)
v MDSNTB and GDSNTB (tables, views, indexes)
v MDSNTS and GDSNTS (table spaces)
v MDSNUF and GDSNUF (user-defined functions)
Recommendation: Define the security label SYSMULTI for DB2 subsystems that
are accessed by users with different security labels and tables that require
row-level granularity.

2. Specify a proper hierarchy of security labels.

236 Administration Guide



In general, the security label of an object that is higher in the object hierarchy
should dominate the security labels of objects that are lower in the hierarchy.
RACF and DB2 do not enforce the hierarchy; they merely enforce the
dominance rules that you establish.
You can use RACF to define security labels for the DB2 objects in the following
object hierarchy:
v Subsystem or data sharing group

– Database
- Table space
v Table

– Column
– Row

– View
– Storage group
– Buffer pool
– Plan
– Collection

- Package
– Schema

- Stored procedure or user-defined function
- Java Archive (JAR)
- Distinct type
- Sequence

The following examples suggest dominance relationships among objects in the
DB2 object hierarchy.
Example: A collection should dominate a package.
Example: A subsystem should dominate a database. That database should
dominate a table space. That table space should dominate a table. That table
should dominate a column.
Example: If a view is based on a single table, the table should dominate the
view. However, if a view is based on multiple tables, the view should dominate
the tables.

3. Define security labels and associate users with the security labels in RACF. If
you are using a TCP/IP connection, you need to define security labels in RACF
for the security zones into which IP addresses are grouped. These IP addressed
represent remote users. Give users with SYSADM, SYSCTRL, and SYSOPR
authority the security label of SYSHIGH.

4. Activate the SECLABEL class in RACF. If you want to enforce write-down
control, turn on write-down control in RACF.

5. Install the external security access control authorization exit routine
(DSNX@XAC), such as the RACF access control module.

Implementing multilevel security with row-level granularity
Many applications need row-level security within the relational database so that
access can be restricted to a specific set of rows. This security control often needs
to be mandatory so that users, including application programmers and database
administrators, are unable to bypass the row-level security mechanism. Using
mandatory controls with z/OS and RACF provides consistency across the system.

Chapter 5. Managing access through authorization IDs or roles 237



Requirement: You must have z/OS Version 1 Release 5 or later to use DB2
authorization with multilevel security with row-level granularity.

You can implement multilevel security with row-level granularity with or without
implementing multilevel security on the object level. If you implement multilevel
security on the object level, you must define security labels in RACF for all DB2
objects and install the external security access control authorization exit routine. If
you do not use the access control authorization exit routine or RACF access
control, you can use DB2 native authorization control.

You can implement multilevel security with row-level granularity with or without
implementing multilevel security on the object level.

Recommendation: Use multilevel security at the object level with multilevel
security with row-level granularity. Using RACF with multilevel security provides
an independent check at run time and always checks the authorization of a user to
the data.

DB2 performs multilevel security with row-level granularity by comparing the
security label of the user to the security label of the row that is accessed. Because
security labels can be equivalent without being identical, DB2 uses the RACROUTE
REQUEST=DIRAUTH macro to make this comparison when the two security
labels are not the same. For read operations, such as SELECT, DB2 uses
ACCESS=READ. For update operations, DB2 uses ACCESS=READWRITE.

The write-down privilege for multilevel security with row-level granularity has the
following properties:
v A user with the write-down privilege can update the security label of a row to

any valid value. The user can make this update independent of the user’s
dominance relationship with the row.

v DB2 requires that a user have the write-down privilege to perform certain
utilities.

v If write-down control is not enabled, all users with valid security labels are

equivalent to users with the write-down privilege.

Creating tables with multilevel security
You can use multilevel security with row-level checking to control table access by
creating or altering a table to have a column with the AS SECURITY LABEL
attribute.

Tables with multilevel security in effect can be dropped by using the DROP
TABLE statement. Users must have a valid security label to execute CREATE
TABLE, ALTER TABLE, and DROP TABLE statements on tables with multilevel
security enabled.

The performance of tables that you create and alter can suffer if the security label
is not included in indexes. The security label column is used whenever a table
with multilevel security enabled is accessed. Therefore, the security label column
should be included in indexes on the table. If you do not index the security label
column, you cannot maintain index-only access.

When a user with a valid security label creates a table, the user can implement
row-level security by including a security label column. The security label column

238 Administration Guide

|
|



can have any name, but it must be defined as CHAR(8) and NOT NULL WITH
DEFAULT. It also must be defined with the AS SECURITY LABEL clause.

Example: To create a table that is named TABLEMLS1 and that has row-level
security enabled, issue the following statement:
CREATE TABLE TABLEMLS1

(EMPNO CHAR(6) NOT NULL,
EMPNAME VARCHAR(20) NOT NULL,
DEPTNO VARCHAR(5)
SECURITY CHAR(8) NOT NULL WITH DEFAULT AS SECURITY LABEL,
PRIMARY KEY (EMPNO) )

IN DSN8D71A.DSN8S71D;

After the user specifies the AS SECURITY LABEL clause on a column, users can
indicate the security label for each row by entering values in that column. When a
user creates a table and includes a security label column, SYSIBM.SYSTABLES
indicates that the table has row-level security enabled. Once a user creates a table
with a security label column, the security on the table cannot be disabled. The

table must be dropped and recreated to remove this protection.

Adding multilevel security to existing tables
If you have a valid security label, you can implement row-level security on an
existing table by adding a security label column to the table.

The security label column can have any name, but it must be defined as
CHAR(8) and NOT NULL WITH DEFAULT. It also must be defined with the AS
SECURITY LABEL clause.

Example: Suppose that the table EMP does not have row-level security enabled. To
alter EMP so that it has row-level security enabled, issue the following statement:
ALTER TABLE EMP

ADD SECURITY CHAR(8) NOT NULL WITH DEFAULT AS SECURITY LABEL;

After a user specifies the AS SECURITY LABEL clause on a column, row-level
security is enabled on the table and cannot be disabled. The security label for
existing rows in the table at the time of the alter is the same as the security label of
the user that issued the ALTER TABLE statement.

Important: Plans, packages, and dynamic statements are invalidated when a table

is altered to add a security label column.

Removing tables with multilevel security
When a user with a valid security label drops a table that has row-level security in
effect, the system generates an audit record. Row-level security does not affect the
success of a DROP statement; the user’s privilege on the table determines whether
the statement succeeds.

Caching security labels
Caching is used with multilevel security with row-level granularity to improve
performance.

DB2 caches all security labels that are checked (successfully and unsuccessfully)
during processing. At commit or rollback, the security labels are removed from the
cache. If a security policy that employs multilevel security with row-level
granularity requires an immediate change and long-running applications have not
committed or rolled back, you might need to cancel the application.

Chapter 5. Managing access through authorization IDs or roles 239



Restricting access to the security label column
If you do not want users to see a security label column, you can create views that
do not include the column.

Example: Suppose that the ORDER table has the following columns:
ORDERNO, PRODNO, CUSTNO, SECURITY. Suppose that SECURITY is the
security label column, and that you do not want users to see the SECURITY
column. Use the following statement to create a view that hides the security label
column from users:
CREATE VIEW V1 AS

SELECT ORDERNO, PRODNO, CUSTNO FROM ORDER;

Alternatively, you can create views that give each user access only to the rows that
include that user’s security label column. To do that, retrieve the value of the
SYSIBM.SECLABEL session variable, and create a view that includes only the rows
that match the session variable value.

Example: To allow access only to the rows that match the user’s security label, use
the following CREATE statement:
CREATE VIEW V2 AS SELECT * FROM ORDER

WHERE SECURITY=GETVARIABLE('SYSIBM.SECLABEL');

Managing data in a multilevel-secure environment
Multilevel security with row-level checking affects the results of the SELECT,
INSERT, UPDATE, MERGE, DELETE, and TRUNCATE statements.

For example, row-level checking ensures that DB2 does not return rows that have a
HIGH security label to a user that has a LOW security label. Users must have a
valid security label to execute the SELECT, INSERT, UPDATE, MERGE, DELETE,
and TRUNCATE statements.

This effect also applies to the results of the LOAD, UNLOAD, and REORG
TABLESPACE utilities on tables that are enabled with multilevel security.

Using the SELECT statement with multilevel security
When a user with a valid security label selects data from a table or tables with
row-level security enabled, DB2 compares the security label of the user to the
security label of each row.

Results from the checking are returned according to the following rules:
v If the security label of the user dominates the security label of the row, DB2

returns the row.
v If the security label of the user does not dominate the security label of the row,

DB2 does not return the data from that row, and DB2 does not generate an error
report.

Example: Suppose that Alan has a security label of HIGH, Beth has a security label
of MEDIUM, and Carlos has a security label of LOW. Suppose that DSN8910.EMP
contains the data that is shown in the following table and that the SECURITY
column has been declared with the AS SECURITY LABEL clause.

240 Administration Guide

|
|
|
|



Table 53. Sample data from DSN8910.EMP

EMPNO LASTNAME WORKDEPT SECURITY

000010 HAAS A00 LOW

000190 BROWN D11 HIGH

000200 JONES D11 MEDIUM

000210 LUTZ D11 LOW

000330 LEE E21 MEDIUM

Now, suppose that Alan, Beth, and Carlos each submit the following SELECT
statement:
SELECT LASTNAME

FROM EMP
ORDER BY LASTNAME;

Because Alan has the security label HIGH, he receives the following result:
BROWN
HAAS
JONES
LEE
LUTZ

Because Beth has the security label MEDIUM, she receives the following result:
HAAS
JONES
LEE
LUTZ

Beth does not see BROWN in her result set because the row with that information
has a security label of HIGH.

Because Carlos has the security label LOW, he receives the following result:
HAAS
LUTZ

Carlos does not see BROWN, JONES, or LEE in his result set because the rows
with that information have security labels that dominate Carlos’s security label.
Although Beth and Carlos do not receive the full result set for the query, DB2 does

not return an error code to Beth or Carlos.

Using the INSERT statement with multilevel security
When a user with a valid security label inserts data into a table with row-level
security enabled, the security label of the row is determined according to the
following rules:

v If the user has write-down privilege or write-down control is not
enabled, the user can set the security label for the row to any valid security
label. If the user does not specify a value for the security label, the security label
of the row becomes the same as the security label of the user.

v If the user does not have write-down privilege and write-down control is
enabled, the security label of the row becomes the same as the security label of
the user.

Chapter 5. Managing access through authorization IDs or roles 241



Example: Suppose that Alan has a security label of HIGH, that Beth has a security
label of MEDIUM and write-down privilege defined in RACF, and that Carlos has
a security label of LOW. Write-down control is enabled.

Now, suppose that Alan, Beth, and Carlos each submit the following INSERT
statement:
INSERT INTO DSN8910.EMP(EMPNO, LASTNAME, WORKDEPT, SECURITY)

VALUES('099990', 'SMITH', 'C01', 'MEDIUM');

Because Alan does not have write-down privilege, Alan cannot choose the security
label of the row that he inserts. Therefore DB2 ignores the security label of
MEDIUM that is specified in the statement. The security label of the row becomes
HIGH because Alan’s security label is HIGH.

Because Beth has write-down privilege on the table, she can specify the security
label of the new row. In this case, the security label of the new row is MEDIUM. If
Beth submits a similar INSERT statement that specifies a value of LOW for the
security column, the security label for the row becomes LOW.

Because Carlos does not have write-down privilege, Carlos cannot choose the
security label of the row that he inserts. Therefore DB2 ignores the security label of
MEDIUM that is specified in the statement. The security label of the row becomes
LOW because Carlos’ security label is LOW.

Considerations for INSERT from a fullselect: For statements that insert the result
of a fullselect, DB2 does not return an error code if the fullselect contains a table
with a security label column. DB2 allows it if the target table does not contain a
security label column while the source table contains one.

Considerations for SELECT...FROM...INSERT statements: If the user has
write-down privilege or write-down control is not in effect, the security label of the
user might not dominate the security label of the row. For statements that insert
rows and select the inserted rows, the INSERT statement succeeds. However, the
inserted row is not returned.

Considerations for INSERT with subselect: If you insert data into a table that does
not have a security label column, but a subselect in the INSERT statement does
include a table with a security label column, row-level checking is performed for
the subselect. However, the inserted rows will not be stored with a security label

column.

Using the UPDATE statement with multilevel security
When a user with a valid security label updates a table with row-level security
enabled, DB2 compares the security label of the user to the security label of the
row.

The update proceeds according to the following rules:
v If the security label of the user and the security label of the row are equivalent,

the row is updated and the value of the security label is determined by whether
the user has write-down privilege:
– If the user has write-down privilege or write-down control is not enabled, the

user can set the security label of the row to any valid security label.

242 Administration Guide



– If the user does not have write-down privilege and write-down control is
enabled, the security label of the row is set to the value of the security label
of the user.

v If the security label of the user dominates the security label of the row, the result
of the UPDATE statement is determined by whether the user has write-down
privilege:
– If the user has write-down privilege or write-down control is not enabled, the

row is updated and the user can set the security label of the row to any valid
security label.

– If the user does not have write-down privilege and write-down control is
enabled, the row is not updated.

v If the security label of the row dominates the security label of the user, the row
is not updated.

Example: Suppose that Alan has a security label of HIGH, that Beth has a security
label of MEDIUM and write-down privilege defined in RACF, and that Carlos has
a security label of LOW. Write-down control is enabled.

Suppose that DSN8910.EMP contains the data that is shown in the following table
and that the SECURITY column has been declared with the AS SECURITY LABEL
clause.

Table 54. Sample data from DSN8910.EMP

EMPNO LASTNAME WORKDEPT SECURITY

000190 BROWN D11 HIGH

000200 JONES D11 MEDIUM

000210 LUTZ D11 LOW

Now, suppose that Alan, Beth, and Carlos each submit the following UPDATE
statement:
UPDATE DSN8910.EMP

SET DEPTNO='X55', SECURITY='MEDIUM'
WHERE DEPTNO='D11';

Because Alan has a security label that dominates the rows with security labels of
MEDIUM and LOW, his write-down privilege determines whether these rows are
updated. Alan does not have write-down privilege, so the update fails for these
rows. Because Alan has a security label that is equivalent to the security label of
the row with HIGH security, the update on that row succeeds. However, the
security label for that row remains HIGH because Alan does not have the
write-down privilege that is required to set the security label to any value. The
results of Alan’s update are shown in the following table:

Table 55. Sample data from DSN8910.EMP after Alan’s update

EMPNO EMPNAME DEPTNO SECURITY

000190 BROWN X55 HIGH

000200 JONES D11 MEDIUM

000210 LUTZ D11 LOW

Because Beth has a security label that dominates the row with a security label of
LOW, her write-down privilege determines whether this row is updated. Beth has
write-down privilege, so the update succeeds for this row and the security label for

Chapter 5. Managing access through authorization IDs or roles 243



the row becomes MEDIUM. Because Beth has a security label that is equivalent to
the security label of the row with MEDIUM security, the update succeeds for that
row. Because the row with the security label of HIGH dominates Beth’s security
label, the update fails for that row. The results of Beth’s update are shown in the
following table:

Table 56. Sample data from DSN8910.EMP after Beth’s update

EMPNO EMPNAME DEPTNO SECURITY

000190 BROWN D11 HIGH

000200 JONES X55 MEDIUM

000210 LUTZ X55 MEDIUM

Because Carlos’s security label is LOW, the update fails for the rows with security
labels of MEDIUM and HIGH. Because Carlos has a security label that is
equivalent to the security label of the row with LOW security, the update on that
row succeeds. However, the security label for that row remains LOW because
Carlos does not have the write-down privilege, which is required to set the
security label to any value. The results of Carlos’s update are shown in the
following table:

Table 57. Sample data from DSN8910.EMP after Carlos’s update

EMPNO EMPNAME DEPTNO SECURITY

000190 BROWN D11 HIGH

000200 JONES D11 MEDIUM

000210 LUTZ X55 LOW

Recommendation: To avoid failed updates, qualify the rows that you want to
update with the following predicate, for the security label column SECLABEL:
WHERE SECLABEL=GETVARIABLE('SYSIBM.SECLABEL')

Using this predicate avoids failed updates because it ensures that the user’s
security label is equivalent to the security label of the rows that DB2 attempts to
update.

Considerations for SELECT...FROM...UPDATE statements: If the user has
write-down privilege or if the write-down control is not in effect, the security label
of the user might not dominate the security label of the row. For statements that
update rows and select the updated rows, the UPDATE statement succeeds.

However, the updated row is not returned.

Using the MERGE statement with multilevel security
MERGE is an SQL statement that combines the conditional INSERT and UPDATE
operations on a target table. Data that are not already present in the target table
are inserted with the INSERT part of the MERGE statement. Data that are already
present in the target table are updated with the UPDATE part of the MERGE
statement.

Because the MERGE statement consists of the INSERT and UPDATE
operations, the multilevel security rules for the INSERT operation apply to the
INSERT part of the MERGE statement and the multilevel security rules for the
UPDATE operation apply to the UPDATE part of the MERGE statement.

244 Administration Guide



For the INSERT part of the MERGE statement, when a user with a valid security
label inserts data into a table with row-level security enabled, the security label of
the row is determined according to the following rules:
v If the user has write-down privilege or if the write-down control is not enabled,

the user can set the security label for the row to any valid security label. If the
user does not specify a value for the security label, the security label of the row
becomes the same as the security label of the user.

v If the user does not have write-down privilege and if the write-down control is
enabled, the security label of the row becomes the same as the security label of
the user.

For the UPDATE part of the MERGE statement, when a user with a valid security
label updates a table with row-level security enabled, DB2 compares the security
label of the user to the security label of the row. The update proceeds according to
the following rules:
v If the security label of the user and the security label of the row are equivalent,

the row is updated and the value of the security label is determined by whether
the user has write-down privilege:
– If the user has write-down privilege or if the write-down control is not

enabled, the user can set the security label of the row to any valid security
label.

– If the user does not have write-down privilege and if the write-down control
is enabled, the security label of the row is set to the value of the security label
of the user.

v If the security label of the user dominates the security label of the row, the result
of the UPDATE operation is determined by whether the user has write-down
privilege:
– If the user has write-down privilege or if the write-down control is not

enabled, the row is updated and the user can set the security label of the row
to any valid security label.

– If the user does not have write-down privilege and if the write-down control
is enabled, the row is not updated.

v If the security label of the row dominates the security label of the user, the row
is not updated.

Considerations for SELECT...FROM...MERGE statements: If the user has
write-down privilege or if the write-down control is not in effect, the security label
of the user might not dominate the security label of the row. For statements that
merge rows and select the merged rows, the MERGE statement succeeds. However,

the merged row is not returned.

Using the DELETE statement with multilevel security
When a user with a valid security label deletes data from a table with row-level
security enabled, DB2 compares the security label of the user to the security label
of the row.

The delete proceeds according to the following rules:
v If the security label of the user and the security label of the row are equivalent,

the row is deleted.
v If the security label of the user dominates the security label of the row, the user’s

write-down privilege determines the result of the DELETE statement:

Chapter 5. Managing access through authorization IDs or roles 245



– If the user has write-down privilege or write-down control is not enabled, the
row is deleted.

– If the user does not have write-down privilege and write-down control is
enabled, the row is not deleted.

v If the security label of the row dominates the security label of the user, the row
is not deleted.

Example: Suppose that Alan has a security label of HIGH, that Beth has a security
label of MEDIUM and write-down privilege defined in RACF, and that Carlos has
a security label of LOW. Write-down control is enabled.

Suppose that DSN8910.EMP contains the data that is shown in the following table
and that the SECURITY column has been declared with the AS SECURITY LABEL
clause.

Table 58. Sample data from DSN8910.EMP

EMPNO LASTNAME WORKDEPT SECURITY

000190 BROWN D11 HIGH

000200 JONES D11 MEDIUM

000210 LUTZ D11 LOW

Now, suppose that Alan, Beth, and Carlos each submit the following DELETE
statement:
DELETE FROM DSN8910.EMP

WHERE DEPTNO='D11';

Because Alan has a security label that dominates the rows with security labels of
MEDIUM and LOW, his write-down privilege determines whether these rows are
deleted. Alan does not have write-down privilege, so the delete fails for these
rows. Because Alan has a security label that is equivalent to the security label of
the row with HIGH security, the delete on that row succeeds. The results of Alan’s
delete are shown in the following table:

Table 59. Sample data from DSN8910.EMP after Alan’s delete

EMPNO EMPNAME DEPTNO SECURITY

000200 JONES D11 MEDIUM

000210 LUTZ D11 LOW

Because Beth has a security label that dominates the row with a security label of
LOW, her write-down privilege determines whether this row is deleted. Beth has
write-down privilege, so the delete succeeds for this row. Because Beth has a
security label that is equivalent to the security label of the row with MEDIUM
security, the delete succeeds for that row. Because the row with the security label
of HIGH dominates Beth’s security label, the delete fails for that row. The results
of Beth’s delete are shown in the following table:

Table 60. Sample data from DSN8910.EMP after Beth’s delete

EMPNO EMPNAME DEPTNO SECURITY

000190 BROWN D11 HIGH

246 Administration Guide



Because Carlos’s security label is LOW, the delete fails for the rows with security
labels of MEDIUM and HIGH. Because Carlos has a security label that is
equivalent to the security label of the row with LOW security, the delete on that
row succeeds. The results of Carlos’s delete are shown in the following table:

Table 61. Sample data from DSN8910.EMP after Carlos’s delete

EMPNO EMPNAME DEPTNO SECURITY

000190 BROWN D11 HIGH

000200 JONES D11 MEDIUM

Important: Do not omit the WHERE clause from DELETE statements. If you omit
the WHERE clause from the DELETE statement, checking occurs for rows that
have security labels. This checking behavior might have a negative impact on
performance.

Considerations for SELECT...FROM...DELETE statements: If the user has
write-down privilege or write-down control is not in effect, the security label of the
user might not dominate the security label of the row. For statements that delete
rows and select the deleted rows, the DELETE statement succeeds. However, the

deleted row is not returned.

Using the TRUNCATE statement with multilevel security
When a user with a valid security label uses a TRUNCATE statement to delete all
data from a table with row-level security enabled, DB2 compares the security label
of the user to the security label of each row.

The delete proceeds according to the following rules:
v If the security label of the user and the security label of the row are equivalent,

the row is deleted.
v If the security label of the user dominates the security label of the row, the user’s

write-down privilege determines the result of the DELETE statement:
– If the user has write-down privilege or write-down control is not enabled, the

row is deleted.
– If the user does not have write-down privilege and write-down control is

enabled, the row is not deleted.
v If the security label of the row dominates the security label of the user, the row

is not deleted.
v If the row cannot be deleted as a result of the security label verification, the

TRUNCATE statement fails.

Using utilities with multilevel security
You need a valid security label and additional authorizations to run certain LOAD,
UNLOAD, and REORG TABLESPACE jobs on tables that have multilevel security
enabled. All other utilities check only for authorization to operate on the table
space; they do not check for row-level authorization.

LOAD: You must have the write-down privilege to run LOAD REPLACE
on a table space that contains a table with multilevel security enabled. In this case,
you can specify the values for the security label column.

Chapter 5. Managing access through authorization IDs or roles 247



When you run LOAD RESUME, you must have the write-down privilege to
specify values for the security label column. If you run a LOAD RESUME job and
do not have the write-down privilege, DB2 assigns your security label as the value
for each row in the security label column.

UNLOAD: Additional restrictions apply to UNLOAD jobs on tables that have
multilevel security enabled. Each row is unloaded only if the security label of the
user dominates the security label of the row. If security label of the user does not
dominate the security label of the row, the row is not unloaded and DB2 does not
issue an error message.

REORG TABLESPACE: REORG TABLESPACE jobs on tables that have multilevel
security enabled have the following restrictions:
v For jobs with the UNLOAD EXTERNAL option, each row is unloaded only if

the security label of the user dominates the security label of the row. If the
security label of the user does not dominate the security label of the row, the
row is not unloaded and DB2 does not issue an error message.

v For jobs with the DISCARD option, a qualifying row is discarded only if the
user has the write-down privilege and the security label of the user dominates

the security label of the row.

Implementing multilevel security in a distributed environment
SQL statements that originate from remote requesters can participate in a
multilevel secure environment if all information on the requester has the same
security label and all users of the requester are permitted to that security label.

Management of multilevel security in a distributed environment requires physical
control of the participating systems and careful management of the network.
Managed systems must be prevented from communicating with other systems that
do not have equivalent security labels.

Configuring TCP/IP with multilevel security
A communications server IP stack that runs in a multilevel secure environment can
be configured as either a restricted stack or an unrestricted stack.

Recommendation: Use an unrestricted stack for DB2. An unrestricted stack is
configured with an ID that is defined with a security label of SYSMULTI. A single
z/OS system can concurrently run a mix of restricted and unrestricted stacks.
Unrestricted stacks allow DB2 to use any security label to open sockets.

All users on a TCP/IP connection have the security label that is associated with
the IP address that is defined on the server. If a user requires a different security
label, the user must enter through an IP address that has that security label
associated with it. If you require multiple IP addresses on a remote z/OS server, a
workstation, or a gateway, you can configure multiple virtual IP addresses. This
strategy can increase the number of security labels that are available on a client.

Remote users that access DB2 by using a TCP/IP network connection use the
security label that is associated with the RACF SERVAUTH class profile when the
remote user is authenticated. Security labels are assigned to the database access
thread when the DB2 server authenticates the remote server by using the
RACROUTE REQUEST = VERIFY service.

If you use a trusted context for your TCP/IP connection, you can define a default
security label for all users or specific security labels for individual users who use

248 Administration Guide

|
|



the trusted context. The security label that is defined in the trusted context
overrides the one for the TCP/IP connection in RACF.

Configuring SNA with multilevel security
Security labels are assigned to the database access thread when the DB2 server
authenticates the remote server by using the RACROUTE REQUEST = VERIFY
service. The service establishes a security label to the authorization ID that is
associated with the database access thread. For SNA connections, this security label
is the default security label that is defined for the remote user.

Chapter 5. Managing access through authorization IDs or roles 249

|
|



250 Administration Guide



Chapter 6. Managing access through RACF

You can control whether a local or remote application can gain access to a specific
DB2 subsystem from different environments. You can set different levels of security
depending on whether the requesting application uses SNA or Transmission
Control Protocol/Internet Protocol (TCP/IP) protocols to access DB2.

After the local system authenticates the incoming ID, it treats the ID like a local
connection request or a local sign-on request. You can process the ID with your
connection or sign-on exit routine and associate secondary authorization IDs with
the ID. If you are sending a request to a remote DB2 subsystem, that subsystem
can subject your request to various security checks.

You can use an external security system, such as RACF, IMS, or CICS, to authorize
and authenticate a remote request before it reaches your DB2 subsystem. The
discussion in the following topics assumes that you use RACF, or an equivalent
system, for external access control.

Establishing RACF protection for DB2
You can install and use RACF to protect your DB2 resources.

Suppose that your DB2-RACF environment is exactly as shown in the following
diagram.

Also, suppose that you use the system of RACF IDs, as listed in the following
table, to control your DB2 usage:

Table 62. RACF relationships

RACF ID Use

SYS1 Major RACF group ID

DB2 DB2 group

SYS1 The major RACF group for the site

DB2 The DB2 group ...Other groups...

DB2OWNER
This ID owns, and is
connected to, group DB2

DSNC 0nn DSN 0nn ...Other aliases... DB2USER
The group of
all DB2 IDs

DB2 groups (aliases to integrated catalog facility catalogs)

RACF group names DB2SYS GROUP1 GROUP2

SYSADM SYSOPR SYSDSP USER2 USER3 USER4

Figure 22. Sample DB2-RACF environment

© Copyright IBM Corp. 1982, 2009 251



Table 62. RACF relationships (continued)

RACF ID Use

DB2OWNER Owner of the DB2 group

DSNC910 Group to control databases and recovery logs

DSN910 Group to control installation data sets

DB2USER Group of all DB2 users

SYSADM ID with DB2 installation SYSADM authority

SYSOPR ID with DB2 installation SYSOPR authority

DB2SYS, GROUP1, GROUP2 RACF group names

SYSDSP RACF user ID for DB2 started tasks

USER1, USER2, USER3 RACF user IDs.

You can perform the following tasks in any order to establish RACF protection for
DB2:
v Define DB2 resources to RACF for protection.
v Grant RACF access to the protected DB2 resources.

Defining DB2 resources to RACF
To establish RACF protection for your DB2 subsystem, you must first define your
DB2 resources to RACF and authorize RACF for authentication checking.

To define your DB2 resources to RACF:
v Define the names of protected access profiles.
v Enable RACF checking for the DSNR and SERVER classes.

You can also perform the following tasks:
v Control whether two DBMSs that use VTAM LU 6.2 can establish sessions with

each other.
v Authorize IDs that are associated with stored procedures address spaces to run

the appropriate attachment facility.
v Authorize the ID that is associated with the DDF address space to use z/OS

UNIX® System Services if you use TCP/IP.

Naming protected access profiles
The RACF resource class for DB2 is DSNR, and the class is contained in the RACF
class descriptor table. The profiles in that class help you control access to a DB2
subsystem from one of these environments: IMS, CICS, the distributed data facility
(DDF), TSO, CAF, or batch.

Each profile has a name of the form subsystem.environment, where:
v subsystem is the name of a DB2 subsystem, of one to four characters; for

example, DSN or DB2T.
v environment denotes the environment, by one of the following terms:

– MASS for IMS (including MPP, BMP, Fast Path, and DL/I batch).
– SASS for CICS.
– DIST for DDF.
– RRSAF for Resource Recovery Services attachment facility. Stored procedures

use RRSAF in WLM-established address spaces.

252 Administration Guide



– BATCH for all others, including TSO, CAF, batch, all utility jobs, and requests
that come through the call attachment facility.

To control access, you need to define a profile, as a member of class DSNR, for
every combination of subsystem and environment you want to use. For example,
suppose that you want to access:
v Subsystem DSN from TSO and DDF
v Subsystem DB2P from TSO, DDF, IMS, and RRSAF
v Subsystem DB2T from TSO, DDF, CICS, and RRSAF

Then define the profiles with the following names:
DSN.BATCH DSN.DIST
DB2P.BATCH DB2P.DIST DB2P.MASS DB2P.RRSAF
DB2T.BATCH DB2T.DIST DB2T.SASS DB2T.RRSAF

You can do that with a single RACF command, which also names an owner for the
resources:
RDEFINE DSNR (DSN.BATCH DSN.DIST DB2P.BATCH DB2P.DIST DB2P.MASS DB2P.RRSAF

DB2T.BATCH DB2T.DIST DB2T.SASS DB2T.RRSAF) OWNER(DB2OWNER)

In order to access a subsystem in a particular environment, a user must be on the
access list of the corresponding profile. You add users to the access list by using
the RACF PERMIT command. If you do not want to limit access to particular users
or groups, you can give universal access to a profile with a command like this:
RDEFINE DSNR (DSN.BATCH) OWNER(DB2OWNER) UACC(READ)

Enabling RACF checking for the DSNR and SERVER classes
You need to allow RACF access to check for the DSNR and SERVER classes. Issue
the following command to enable RACF access checking for resources in the DSNR
resource class:
SETROPTS CLASSACT(DSNR)

If you are using stored procedures in a WLM-established address space, you might
also need to enable RACF checking for the SERVER class.

Enabling partner LU verification
With RACF and VTAM, you can control whether two LUs that use LU 6.2 can
connect to each other.

Each member of a connecting pair must establish a profile for the other member.
For example, if LUAAA and LUBBB are to connect and know each other by those
LUNAMES, issue RACF commands similar to these:

At LUAAA: RDEFINE APPCLU netid.LUAAA.LUBBB UACC(NONE) ...
At LUBBB: RDEFINE APPCLU netid.LUBBB.LUAAA UACC(NONE) ...

Here, netid is the network ID, given by the VTAM start option NETID.

When you create those profiles with RACF, use the SESSION operand to supply:
v The VTAM password as a session key (SESSKEY suboperand)
v The maximum number of days between changes of the session key (INTERVAL

suboperand)
v An indication of whether the LU pair is locked (LOCK suboperand)

Finally, to enable RACF checking for the new APPCLU resources, issue this RACF
command at both LUAAA and LUBBB:

Chapter 6. Managing access through RACF 253

|
|



SETROPTS CLASSACT(APPCLU)

Permitting RACF access
Perform the following tasks in the required order to enable a process to use the
protected resources:
1. Define RACF user IDs for DB2-started tasks
2. Add RACF groups
3. Grant users and groups access

Defining RACF user IDs for DB2-started tasks
A DB2 subsystem has the following started-task address spaces:
v ssnmDBM1 for database services
v ssnmMSTR for system services
v ssnmDIST for the distributed data facility
v Names for your WLM-established address spaces for stored procedures

You must associate each of these address spaces with a RACF user ID. You can
also assign each of them to a RACF group name. The RACF user IDs and group
names that are associated with DB2 address spaces are listed in the following table:

Table 63. DB2 address spaces and associated RACF user IDs and group names

Address Space RACF User ID RACF Group Name

DSNMSTR SYSDSP DB2SYS

DSNDBM1 SYSDSP DB2SYS

DSNDIST SYSDSP DB2SYS

DSNWLM SYSDSP DB2SYS

DB2TMSTR SYSDSPT DB2TEST

DB2TDBM1 SYSDSPT DB2TEST

DB2TDIST SYSDSPT DB2TEST

DB2TSPAS SYSDSPT DB2TEST

DB2PMSTR SYSDSPD DB2PROD

DB2PDBM1 SYSDSPD DB2PROD

DB2PDIST SYSDSPD DB2PROD

CICSSYS CICS CICSGRP

IMSCNTL IMS IMSGRP

You can use one of the two ways that RACF provides to associate user IDs and
groups with started tasks: the STARTED class and the started procedures table
(ICHRIN03). If you use the STARTED class, the changes take effect without a
subsequent IPL. If you use ICHRIN03, you must perform another IPL for the
changes to take effect. You cannot start the DB2 address spaces with batch jobs.

If you have IMS or CICS applications issuing DB2 SQL requests, you must
associate RACF user IDs, and can associate group names, with:
v The IMS control region
v The CICS address space
v The four DB2 address spaces

254 Administration Guide



If the IMS and CICS address spaces are started as batch jobs, provide their RACF
IDs and group names with the USER and GROUP parameters on the JOB
statement. If they are started as started-tasks, assign the IDs and group names as
you do for the DB2 address spaces, by changing the RACF STARTED class or the
RACF started procedures table.

The RACF user ID and group name do not need to match those that are used for
the DB2 address spaces, but they must be authorized to run the Resource Recovery
Services attachment facility (for WLM-established stored procedures address
spaces). Note that the WLM-established stored procedures started tasks IDs require
an OMVS segment.

If your installation has implemented the RACF STARTED class, you can use it to
associate RACF user IDs and group names with the DB2 started procedures
address spaces. If you have not previously set up the STARTED class, you first
need to enable generic profile checking for the class:
SETROPTS GENERIC(STARTED)

Then, you need to define the RACF identities for the DB2 started tasks:
RDEFINE STARTED DSNMSTR.** STDATA(USER(SYSDP) GROUP(DB2SYS) TRUSTED(NO))
RDEFINE STARTED DSNDBM1.** STDATA(USER(SYSDP) GROUP(DB2SYS) TRUSTED(NO))
RDEFINE STARTED DSNDIST.** STDATA(USER(SYSDP) GROUP(DB2SYS) TRUSTED(NO))
RDEFINE STARTED DSNWLM.** STDATA(USER(SYSDP) GROUP(DB2SYS) TRUSTED(NO))
RDEFINE STARTED DB2TMSTR.** STDATA(USER(SYSDSPT) GROUP(DB2TEST) TRUSTED(NO))
...

Then, you need to activate the RACLIST processing to read the profiles into a data
space:
SETROPTS CLASSACT(STARTED)
SETROPTS RACLIST(STARTED)

Lastly, you need to refresh the in-storage profiles:
SETROPTS RACLIST(STARTED) REFRESH

If you use the RACF-started procedures table (ICHRIN03) to associate RACF user
IDs and group names with the DB2 started procedures address spaces, you need to
change, reassemble, and link edit the resulting object code to z/OS. The following
example shows a sample job that reassembles and link edits the RACF
started-procedures table (ICHRIN03):
//*
//* REASSEMBLE AND LINKEDIT THE RACF STARTED-PROCEDURES
//* TABLE ICHRIN03 TO INCLUDE USERIDS AND GROUP NAMES
//* FOR EACH DB2 CATALOGED PROCEDURE. OPTIONALLY, ENTRIES
//* FOR AN IMS OR CICS SYSTEM MIGHT BE INCLUDED.
//*
//* AN IPL WITH A CLPA (OR AN MLPA SPECIFYING THE LOAD
//* MODULE) IS REQUIRED FOR THESE CHANGES TO TAKE EFFECT.
//*

ENTCOUNT DC AL2(((ENDTABLE-BEGTABLE)/ENTLNGTH)+32768)
* NUMBER OF ENTRIES AND INDICATE RACF FORMAT
*
* PROVIDE FOUR ENTRIES FOR EACH DB2 SUBSYSTEM NAME.
*
BEGTABLE DS 0H
* ENTRIES FOR SUBSYSTEM NAME "DSN"

DC CL8'DSNMSTR' SYSTEM SERVICES PROCEDURE
DC CL8'SYSDSP' USERID
DC CL8'DB2SYS' GROUP NAME

Chapter 6. Managing access through RACF 255



DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES

ENTLNGTH EQU *-BEGTABLE CALCULATE LENGTH OF EACH ENTRY
DC CL8'DSNDBM1' DATABASE SERVICES PROCEDURE
DC CL8'SYSDSP' USERID
DC CL8'DB2SYS' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'DSNDIST' DDF PROCEDURE
DC CL8'SYSDSP' USERID
DC CL8'DB2SYS' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'SYSDSP' USERID
DC CL8'DB2SYS' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'DSNWLM' WLM-ESTABLISHED S.P. ADDRESS SPACE
DC CL8'SYSDSP' USERID
DC CL8'DB2SYS' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES

* ENTRIES FOR SUBSYSTEM NAME "DB2T"
DC CL8'DB2TMSTR' SYSTEM SERVICES PROCEDURE
DC CL8'SYSDSPT' USERID
DC CL8'DB2TEST' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'DB2TDBM1' DATABASE SERVICES PROCEDURE
DC CL8'SYSDSPT' USERID
DC CL8'DB2TEST' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'DB2TDIST' DDF PROCEDURE
DC CL8'SYSDSPT' USERID
DC CL8'DB2TEST' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'SYSDSPT' USERID
DC CL8'DB2TEST' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES

* ENTRIES FOR SUBSYSTEM NAME "DB2P"
DC CL8'DB2PMSTR' SYSTEM SERVICES PROCEDURE
DC CL8'SYSDSPD' USERID
DC CL8'DB2PROD' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'DB2PDBM1' DATABASE SERVICES PROCEDURE
DC CL8'SYSDSPD' USERID
DC CL8'DB2PROD' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'DB2PDIST' DDF PROCEDURE
DC CL8'SYSDSPD' USERID
DC CL8'DB2PROD' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'SYSDSPD' USERID
DC CL8'DB2PROD' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES

* OPTIONAL ENTRIES FOR CICS AND IMS CONTROL REGION
DC CL8'CICSSYS' CICS PROCEDURE NAME
DC CL8'CICS' USERID
DC CL8'CICSGRP' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE

256 Administration Guide



DC XL7'00' RESERVED BYTES
DC CL8'IMSCNTL' IMS CONTROL REGION PROCEDURE
DC CL8'IMS' USERID
DC CL8'IMSGRP' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES

ENDTABLE DS 0D
END

The example shows the sample entries for three DB2 subsystems (DSN, DB2T, and
DB2P), optional entries for CICS and IMS, and DB2 started tasks for the DB2
subsystems, CICS, the IMS control region.

Adding RACF groups
You can issue the ADDGROUP command to add a new RACF group.

You need first to issue the following ADDUSER command to add user
DB2OWNER and give it class authorization for DSNR and USER.
ADDUSER DB2OWNER CLAUTH(DSNR USER) UACC(NONE)

DB2OWNER can now add users to RACF and issue the RDEFINE command to
define resources in class DSNR. It also has control over and responsibility for the
entire DB2 security plan in RACF.

To add group DB2 to the existing SYS1 group and make DB2OWNER the owner of
the new group, issue the following RACF command:
ADDGROUP DB2 SUPGROUP(SYS1) OWNER(DB2OWNER)

To connect DB2OWNER to group DB2 with the authority to create new subgroups,
add users, and manipulate profiles, issue the following RACF command:
CONNECT DB2OWNER GROUP(DB2) AUTHORITY(JOIN) UACC(NONE)

To make DB2 the default group for commands issued by DB2OWNER, issue the
following RACF command:
ALTUSER DB2OWNER DFLTGRP(DB2)

To create the group DB2USER and add five users to it, issue the following RACF
commands:
ADDGROUP DB2USER SUPGROUP(DB2)
ADDUSER (USER1 USER2 USER3 USER4 USER5) DFLTGRP(DB2USER)

To define a user to RACF, use the RACF ADDUSER command. That invalidates the
current password. You can then log on as a TSO user to change the password.

DB2 considerations when using RACF groups:

v When a user is newly connected to, or disconnected from, a RACF group, the
change is not effective until the next logon. Therefore, before using a new group
name as a secondary authorization ID, a TSO user must log off and log on, or a
CICS or IMS user must sign on again.

v A user with the SPECIAL, JOIN, or GROUP-SPECIAL RACF attribute can define
new groups with any name that RACF accepts and can connect any user to
them. Because the group name can become a secondary authorization ID, you
should control the use of those RACF attributes.

v Existing RACF group names can duplicate existing DB2 authorization IDs. That
duplication is unlikely for the following reasons:
– A group name cannot be the same as a user name.

Chapter 6. Managing access through RACF 257



– Authorization IDs that are known to DB2 are usually known to RACF.
However, you can create a table with an owner name that is the same as a
RACF group name and use the IBM-supplied sample connection exit routine.
Then any TSO user with the group name as a secondary ID has ownership
privileges on the table. You can prevent that situation by designing the
connection exit routine to stop unwanted group names from being passed to
DB2.

Granting users and groups access
Suppose that the DB2OWNER group in the following example is authorized for
class DSNR, owns the profiles, and has the right to change them. You can issue the
following commands to authorize the DB2USER members, the system
administrators, and operators to be TSO users.

These users can run batch jobs and DB2 utilities on the three systems: DSN, DB2P,
and DB2T. The ACCESS(READ) operand allows use of DB2 without the ability to
manipulate profiles.
PERMIT DSN.BATCH CLASS(DSNR) ID(DB2USER) ACCESS(READ)
PERMIT DB2P.BATCH CLASS(DSNR) ID(DB2USER) ACCESS(READ)
PERMIT DB2T.BATCH CLASS(DSNR) ID(DB2USER) ACCESS(READ)

Defining profiles for IMS and CICS: You want the IDs for attaching systems to use
the appropriate access profile. For example, to let the IMS user ID use the access
profile for IMS on system DB2P, issue the following RACF command:
PERMIT DB2P.MASS CLASS(DSNR) ID(IMS) ACCESS(READ)

To let the CICS group ID use the access profile for CICS on system DB2T, issue the
following RACF command:
PERMIT DB2T.SASS CLASS(DSNR) ID(CICSGRP) ACCESS(READ)

Providing installation authorities to default IDs: When DB2 is installed, IDs are
named to have special authorities—one or two IDs for SYSADM and one or two
IDs for SYSOPR. Those IDs can be connected to the group DB2USER; if they are
not, you need to give them access. The next command permits the default IDs for
the SYSADM and SYSOPR authorities to use subsystem DSN through TSO:
PERMIT DSN.BATCH CLASS(DSNR) ID(SYSADM,SYSOPR) ACCESS(READ)

Using secondary IDs: You can use secondary authorization IDs to define a RACF
group. After you define the RACF group, you can assign privileges to it that are
shared by multiple primary IDs. For example, suppose that DB2OWNER wants to
create a group GROUP1 and to give the ID USER1 administrative authority over
the group. USER1 should be able to connect other existing users to the group. To
create the group, DB2OWNER issues this RACF command:
ADDGROUP GROUP1 OWNER(USER1) DATA('GROUP FOR DEPT. G1')

To let the group connect to the DSN system through TSO, DB2OWNER issues this
RACF command:
PERMIT DSN.BATCH CLASS(DSNR) ID(GROUP1) ACCESS(READ)

USER1 can now connect other existing IDs to the group GROUP1 by using the
RACF CONNECT command:
CONNECT (USER2 EPSILON1 EPSILON2) GROUP(GROUP1)

258 Administration Guide



If you add or update secondary IDs for CICS transactions, you must start and stop
the CICS attachment facility to ensure that all threads sign on and get the correct
security information.

Allowing users to create data sets: You can use RACF to protect the data sets that
store DB2 data. If you use the approach and when you create a new group of DB2
users, you might want to connect it to a group that can create data sets. To allow
USER1 to create and control data sets, DB2OWNER creates a generic profile and
permits complete control to USER1 and to the four administrators. The SYSDSP
parameter also gives control to DB2.
ADDSD 'DSNC910.DSNDBC.ST*' UACC(NONE)

PERMIT 'DSNC910.DSNDBC.ST*'
ID(USER1 SYSDSP SYSAD1 SYSAD2 SYSOP1 SYSOP2) ACCESS(ALTER)

Granting authorization on DB2 commands
IDs must be authorized to issue DB2 commands. If you authorize IDs by issuing
DB2 GRANT statements, the GRANT statements must be made to a primary
authorization ID, a secondary authorization ID, a role, or PUBLIC.

When RACF is used for access control, an ID must have appropriate RACF
authorization on DB2 commands or must be granted authorization for DB2
commands to issue commands from a logged-on MVS console or from TSO SDSF.

You can ensure that an ID can issue DB2 commands from logged-on MVS consoles
or TSO SDSF by using one of the following methods:
v Grant authorization for DB2 commands to the primary, secondary authorization

ID, or role.
v Define RACF classes and permits for DB2 commands.
v Grant SYSOPR authority to appropriate IDs.

Permitting access from remote requesters
You can use the DSNR RACF class with a PERMIT command to access the
distributed data address space, such as DSN.DIST, to control access from remote
requesters.

The following RACF commands let the users in the group DB2USER access DDF
on the DSN subsystem. These DDF requests can originate from any partner in the
network.

Example: To permit READ access on profile DSN.DIST in the DSNR class to
DB2USER, issue the following RACF command:
PERMIT DSN.DIST CLASS(DSNR) ID(DB2USER) ACCESS(READ)

If you want to ensure that a specific user can access only when the request
originates from a specific LU name, you can use WHEN(APPCPORT) on the
PERMIT command.

Example: To permit access to DB2 distributed processing on subsystem DSN when
the request comes from USER5 at LUNAME equal to NEWYORK, issue the
following RACF command:
PERMIT DSN.DIST CLASS(DSNR) ID(USER5) ACCESS(READ) +

WHEN(APPCPORT(NEWYORK))

Chapter 6. Managing access through RACF 259



For connections that come through TCP/IP, use the RACF APPCPORT class or the
RACF SERVAUTH class with TCP/IP Network Access Control to protect
unauthorized access to DB2.

Example: To use the RACF APPCPORT class, perform the following steps:
1. Activate the ACCPORT class by issuing the following RACF command:

SETROPTS CLASSACT(APPCPORT) REFRESH

2. Define the general resource profile and name it TCPIP. Specify NONE for
universal access and APPCPORT for class. Issue the following RACF command:
RDEFINE APPCPORT (TCPIP) UACC(NONE)

3. Permit READ access on profile TCPIP in the APPCPORT class. To permit READ
access to USER5, issue the following RACF command:
PERMIT TCPIP ACCESS(READ) CLASS(APPCPORT) ID(USER5)

4. Permit READ access on profile DSN.DIST in the DSNR class. To permit READ
access to USER5, issue the following RACF command:
PERMIT DSN.DIST CLASS(DSNR) ID(USER5) ACCESS(READ) +

WHEN(APPCPORT(TCPIP))

5. Refresh the APPCPORT class by issuing the following RACF command:
SETROPTS CLASSACT(APPCPORT) REFRESH RACLIST(APPCPORT)

If the RACF APPCPORT class is active on your system, and a resource profile for
the requesting LU name already exists, you must permit READ access to the
APPCPORT resource profile for the user IDs that DB2 uses. You must permit
READ access even when you are using the DSNR resource class. Similarly, if you
are using the RACF APPL class and that class restricts access to the local DB2 LU
name or generic LU name, you must permit READ access to the APPL resource for
the user IDs that DB2 uses.

Recommendation: Use z/OS Communications Server IP Network Access Control
and z/OS Security Server RACF SERVAUTH class if you want to use the port of
entry (POE) for remote TCP/IP connections.

Requirement: To use the RACF SERVAUTH class and TCP/IP Network Access
Control, you must have z/OS V1.5 (or later) installed.

Example: To use the RACF SERVAUTH class and TCP/IP Network Access Control,
perform the following steps:
1. Set up and configure TCP/IP Network Access Control by using the

NETACCESS statement that is in your TCP/IP profile.
For example, suppose that you need to allow z/OS system access only to IP
addresses from 9.0.0.0 to 9.255.255.255. You want to define these IP addresses as
a security zone, and you want to name the security zone IBM. Suppose also
that you need to deny access to all IP addressed outside of the IBM security
zone, and that you want to define these IP addresses as a separate security
zone. You want to name this second security zone WORLD. To establish these
security zones, use the following NETACCESS clause:
NETACCESS INBOUND OUTBOUND
; NETWORK/MASK SAF

9.0.0.0/8 IBM
DEFAULT WORLD

ENDNETACCESS

Now, suppose that USER5 has an IP address of 9.1.2.3. TCP/IP Network Access
Control would determine that USER5 has an IP address that belongs to the IBM
security zone. USER5 would be granted access to the system. Alternatively,

260 Administration Guide

|
|
|



suppose that USER6 has an IP address of 1.1.1.1. TCP/IP Network Access
Control would determine that USER6 has an IP address that belongs to the
WORLD security zone. USER6 would not be granted access to the system.

2. Activate the SERVAUTH class by issuing the following TSO command:
SETROPTS CLASSACT(SERVAUTH)

3. Activate RACLIST processing for the SERVAUTH class by issuing the following
TSO command:
SETROPTS RACLIST(SERVAUTH)

4. Define the IBM and WORLD general resource profiles in RACF to protect the
IBM and WORLD security zones by issuing the following commands:
RDEFINE SERVAUTH (EZB.NETACCESS.ZOSV1R5.TCPIP.IBM) UACC(NONE)
RDEFINE SERVAUTH (EZB.NETACCESS.ZOSV1R5.TCPIP.WORLD) UACC(NONE)

5. Permit USER5 and SYSDSP read access to the IBM profile by using the
following commands.
PERMIT EZB.NETACCESS.ZOSV1R5.TCPIP.IBM ACCESS READ CLASS(SERVAUTH) ID(USER5)
PERMIT EZB.NETACCESS.ZOSV1R5.TCPIP.IBM ACCESS READ CLASS(SERVAUTH) ID(SYSDSP)

6. Permit SYSDSP read access to the WORLD profile by using the following
command:
PERMIT EZB.NETACCESS.ZOSV1R5.TCPIP.WORLD ACCESS READ CLASS(SERVAUTH) ID(USER5)

7. For these permissions to take effect, refresh the RACF database by using the
following command:
SETROPTS CLASSACT(SERVAUTH) REFRESH RACLIST(SERVAUTH)

Managing authorization for stored procedures
DB2 for z/OS provides a variety of methods to help you ensure that users are
properly authorized to create and execute stored procedures. DB2 also provides
ways for you to keep stored procedures secure.
v “Authorizing IDs for using RRSAF”
v “Specifying WLM-established server address spaces for stored procedures” on

page 262
v “Managing authorizations for creation of stored procedures in WLM

environments” on page 263
v “Authorizing users to refresh WLM environments” on page 264
v “Controlling stored procedure access to non-DB2 resources by using RACF” on

page 264
v “Granting the CREATEIN privilege on schemas for stored procedures” on page

265
v “Granting privileges for using distinct types” on page 266
v “Granting privileges for using JAR files” on page 267
v “Granting privileges for executing stored procedures and stored procedure

packages” on page 267
v “Controlling remote execution of stored procedures by using trusted contexts”

on page 268

Authorizing IDs for using RRSAF
When started, WLM-established address spaces use the Resource Recovery Services
attachment facility (RRSAF) to attach to DB2. You must authorize the IDs that are
associated with WLM-established stored procedures address spaces so that they
can use RRSAF.

Chapter 6. Managing access through RACF 261

|

|
|

|
|

|

|
|

|
|

|

|

|
|

|
|

|
|
|
|
|



To authorize user IDs that are associated with WLM-established stored procedures
address spaces to use RRSAF:
1. Create a ssnm.RRSAF profile in RACF. For example, you can define

ssnm.RRSAF in the DSNR resource class with a universal access authority of
NONE by issuing the following command:
RDEFINE DSNR (DB2P.RRSAF DB2T.RRSAF) UACC(NONE)

2. Refresh the in-storage profiles with the profile that you just defined. For
example, you can issue the following command:
SETROPTS RACLIST(DSNR) REFRESH

3. Add user IDs that are associated with WLM-established stored procedures
address spaces to the RACF-started procedures table. For example, you can
issue the following command:
RDEFINE STARTED DSNWLM.** STDATA(USER(SYSDP) GROUP(DB2SYS) TRUSTED(NO))

4. Refresh the in-storage profiles. For example, you can issue the following
command:
SETROPTS RACLIST(STARTED) REFRESH

5. Grant read access to ssnm.RRSAF to the IDs that are associated with the stored
procedures address spaces. For example, you can issue the following command:
PERMIT DB2P.RRSAF CLASS(DSNR) ID(SYSDSP) ACCESS(READ)

Related reference

Summary of RACF commands

Specifying WLM-established server address spaces for stored
procedures
You can manage access to WLM through the server resource class and specify
address spaces as WLM-established server address spaces for running stored
procedures.

To specify address spaces as WLM-established server address spaces that can run
stored procedures:
1. Define a new SERVER class by using the server resource class.

If you do not define a SERVER class, any address space that connects to WLM
as a server address space can run stored procedures.

2. Authorize a RACF profile to associate with the SERVER class. For example:
RDEFINE SERVER (DB2.ssnm.applenv)

In this command, applenv is the name of the application environment that is
associated with the stored procedure. For example, assume that you want to
define the following profile names:
v DB2.DB2T.TESTPROC
v DB2.DB2P.PAYROLL
v DB2.DB2P.QUERY

To define these profile names, use the following RACF command:

262 Administration Guide

|

|
|

|
|
|

|

|
|

|

|
|
|

|

|
|

|

|
|

|

|

|

|

|
|
|
|
|

|

|
|

|

|
|

|

|

|
|
|

|

|

|

|

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp?topic=/com.ibm.cics.ts31.doc/dfht5/topics/dfht523.htm


RDEFINE SERVER (DB2.DB2T.TESTPROC DB2.DB2P.PAYROLL DB2.DB2P.QUERY)

3. Activate the resource class. For example, you can issue the following command:
SETROPTS RACLIST(SERVER) REFRESH

4. Grant read access to the user IDs that are associated with the stored procedures
address space. For example, you can issue the following commands:
PERMIT DB2.DB2T.TESTPROC CLASS(SERVER) ID(SYSDSP) ACCESS(READ)
PERMIT DB2.DB2P.PAYROLL CLASS(SERVER) ID(SYSDSP) ACCESS(READ)
PERMIT DB2.DB2P.QUERY CLASS(SERVER) ID(SYSDSP) ACCESS(READ)

Related reference

Summary of RACF commands

Managing authorizations for creation of stored procedures in
WLM environments
You can group and isolate applications into different WLM environments based on
their security requirements. You can then authorize or prevent users from creating
stored procedures in a security-sensitive environment.

DB2 invokes RACF to determine if users are allowed to create or run stored
procedures in a WLM environment. The WLM ENVIRONMENT keyword on the
CREATE PROCEDURE statement identifies the WLM environments that are used
for running stored procedures. Attempts fail when unauthorized users try to create
or run stored procedures.

To manage authorizations of users for creating stored procedures in a specific
WLM environment:

Use RACF commands to manage authorizations for individual users or groups in
the creation of stored procedures in a specific WLM environment:
v To authorize individual users or groups of users to create stored procedures in a

specific WLM environment, issue the RACF PERMIT command. For example,
you can authorize the user whose ID is DB2USER1 to create stored procedures
on the DB2 subsystem DB2A (non-data sharing) in a WLM environment named
PAYROLL:
PERMIT DB2A.WLMENV.PAYROLL CLASS(DSNR) ID(DB2USER1) ACCESS(READ)

When user ID DB2USER1 attempts to create a stored procedure in the PAYROLL
WLM environment, DB2 performs a resource authorization check by using the
DSNR RACF class and grants permission.

v To prevent users on a particular DB2 subsystem from creating stored procedures,
issue the RACF DEFINE command. You can also use this command to revoke
the default universal access of a WLM environment and set it to NONE,
For example, you can issue the following command to prevent all users on DB2
subsystem DB2A (non-data sharing) from creating stored procedures or
user-defined functions in the WLM environment named PAYROLL:
RDEFINE DSNR (DB2A.WLMENV.PAYROLL) UACC(NONE)

Chapter 6. Managing access through RACF 263

|

|

|

|
|

|
|
|

|

|

|

|
|
|
|
|

|

|
|
|
|
|

|
|

|
|

|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|

|

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp?topic=/com.ibm.cics.ts31.doc/dfht5/topics/dfht523.htm


Related reference

Summary of RACF commands

Authorizing users to refresh WLM environments
When you prepare a new version of a stored procedure in a WLM application
environment, you need to activate the updated stored procedure by refreshing the
application environment.

You can refresh the WLM environment by issuing a VARY REFRESH
command at a z/OS command line. Alternatively, you can execute the
WLM_REFRESH stored procedure, which is supplied by DB2 and executes the
VARY REFRESH command. This stored procedure is useful when users need to
refresh the WLM environment but are not authorized to issue operator commands.

To authorize users to use the WLM_REFRESH stored procedure:
1. Grant access to the RACF resource profile for each application environment.

For example, assume that you want to authorize RACF group DEVL7083 to
access the WLM_REFRESH RACF resource profile for application environment
DB9AWLM on subsystem DB9A. To authorize the RACF group in this way, you
can issue this command:
RDEFINE DSNR (DB9A.WLM_REFRESH.DB9AWLM)
PE DB9A.WLM_REFRESH.DB9AWLM +
CLASS(DSNR) ID(DEVL7083) ACCESS(READ)
END

2. Grant the EXECUTE privilege on the stored procedure to users or groups who
need to refresh the environment. For example, you can issue the following
GRANT statement to authorize the RACF group DEVL7083 to execute the
WLM_REFRESH stored procedure on application environment DB9AWLM:
GRANT EXECUTE ON PROCEDURE SYSPROC.WLM_REFRESH TO DEVL7083;

You need to grant the EXECUTE privilege only once because you supply the
application environment name as a variable when you execute the stored

procedure.
Related reference

WLM_REFRESH stored procedure (Application Programming and SQL Guide)

GRANT (function or procedure privileges) (SQL Reference)

Summary of RACF commands

Controlling stored procedure access to non-DB2 resources by
using RACF
You can control DB2 stored procedure access to non-DB2 resources (such as VSAM
files) by using RACF (or another external security product).

To specify how a stored procedure is to interact with RACF (or an
equivalent product), you can use the SECURITY keyword on the CREATE
PROCEDURE statement or the ALTER PROCEDURE statement. Some stored
procedures require the use of RACF or another external security product to protect
access to non-DB2 resources. The way that you specify the SECURITY option
depends on whether the procedure requires RACF or another external security
product:
v If a stored procedure requires RACF (or another external security product) to

access non-DB2 resources, you can specify SECURITY USER. When you specify

264 Administration Guide

|

|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|

|

|

|

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp?topic=/com.ibm.cics.ts31.doc/dfht5/topics/dfht523.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_sp_wlmrefresh.htm#db2z_sp_wlmrefresh
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_grantfunctionorprocedureprivileges.htm#db2z_sql_grantfunctionorprocedureprivileges
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp?topic=/com.ibm.cics.ts31.doc/dfht5/topics/dfht523.htm


SECURITY USER, a separate RACF environment is established for that stored
procedure. Specify SECURITY USER only when the caller must access resources
outside of DB2.

v If a stored procedure does not require RACF (or another external security
product) to protect access to non-DB2 resources, you can specify SECURITY
DB2. With SECURITY DB2, the default setting, access is performed by using the
AUTHID that is associated with the address space in which the stored procedure
runs.

To control access to non-DB2 resources for an existing stored procedure that does
not require RACF (or another external security product):
1. Issue the ALTER PROCEDURE statement with the SECURITY USER clause.
2. Ensure that the user ID that calls the stored procedure has RACF authority to

the resources.
3. Enable RACF checking for the caller’s ID.
4. For improved performance, specify the following keywords in the COFVLFxx

member of library SYS1.PARMLIB to cache the RACF profiles in the virtual
look-aside facility (VLF) of z/OS. For example:
CLASS NAME(IRRACEE)
EMAJ(ACEE)

Related reference

COFVLFxx (virtual lookaside facility paramaters)

CREATE PROCEDURE (SQL - external) (SQL Reference)

CREATE PROCEDURE (external) (SQL Reference)

ALTER PROCEDURE (SQL - external) (SQL Reference)

ALTER PROCEDURE (external) (SQL Reference)

Granting the CREATEIN privilege on schemas for stored
procedures
A stored procedure is implicitly or explicitly qualified by a schema when it is
created. Users must have the required CREATEIN privilege on the schema before
they can create stored procedures.

Many users create stored procedures in the same schema at an application
level. These users need the CREATEIN privilege on the schema. You can grant this
privilege to a secondary ID or role that is associated with individual users. Those
users can then issue a SET CURRENT SQLID statement to the secondary ID or role
prior to creating stored procedures in the schema.

To grant the CREATEIN privilege on schemas for stored procedures:

Issue a GRANT statement with the appropriate options, depending on whether
you are granting the privilege to a secondary ID or to a role.
v For a secondary ID, issue a GRANT statement with the CREATEIN ON

SCHEMA clause. Specify the schema name and secondary ID. For example,
assume that you want a user with the secondary ID of PAOLORW to be able to
create stored procedures in a schema named DEVL7083. To give this user the
necessary privilege, you can issue this statement:

Chapter 6. Managing access through RACF 265

|
|
|

|
|
|
|
|

|
|

|

|
|

|

|
|
|

|
|

|

|

|

|

|

|

|

|
|
|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/zos/v1r10/topic/com.ibm.zos.r10.ieae200/cofvlf.htm#cofvlf
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_createproceduresqlexternal.htm#db2z_sql_createproceduresqlexternal
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_createprocedureexternal.htm#db2z_sql_createprocedureexternal
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_alterproceduresqlexternal.htm#db2z_sql_alterproceduresqlexternal
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_alterprocedureexternal.htm#db2z_sql_alterprocedureexternal


GRANT CREATEIN ON SCHEMA DEVL7083 TO PAOLORW;

If the ID PAOLORW issues a CREATE PROCEDURE statement without having
the required CREATEIN privilege on the schema, an error occurs, and the
procedure is not created.

v For a role, issue a GRANT statement with the CREATEIN ON SCHEMA clause.
Specify the schema name and the role that will be in effect when the stored
procedure is created. (For users to be associated with a role, the trusted context
that links them to the role needs to be defined with the ROLE AS OBJECT
OWNER AND QUALIFIER clause.) For example, assume that you want to grant
the CREATEIN privilege to a role named ADMINISTRATOR so that users who
are associated with the ADMINISTRATOR role can create stored procedures in a
schema named DEVL7083. To grant this privilege, you can issue this statement:
GRANT CREATEIN ON SCHEMA DEVL7083 TO ROLE ADMINISTRATOR;

If a user who is associated with the role named ADMINISTRATOR issues a
CREATE PROCEDURE statement without having the required CREATEIN
privilege on the schema, an error occurs, and the procedure is not created.

After a secondary ID or role is granted the CREATEIN privilege for a stored
procedure and then creates a stored procedure, that ID or role is the owner of that

stored procedure.
Related reference

GRANT (schema privileges) (SQL Reference)

Granting privileges for using distinct types
Stored procedures can pass parameters that have a distinct type as a data type.
When a distinct type is used as a stored procedure parameter, users who create the
stored procedure need the USAGE privilege on the distinct type.

When you create a distinct type, you, as the owner of that type, implicitly
have the USAGE privilege on the type. You also have the EXECUTE privilege on
the associated cast functions. If other users want to create stored procedures that
pass a parameter with that distinct type, you need to explicitly grant the USAGE
privilege to them.

To grant privileges for using distinct types:

Issue the GRANT statement with the USAGE ON TYPE clause, and specify the
name of the distinct type.
v You can grant privileges for using distinct types to an authorization ID. For

example, assume that you want the user whose authorization ID is PAOLORW
to be able to use the US_DOLLARS distinct type, which you created. Specifically,
this user needs to create a stored procedure that passes a parameter with this
data type. To grant this privilege, you can issue this statement:
GRANT USAGE ON TYPE US_DOLLARS TO PAOLORW;

v You can grant privileges for using distinct types to a role. For example, if you
want the role named ADMINISTRATOR to be able to use the US_DOLLARS
distinct type, you can issue this statement:
GRANT USAGE ON TYPE US_DOLLARS TO ROLE ADMINISTRATOR;

266 Administration Guide

|

|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

|
|

|

|

|

|
|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|

|

|
|
|

|

|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_grantschemaprivileges.htm#db2z_sql_grantschemaprivileges


Granting privileges for using JAR files
To use Java archive (JAR) files, you need to have the USAGE privilege on the JAR.

If you have the USAGE privilege on the JAR, you can specify a JAR file in
the EXTERNAL NAME clause of a stored procedure with a language type of Java.

To grant privileges for using JAR files:

Issue the GRANT statement, specifying the USAGE clause. For example, assume
that you want the user whose AUTHID is PAOLORW to create a Java stored
procedure, EMPDTL1J. Assume that the external name of the stored procedure is
to be DEVL7083.EmpJar:EmpDtl1J.GetEmpDtls, where:

DEVL7083.EmpJar
Is the JAR file name.

EmpDtl1J
Is the class name.

GetEmpDtls
Is the method name.

AUTHID PAOLORW needs the USAGE privilege (from the JAR file owner ID or
schema that was used for executing the INSTALL_JAR stored procedure). The
following statement grants this privilege:
GRANT USAGE ON JAR DEVL7083.EmpJar TO PAOLORW;

In addition, if specified, the contents of the JAR file must already be installed in

the DB2 catalog at the time the stored procedure is created.
Related reference

GRANT (type or JAR privileges) (SQL Reference)

Granting privileges for executing stored procedures and stored
procedure packages
After you create a stored procedure, you need to grant EXECUTE privilege to
users who plan to run the stored procedure and the stored procedure package. You
can use the GRANT statement to grant the required privileges.

Invoking a stored procedure requires the EXECUTE privilege on the stored
procedure. For external stored procedures (including external SQL procedures),
additional authority is needed for the stored procedure package and for most
packages that run in the stored procedure.

To grant privileges for executing stored procedures and stored procedure packages:
1. Issue the SQL GRANT statement with the EXECUTE ON PROCEDURE clause

to the appropriate authorization ID or role.
v To grant the EXECUTE privilege to an authorization ID, use the GRANT

statement with the EXECUTE ON PROCEDURE clause. For example, to
grant EXECUTE privilege for a stored procedure named SPNAME to a user
whose authorization ID is PAOLORW, you can issue the following statement:
GRANT EXECUTE ON PROCEDURE SPNAME TO PAOLORW;

v To grant the EXECUTE privilege to a role, use the GRANT statement with
the EXECUTE ON PROCEDURE clause and the ROLE clause. For example,

Chapter 6. Managing access through RACF 267

|
|

|
|

|

|
|
|
|

|
|

|
|

|
|

|
|
|

|

|

|

|

|

|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|

|

|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_granttypeorjarprivileges.htm#db2z_sql_granttypeorjarprivileges


to grant EXECUTE privilege for a stored procedure named SPNAME to a
role named ADMINISTRATOR, you can issue the following statement:
GRANT EXECUTE ON PROCEDURE SPNAME TO ROLE ADMINISTRATOR;

The DYNAMICRULES behavior for the plan or package that contains the CALL
statement determines which authorization ID or role holds the privilege. For
more information about the authorization requirements, see CALL (SQL
Reference)

2. Issue the SQL GRANT EXECUTE ON PACKAGE statement with the
appropriate options, depending on whether you are granting the privilege to an
authorization ID or a role:
v To grant the EXECUTE privilege on the package to an authorization ID, issue

the GRANT statement with the EXECUTE ON PACKAGE clause. For
example, to grant the privilege to execute a package named PKGNAME to a
user whose authorization ID is PAOLORW, you can issue this statement:
GRANT EXECUTE ON PACKAGE PKGNAME TO PAOLORW;

v To grant the EXECUTE privilege on the package to a role, issue the GRANT
statement with the EXECUTE ON PACKAGE clause and the ROLE clause.
For example, to grant this privilege to execute a package named PKGNAME
to a role named ADMINISTRATOR, you can issue this statement:
GRANT EXECUTE ON PACKAGE PKGNAME TO ROLE ADMINISTRATOR;

The complete syntax of the GRANT statement that you should use depends on
the type of package. For more information about the options for the GRANT
statement, see GRANT (function or procedure privileges) (SQL Reference) and .

Related reference

CALL (SQL Reference)

GRANT (function or procedure privileges) (SQL Reference)

Controlling remote execution of stored procedures by using
trusted contexts
You can use trusted contexts and roles to control how a stored procedure can be
executed. A trusted context is an independent database entity that is based on a
system authorization ID (SYSTEM AUTHID) and connection trust attributes.

For a remote stored procedure CALL, the SYSTEM AUTHID is derived
from the system user ID that is provided by an external entity, such as a
middleware server. This ID is derived when the connection is initiated. The
connection trust attributes are as follows, specified in the CREATE TRUSTED
CONTEXT statement:

ADDRESS
IP address or domain name. (The protocol is restricted to TCP/IP only.)

SERVAUTH
A resource in the RACF SERVAUTH class.

ENCRYPTION
Minimum level of encryption for the connection:

NONE
No encryption. This is the default value.

LOW DRDA data stream encryption.

268 Administration Guide

|
|

|

|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|

|

|
|
|

|

|

|

|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

||

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_call.htm#db2z_sql_call
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_call.htm#db2z_sql_call
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_grantfunctionorprocedureprivileges.htm#db2z_sql_grantfunctionorprocedureprivileges
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_call.htm#db2z_sql_call
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_grantfunctionorprocedureprivileges.htm#db2z_sql_grantfunctionorprocedureprivileges


HIGH Secure Sockets Layer (SSL) encryption.

To call a stored procedure in trusted contexts:
1. Define a role by issuing the CREATE ROLE statement. A role is a database

entity that groups together one or more privileges and that can be assigned to
users by using a trusted context. A role can be used in conjunction with a
trusted context and stored procedures to identify one or more authorization IDs
that can execute a stored procedure. For example, assume that you want to call
stored procedure DEVL7083.EMPDTL1C, which resides on DB2 subsystem
DB9A by using authorization ID PAOLORW. Assume also that you want to
define a role called SP_CALLER for use by PAOLORW. You can issue the
following SQL statement:
CREATE ROLE SP_CALLER;

2. Grant the EXECUTE privilege on a stored procedure to that role. For example,
to grant the EXECUTE privilege to the role called SP_CALLER for the stored
procedure named EMPDTL1C, you can issue the following statement:
GRANT EXECUTE ON PROCEDURE DEVL7083.EMPDTL1C TO ROLE SP_CALLER;

3. Have an authorized user bind the stored procedure package. The user either
needs SYSADM authority or must have explicitly bind authority for that stored
procedure. For example, assume that an authorized user wants to bind stored
procedure DEVL7083.EMPDTL1C into stored procedure package
DEVL7083.EMPDTL1CPKG. You can issue the following statement:
BIND PACKAGE(DEVL7083) MEMBER(EMPDTL1CPKG)

4. Grant the EXECUTE privilege on the stored procedure package to the
authorization ID or role that needs to run it. For example, to grant the
EXECUTE privilege on stored procedure package DEVL7083.EMPDTL1CPKG
to the role named SP_CALLER, you can issue this statement:
GRANT EXECUTE ON PACKAGE DEVL7083.EMPDTL1CPKG TO ROLE SP_CALLER;

5. Define the trusted context. For example, assume that you want to define a
trusted context named TRUSTED_EMPDTL1C that uses:
v System authorization ID PAOLORW
v Default role SP_CALLER
v IP address 9.30.28.113

To define this trusted context, you can issue the following statement:
CREATE TRUSTED CONTEXT TRUSTED_EMPDTL1C
BASED UPON CONNECTION USING SYSTEM AUTHID PAOLORW
ATTRIBUTES (ADDRESS '9.30.28.113')
DEFAULT ROLE SP_CALLER
ENABLE;

6. Optional: Verify that the authorization ID can execute the stored procedure by
running the application program that invokes the stored procedure and looking
at the system output. For example, assume that an application named
CALLEMPD uses a CALL :host-variable statement to invoke the stored
procedure named DEVL7083.EMPDTL1C. Assume also that the application
program generates trace output. You might see the following system output:
DEVL7083.CALLEMPD - Run started.
Data returned in result sets is limited to the first 50 rows.
Data returned in result set columns is limited to the first 100

bytes or characters.
DEVL7083.CALLEMPD - Calling the stored procedure.
DEVL7083.CALLEMPD - Run completed.

Chapter 6. Managing access through RACF 269

||

|

|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|
|
|
|

|

|
|
|
|

|

|
|

|

|

|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|



Related reference

CREATE TRUSTED CONTEXT (SQL Reference)

CREATE ROLE (SQL Reference)

GRANT (function or procedure privileges) (SQL Reference)

Protecting connection requests that use the TCP/IP protocol
You can set your DB2 subsystem to send or receive connection requests that use
the TCP/IP network protocol. You need to authorize the started task user ID
(SYSDSP) that is associated with the DB2 distributed address space (ssnmDIST) to
use the z/OS UNIX system services.

To secure connection requests over TCP/IP:
1. Create an OMVS segment in the RACF user profile for the started task user ID

(SYSDSP)
2. Specify a z/OS UNIX user identifier of 0 and the maximum number of files of

that the user is allowed to have concurrently active to 131702 in the following
command:
ADDUSER ddfuid OMVS(UID(0) FILEPROCMAX(131702))

If the ddfuid ID already exists, use:
ALTUSER ddfuid OMVS(UID(0) FILEPROCMAX(131702))

The started task user ID of the DB2 distributed address space only needs a
z/OS UNIX user identifier of 0 (UID(0)). A UID 0 is considered a superuser. If
you don’t want to grant the superuser authority to the started task user ID that
is associated with the ssnmDIST address space during the DB2 installation, you
can specify a value other than 0 for the UID parameter. Make sure that the
value is a valid z/OS UNIX user identifier.

3. If you want to assign a z/OS group name to the address space, assign an
OMVS segment to the z/OS group name by using one of the following RACF
commands:
ADDGROUP ddfgnm OMVS(GID(nnn))...

ALTGROUP ddfgnm OMVS(GID(nnn))...

where ddfgnm is the z/OS group name and nnn is any valid, unique identifier.
The standard way to assign a z/OS userid and a z/OS group name to a started
address space is to use the z/OS Security Server (RACF) STARTED resource
class. This method enables you to dynamically assign a z/OS user ID by using
commands instead of requiring an IPL to have the assignment take effect. The
alternative method to assign a z/OS user ID and a z/OS group name to a
started address space is to change the RACF started procedures table,
ICHRIN03.

You can also manage TCP/IP requests in a trusted context. A trusted context
allows you to use a trusted connection without needing additional authentication
and to acquire additional privileges through the definition of roles.

The TCP/IP Already Verified (DSN6FAC TCPALVER) controls whether DB2
accepts TCP/IP connection requests that contain only a user ID. However, in the
case of a trusted context, it is the definition of the trusted context, not the
TCPALVER setting, handles the requirement for switching users of a trusted
connection.

270 Administration Guide

|

|

|

|

|
|

|
|
|

|

|

|

|
|
|
|
|
|

|
|
|

|

|

|

|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_createtrustedcontext.htm#db2z_sql_createtrustedcontext
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_createrole.htm#db2z_sql_createrole
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_grantfunctionorprocedureprivileges.htm#db2z_sql_grantfunctionorprocedureprivileges


Do not set DSN6FAC TCPALVER to YES if you use a trusted context. If you set
TCPALVER to YES in the definition of the trusted context, you need to define the
authorization ID that establishes the trusted connection in the USER clause to
enforce the authentication requirement.

Establishing Kerberos authentication through RACF
Kerberos security is a network security technology that was developed at the
Massachusetts Institute of Technology. The Kerberos security technology does not
require passwords to flow in readable text because it uses encrypted tickets that
contain authentication information for the users.

DB2 can use Kerberos security services to authenticate remote users. With Kerberos
security services, remote users need to issue their Kerberos name and password to
access DB2. They can use the same name and password for access throughout the
network, which makes a separate password to access DB2 unnecessary.

A remote user who is authenticated to DB2 by means of Kerberos authentication
must be registered in RACF profiles. An organization that runs a Kerberos server
establishes its own realm. The name of the realm in which a client is registered is
part of the client’s name and can be used by the application server to accept or
reject a request.

To authenticate and register a remote user in RACF profiles:
1. Define the Kerberos realm to RACF by issuing the following command:

RDEFINE REALM KERBDFLT KERB(KERBNAME(localrealm) PASSWORD(mykerpw)

You must specify the name of the local realm in the definition. You must also
specify a Kerberos password for RACF to grant Kerberos tickets.

2. Define local principals to RACF by issuing the following command:
AU RONTOMS KERB(KERBNAME(rontoms))
ALU RONTOMS PASSWORD(new1pw) NOEXPIRE

Make sure to change RACF passwords before the principals become active
Kerberos users.

3. Map foreign Kerberos principals by defining KERBLINK profiles to RACF with
a command similar to the following:
RDEFINE KERBLINK /.../KERB390.ENDICOTT.IBM.COM/RWH APPLDATA('RONTOMS')

You must also define a principal name for the user ID that is used in the
ssnmDIST started task address space, as shown in the following example:
ALU SYSDSP PASSWORD(pw) NOEXPIRE KERB(KERBNAME(SYSDSP))

The ssnmDIST address space must have the RACF authority to use its SAF
ticket parsing service. The user ID that is used for the ssnmDIST started task
address space is SYSDSP.

4. Define foreign Kerberos authentication servers to the local Kerberos
authentication server by issuing the following command:
RDEFINE REALM /.../KERB390.ENDICOTT.IBM.COM/KRBTGT/KER2000.ENDICOTT.IBM.COM +
KERB(PASSWORD(realm0pw))

You must supply a password for the key to be generated. REALM profiles
define the trust relationship between the local realm and the foreign Kerberos
authentication servers. PASSWORD is a required keyword, so all REALM
profiles have a KERB segment.

Data sharing environment: Data sharing Sysplex environments that use Kerberos
security must have a Kerberos Security Server instance running on each system in

Chapter 6. Managing access through RACF 271



the Sysplex. The instances must either be in the same realm and share the same
RACF database, or have different RACF databases and be in different realms.

Implementing DB2 support for enterprise identity mapping
Enterprise identity mapping (EIM) enables the mapping of user identities across
servers that are integrated but that do not share user registries. DB2 supports the
EIM capability by implementing the SAF user mapping plug-in callable service,
which is part of the z/OS V1.8 Security Server (RACF).

You can exploit the EIM support by using the IBM Websphere Application Server
6.0.1, the IBM DB2 Driver for JDBC and SQLJ, and the IBM DB2 Driver for ODBC
and CLI.

You must install z/OS V1.8 or later to use the SAF user mapping plug-in service
and implement the DB2 support for the EIM.

To implement the DB2 support for EIM:
1. Configure the z/OS LDAP server with a TDBM backend
2. Set up RACF for the LDAP server
3. Configure the z/OS EIM domain controller
4. Add the SAF user mapping data set to LNKLIST

If you enable DB2 support for EIM, DB2 can retrieve the mapped user ID from the
SAF user mapping plug-in and specify the information in the ICTX structure.
During the ENVIR=CREATE processing, DB2 passes the information to RACF
through the RACROUTE REQUEST=VERIFY macro service. When RACF
successfully authenticates the user, the ICTX structure is anchored in the
ACEEICTX field.

Related information

z/OS Integrated Security Services LDAP Server Administration and Use

z/OS Integrated Security Services LDAP Client Programming

z/OS Security Server RACF Command Language Reference

z/OS Integrated Security Services Enterprise Identity Mapping (EIM) Guide
and Reference

Configuring the z/OS LDAP server
When DB2 receives an authenticated user registry name, it invokes the SAF user
mapping plug-in service. This service uses the EIM domain, which is an LDAP
server, to retrieve the z/OS user ID that is used as the primary authorization ID.

You can use the LDAP configuration (ldapcnf) utility to configure and set up a
z/OS LDAP server. The LDAP configuration utility requires the ldap.profile
input file that is shipped in the /usr/lpp/ldap/etc directory. The ldap.profile file
contains the settings that you need to set up the LDAP server.

To configure a z/OS LDAP server:
1. Copy and modify the ldap.profile file based on your own environment.
2. Issue the following command to run the LDAP configuration utility with the

ldap.profile file that you modified:
ldapcnf –i ldap.profile

272 Administration Guide

|

|
|
|
|

|
|
|

|
|

|

|

|

|

|

|
|
|
|
|
|

|

|

|

|

|
|

|

|
|
|

|
|
|
|

|

|

|
|

|

http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/


The LDAP configuration utility generates the following output files:
v SLAPDCNF member as the LDAP server configuration file
v SLAPDENV member as the LDAP server environment variable file
v PROG member for APF authorization
v GLDSRV procedure for starting the LDAP server
v DSNAOINI configuration file for DB2 CLI
v TDBSPUFI DB2 SQL DDL statements for creating the TDBM environment
v DBCLI DB2 SQL BIND statements for binding the CLI/ODBC packages and

plan
v RACF member for creating the RACF profiles that protect the LDAP server

service task and grant permissions for the user ID to run the LDAP server
These output files are stored in the OUTPUT_DATASET_NAME that you
specified in the ldap.profile file.

3. Submit the following output JCL files after DB2 is started:
v DBCLI member file
v RACF member file

4. Submit the TDBSPUFI member file by using the DB2 SPUFI interactive tool.
5. Start the LDAP server from SDSF or the operator’s console.

The name of the LDAP server procedure file is the same as the user ID that is
specified on the LDAPUSRID statement. The pre-assigned value is GLDSRV.
To start the LDAP server from SDSF, enter:
/s GLDSRV

To start the LDAP server from the operator’s console, enter:
s GLDSRV

6. Copy the schema.user.ldif file from the /usr/lpp/ldap/etc directory to a local
directory

7. Use the following ldapmodify utility to modify the schema entry for the TDBM
backend
ldapmodify -h ldaphost -p ldapport -D binddn -w passwd -f file

The following example shows how to use the ldapmodify utility:
ldapmodify –h v25ec099.svl.ibm.com –p 3389
–D “cn=LDAP Administrator”
–w secret –f schema.user.ldif

At the top of the schema.user.ldif file, find the following line, and supply the
appropriate TDBM suffix in that line
dn: cn=schema, <suffix>

The suffix is the same value that is used in the TDBM_SUFFIX statement in the
ldap.profile file, as in the following example:
dn: cn=schema, o=IBM, c=US

8. Use the ldapadd utility to load the suffix entry and to create a user ID that is
used by the SAF user mapping plug-in for binding with the LDAP server. You
can use the following ldapadd utility statement:
ldapadd –h ldaphost –p ldapport –D binddn –w passwd –f file

The following is an example of using the ldapadd utility:
ldapadd –h v25ec099.svl.ibm.com –p 3389
–D “cn=LDAP Administrator”
–w secret –f setup.ldap.ldif

Chapter 6. Managing access through RACF 273

|

|

|

|

|

|

|

|
|

|
|

|
|

|

|

|

|

|

|
|

|

|

|

|

|
|

|
|

|

|

|
|
|

|
|

|

|
|

|

|
|
|

|

|

|
|
|



Setting up RACF for the z/OS LDAP server
After you configure the z/OS LDAP server, you need to set up RACF to activate
identity mapping and grant DB2 authority to use the SAF user mapping plug-in
service.

To set up RACF for the z/OS LDAP server:
1. Enable identity mapping by activating the FACILITY class.

The FACILITY class must be active to enable identity mapping. Use the
following SETROPTS command if it is not already active at your installation:
SETROPTS CLASSACT(FACILITY)

2. Define a KEYMSTR profile to store an encryption key.
Make sure to choose a key that is known only to the security administrator,
and store it in the KEYMSTR profile that you defined, as shown in the
following example:
RDEF KEYSMSTR LDAP.BINDPW.KEY SSIGNON(KEYMASKED(0123456789ABCDEF))

The LDAP BIND passwords are encrypted with the key that is stored in the
LDAP.BINDPW.KEY profile. The value of the key in this example is
0123456789ABCDEF.

3. Authorize DB2 to request lookup services by defining and granting READ
access to the SYSDSP user in the following RACF profiles:
RDEF FACILITY IRR.RGETINFO.EIM UACC(NONE)
PE IRR.RGETINFO.EIM ACCESS(READ) ID(SYSDSP) CL(FACILITY)

RDEF FACILITY IRR.RDCEKEY UACC(NONE)
PE IRR.RDCEKEY ACCESS(READ) ID(SYSDSP) CL(FACILITY)

4. Define the IRR.PROXY.DEFAULTS profile in the FACILITY class, as follows:
RDEF FACILITY IRR.PROXY.DEFAULTS
PROXY(LDAPHOST('ldap://v25ec099.svl.ibm.com:3389')
BINDDN('cn=eim user,o=IBM,c=US') BINDPW('secret'))
EIM(DOMAINDN('ibm-eimDomainName=My Domain,o=IBM,c=US')
LOCALREG('My Target Registry'))

SETROPTS RACLIST(FACILITY) REFRESH

5. Grant DB2 the authority to use the SAF user mapping plug-in service by
issuing the following commands:
RDEF PROGRAM IRRSPIM ADDMEM ('USER.PRIVATE.DLLLIB'//NOPADCHK)
PE IRRSPIM ACCESS(READ) ID(SYSDSP) CL(PROGRAM)

RDEF PROGRAM IRRSPIME ADDMEM ('USER.PRIVATE.DLLLIB'//NOPADCHK)
PE IRRSPIME ACCESS(READ) ID(SYSDSP) CL(PROGRAM)

SETROPTS WHEN(PROGRAM) REFRESH

Setting up the EIM domain controller
After you set up the LDAP server and RACF, you need to use the eimadmin utility
to create and configure an EIM domain controller.

Suppose that you want to create an EIM domain controller on a z/OS system with
two registries: MySourceRegistry and MyTargetRegistry. The MyTargetRegistry
registry contains a mapping of a z/OS user ID, Buffy, which is returned to DB2 as
the primary authorization ID.

To create an EIM domain controller in this situation:
1. Create an EIM domain by issuing the following command:

274 Administration Guide

|

|
|
|

|

|

|
|

|

|

|
|
|

|

|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|

|

|



eimadmin –aD -d 'ibm-eimDomainName=My Domain,o=IBM,c=US'
-h ldap://v25ec099.svl.ibm.com:3389
-b “cn=LDAP Administrator” -w secret

The example shows that the new domain name is ″My Domain.″ It also shows
that the TDBM_SUFFIX statement in the ldap.profile file is defined as
o=IBM,c=US.

2. Grant the EIM user access to the EIM domain for performing lookup services
by issuing the following command:
eimadmin -aC -c MAPPING -q "cn=eim user, o=IBM, c=US" -f DN
-d 'ibm-eimDomainName=My Domain,o=IBM,c=US'
-h ldap://v25ec099.svl.ibm.com:3389
-b 'cn=LDAP Administrator' -w secret

3. Create the source registry in the EIM domain by issuing the following
command:
eimadmin -aR -r "My Source Registry" -y KERBEROS
-d 'ibm-eimDomainName=My Domain,o=IBM,c=US'
-h ldap://v25ec099.svl.ibm.com:3389
-b 'cn=LDAP Administrator' -w secret

4. Create the target registry in the EIM domain by issuing the following
command:
eimadmin -aR -r "My Target Registry" -y RACF
-d 'ibm-eimDomainName=My Domain,o=IBM,c=US'
-h ldap://v25ec099.svl.ibm.com:3389
-b 'cn=LDAP Administrator' -w secret

5. Add the enterprise identifier “Cat” to the EIM domain by issuing the following
command:
eimadmin -aI -i "Cat" -d 'ibm-eimDomainName=My Domain,o=IBM,c=US'
-h ldap://v25ec099.svl.ibm.com:3389
-b 'cn=LDAP Administrator' -w secret

You can add multiple enterprise identifiers to the same EIM domain at any
time.

6. Associate registry user IDs with the identifiers in the EIM domain by issuing
the following commands:
eimadmin -aA -u "Kitty" -r "My Source Registry" -t SOURCE
-i "Cat" -d 'ibm-eimDomainName=My Domain,o=IBM,c=US'
-h ldap://v25ec099.svl.ibm.com:3389
-b 'cn=LDAP Administrator' -w secret

eimadmin -aA -u "Buffy" -r "My Target Registry" -t TARGET
-o "db2/stlec1/v12ec099.svl.ibm.com" -i "Cat"
-d 'ibm-eimDomainName=My Domain,o=IBM,c=US'
-h ldap://v25ec099.svl.ibm.com:3389
-b 'cn=LDAP Administrator' -w secret

Specify the ″-o″ flag with the ″db2/location-name/domain-name″ value when
you define a user ID for DB2 to use as the primary authorization ID in your
target registry. As the examples show, when DB2 calls the SAF user mapping
plug-in service to retrieve the primary authorization ID, DB2 specifies the
additional ’db2/location-name/domain-name″ information for the plug-in
service to look up.
If a target identity is found with the same information, the target identity
″Buffy″ is returned. If the target identity does not contain any additional
information, user ID ″Buffy″ is also returned to DB2. However, if the target
registry contains multiple user identities and if none of them contains the
recommended additional information, no user identity is returned to DB2.

Chapter 6. Managing access through RACF 275

|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|



Adding the SAF user mapping plug-in data set to LNKLIST
The SAF user mapping plug-in IRRSPIME resides in a z/OS data set. This data set
must be included in the LNKLST. If the data set is not included, you need to add
it to the LNKLST.

To add the z/OS data set that contains the SAF user mapping plug-in to the
LNKLST:
1. Define a new LNKLST by issuing the following command from the operator

console:
SETPROG LNKLST,DEFINE,NAME=MYLNKLST,COPYFROM=CURRENT

2. Add the USER.PRIVATE.DLLLIB data set on the USER01 volume to the new
MYLNKLST by issuing the following command:
SETPROG LNKLST,ADD,NAME=MYLNKLST,DSNAME=USER.PRIVATE.DLLLIB,
VOLUME=USER01

3. Activate the new MYLNKLST by issuing the following command:
SETPROG LNKLST,ACTIVATE,NAME=MYLNKLST

4. Use the MYLNKLST to update the current tasks in the system by issuing the
following command:
SETPROG LNKLST,UPDATE,JOB=*

Managing connection requests from local applications
Different local processes enter the access control procedure at different points,
depending on the environment in which they originate.

The following processes go through connection processing only:
v Requests originating in TSO foreground and background (including online

utilities and requests through the call attachment facility)
v JES-initiated batch jobs
v Requests through started task control address spaces (from the z/OS START

command)

The following processes go through connection processing and can later go
through the sign-on processing:
v The IMS control region.
v The CICS recovery coordination task.
v DL/I batch.
v Applications that connect using the Resource Recovery Services attachment

facility (RRSAF).

The following processes go through sign-on processing:
v Requests from IMS dependent regions (including MPP, BMP, and Fast Path)
v CICS transaction subtasks

IMS, CICS, RRSAF, and DDF-to-DDF connections can send a sign-on request,
typically to execute an application plan. That request must provide a primary ID,
and can also provide secondary IDs. After a plan is allocated, it need not be
deallocated until a new plan is required. A different transaction can use the same
plan by issuing a new sign-on request with a new primary ID.

276 Administration Guide

|

|
|
|

|
|

|
|

|

|
|

|
|

|

|

|
|

|

|



Processing of connection requests
A connection request makes a new connection to DB2; it does not reuse an
application plan that is already allocated. Therefore, an essential step in processing
the request is to check that the ID is authorized to use DB2 resources.

DB2 completes the following steps to process a connection request:
1. DB2 obtains the initial primary authorization ID. As shown in the following

table, the source of the ID depends on the type of address space from which
the connection was made.

Table 64. Sources of initial primary authorization IDs

Source Initial primary authorization ID

TSO TSO logon ID.

BATCH USER parameter on JOB statement.

IMS control region or CICS USER parameter on JOB statement.

IMS or CICS started task Entries in the started task control table.

Remote access requests Depends on the security mechanism used.

2. RACF is called through the z/OS system authorization facility (SAF) to check
whether the ID that is associated with the address space is authorized to use
the following resources:
v The DB2 resource class (CLASS=DSNR)
v The DB2 subsystem (SUBSYS=ssnm)
v The requested connection type
The SAF return code (RC) from the invocation determines the next step, as
follows:
v If RC > 4, RACF determined that the RACF user ID is not valid or does not

have the necessary authorization to access the resource name. DB2 rejects the
request for a connection.

v If RC = 4, the RACF return code is checked.
– If RACF return code value is equal to 4, the resource name is not defined

to RACF and DB2 rejects the request with reason code X’00F30013’.
– If RACF return code value is not equal to 4, RACF is not active. DB2

continues with the next step, but the connection request and the user are
not verified.

v If RC = 0, RACF is active and has verified the RACF user ID; DB2 continues
with the next step.

3. If RACF is active and has verified the RACF user ID, DB2 runs the connection
exit routine. To use DB2 secondary IDs, you must replace the exit routine.
If you do not want to use secondary IDs, do nothing. The IBM-supplied default
connection exit routine continues the connection processing. The process has
the following effects:
v The DB2 primary authorization ID is set based on the following rules:

– If a value for the initial primary authorization ID exists, the value
becomes the DB2 primary ID.

– If no value exists (the value is blank), the primary ID is set by default, as
shown in the following table.

Chapter 6. Managing access through RACF 277



Table 65. Sources of default authorization identifiers

Source Default primary authorization ID

TSO TSO logon ID

BATCH USER parameter on JOB statement

Started task, or batch job with
no USER parameter

Default authorization ID set when DB2 was installed
(UNKNOWN AUTHID on installation panel DSNTIPP)

Remote request None. The user ID is required and is provided by the DRDA
requester.

v The SQL ID is set equal to the primary ID.
v No secondary IDs exist.

4. DB2 determines if TSO and BATCH connections that use DSN, RRSAF, and
Utilities are trusted.
For a TSO and BATCH connection that uses DSN, RRSAF, and Utilities, DB2
checks to see if a matching trusted context is defined for the primary
authorization ID and the job name. If a matching trusted context is found, the
connection is established as trusted.

Related concepts

“Connection routines and sign-on routines” on page 781
Related tasks

“Using sample connection and sign-on exit routines for CICS transactions” on page
281
“Specifying connection and sign-on routines” on page 782
“Debugging connection and sign-on routines” on page 790

Using secondary IDs for connection requests
If you want to use DB2 secondary authorization IDs, you must replace the default
connection exit routine. If you want to use RACF group names as DB2 secondary
IDs, the easiest method is to use the IBM-supplied sample routine.

The following table lists the difference between the default and sample connection
exit routines.

Table 66. Differences between the default and sample connection exit routines

Default connection exit routine Sample connection exit routine

Supplied as object code. Supplied as source code. You can change the
code.

Installed as part of the normal DB2
installation procedure.

Must be compiled and placed in the DB2
library.

Provides values for primary IDs and SQL
IDs, but does not provide values for
secondary IDs.

Provides values for primary IDs, secondary
IDs, and SQL IDs.

The sample connection exit routine has the following effects:
v The sample connection exit routine sets the DB2 primary ID in the same way

that the default routine sets the DB2 primary ID, and according to the following
rules:
– If the initial primary ID is not blank, the initial ID becomes the DB2 primary

ID.

278 Administration Guide

|
|

|
|
|
|



– If the initial primary ID is blank, the sample routine provides the same
default value as does the default routine.

– If the sample routine cannot find a nonblank primary ID, DB2 uses the
default ID (UNKNOWN AUTHID) from the DSNTIPP installation panel. In
this case, no secondary IDs are supplied.

v The sample connection exit routine sets the SQL ID based on the following
criteria:
– The routine sets the SQL ID to the TSO data set name prefix in the TSO user

profile table if the following conditions are true:
- The connection request is from a TSO-managed address space, including

the call attachment facility, the TSO foreground, and the TSO background.
- The TSO data set name prefix is equal to the primary ID or one of the

secondary IDs.
– In all other cases, the routine sets the SQL ID equal to the primary ID.

v The secondary authorization IDs depend on RACF options:
– If RACF is not active, no secondary IDs exist.
– If RACF is active but its “list of groups” option is not active, one secondary

ID exists (the default connected group name) if the attachment facility
supplied the default connected group name.

– If RACF is active and the “list of groups” option is active, the routine sets the
list of DB2 secondary IDs to the list of group names to which the RACF user
ID is connected. Those RACF user IDs that are in REVOKE status do not
become DB2 secondary IDs. The maximum number of groups is 1012. The list
of group names is obtained from RACF and includes the default connected
group name.

If the default connection exit routine and the sample connection exit routine do not
provide the flexibility and features that your subsystem requires, you can write
your own exit routine.

Processing of sign-on requests
For requests from IMS-dependent regions, CICS transaction subtasks, or RRS
connections, the initial primary ID is not obtained until just before allocating a
plan for a transaction. A new sign-on request can run the same plan without
de-allocating the plan and reallocating it. Nevertheless, it can change the primary
ID.

Unlike the connection processing, the sign-on processing does not check the RACF
for the user ID of the address space. DB2 completes the following steps to process
sign-on requests:
1. DB2 determines the initial primary ID as follows:

For IMS sign-ons from message-driven regions, if the user has signed on, the
initial primary authorization ID is the user’s sign-on ID. IMS passes to DB2 the
IMS sign-on ID and the associated RACF connected group name, if one exists.
If the user has not signed on, the primary ID is the LTERM name, or if that is
not available, the PSB name. For a batch-oriented region, the primary ID is the
value of the USER parameter on the job statement, if that is available. If that is
not available, the primary ID is the program’s PSB name.
For remote requests, the source of the initial primary ID is determined by
entries in the SYSIBM.USERNAMES table. For connections using Resource
Recovery Services attachment facility, the processing depends on the type of
signon request:

Chapter 6. Managing access through RACF 279



v SIGNON
v AUTH SIGNON
v CONTEXT SIGNON
For SIGNON, the primary authorization ID is retrieved from ACEEUSRI if an
ACEE is associated with the TCB (TCBSENV). This is the normal case.
However, if an ACEE is not associated with the TCB, SIGNON uses the
primary authorization ID that is associated with the address space, that is, from
the ASXB. If the new primary authorization ID was retrieved from the ACEE
that is associated with the TCB and ACEEGRPN is not null, DB2 uses
ACEEGRPN to establish secondary authorization IDs.
With AUTH SIGNON, an APF-authorized program can pass a primary
authorization ID for the connection. If a primary authorization ID is passed,
AUTH SIGNON also uses the value that is passed in the secondary
authorization ID parameter to establish secondary authorization IDs. If the
primary authorization ID is not passed, but a valid ACEE is passed, AUTH
SIGNON uses the value in ACEEUSRI for the primary authorization ID if
ACEEUSRL is not 0. If ACEEUSRI is used for the primary authorization ID,
AUTH SIGNON uses the value in ACEEGRPN as the secondary authorization
ID if ACEEGRPL is not 0.
For CONTEXT SIGNON, the primary authorization ID is retrieved from data
that is associated with the current RRS context using the context_key, which is
supplied as input. CONTEXT SIGNON uses the CTXSDTA and CTXRDTA
functions of RRS context services. An authorized function must use CTXSDTA
to store a primary authorization ID prior to invoking CONTEXT SIGNON.
Optionally, CTXSDTA can be used to store the address of an ACEE in the
context data that has a context_key that was supplied as input to CONTEXT
SIGNON. DB2 uses CTXRDTA to retrieve context data. If an ACEE address is
passed, CONTEXT SIGNON uses the value in ACEEGRPN as the secondary
authorization ID if ACEEGRPL is not 0.

2. DB2 runs the sign-on exit routine. User action: To use DB2 secondary IDs, you
must replace the exit routine.
If you do not want to use secondary IDs, do nothing. Sign-on processing is
then continued by the IBM-supplied default sign-on exit routine, which has the
following effects:
v The initial primary authorization ID remains the primary ID.
v The SQL ID is set equal to the primary ID.
v No secondary IDs exist.
You can replace the exit routine with one of your own, even if it has nothing to
do with secondary IDs. If you do, remember that IMS and CICS recovery
coordinators, their dependent regions, and RRSAF take the exit routine only if
they have provided a user ID in the sign-on parameter list.

3. DB2 determines if the user of a trusted RRSAF SIGNON connection is allowed
to switch.
For a RRSAF SIGNON connection that is trusted, DB2 checks to see if the
primary authorization ID is allowed to switch in the trusted connection. If the
primary authorization ID is not allowed to switch, the connection is returned to
the unconnected state.

280 Administration Guide

|
|

|
|
|
|



Related concepts

“Connection routines and sign-on routines” on page 781
Related tasks

“Using sample connection and sign-on exit routines for CICS transactions”
“Specifying connection and sign-on routines” on page 782
“Debugging connection and sign-on routines” on page 790

Using secondary IDs for sign-on requests
If you want the primary authorization ID to be associated with DB2 secondary
authorization IDs, you must replace the default sign-on exit routine.

The procedure is similar to that for connection processing. If you want to use
RACF group names as DB2 secondary IDs, the easiest method is to use the
IBM-supplied sample routine. An installation job can automatically replace the
default routine with the sample routine.

Distinguish carefully between the two routines. The default sign-on routine
provides no secondary IDs and has the following effects:
v The initial primary authorization ID remains the primary ID.
v The SQL ID is set equal to the primary ID.
v No secondary IDs exist.

Like the sample connection routine, the sample sign-on routine supports DB2
secondary IDs and has the following effects:
v The initial primary authorization ID is left unchanged as the DB2 primary ID.
v The SQL ID is made equal to the DB2 primary ID.
v The secondary authorization IDs depend on RACF options:

– If RACF is not active, no secondary IDs exist.
– If RACF is active but its “list of groups” option is not active, one secondary

ID exists; it is the name passed by CICS or by IMS.
– If RACF is active and you have selected the option for a list of groups, the

routine sets the list of DB2 secondary IDs to the list of group names to which
the RACF user ID is connected, up to a limit of 1012 groups. The list of group
names includes the default connected groupname.

Using sample connection and sign-on exit routines for CICS
transactions

For a CICS transaction to use the sample connection or sign-on exit routines, the
external security system, such as RACF, must be defined to CICS with the
following specifications:
v The CICS system initialization table must specify external security.

– For CICS Version 4 or later, specify SEC=YES.
– For earlier releases of CICS, specify EXTSEC=YES.

If you are using the CICS multiple region option (MRO), you must specify
SEC=YES or EXTSEC=YES for every CICS system that is connected by
interregion communication (IRC).

v If your version of CICS uses a sign-on table (SNT), the CICS sign-on table must
specify EXTSEC=YES for each signed on user that uses the sign-on exit.

Chapter 6. Managing access through RACF 281



v When the user signs on to a CICS terminal-owning region, the terminal-owning
region must propagate the authorization ID to the CICS application-owning
region.

You must change the sample sign-on exit routine (DSN3SSGN) before using it if
the following conditions are all true:
v You have the RACF list-of-groups option active.
v You have transactions whose initial primary authorization ID is not defined to

RACF.
Related concepts

“Connection routines and sign-on routines” on page 781
Related reference

“Processing of connection requests” on page 277
“Processing of sign-on requests” on page 279
“Sample connection and sign-on routines” on page 782
“Exit parameter list for connection and sign-on routines” on page 784

Managing connection requests from remote applications
If you are controlling requests from remote applications, your DB2 subsystem
might be accepting requests from applications that use SNA network protocols,
TCP/IP network protocols, or both.

Security mechanisms for DRDA and SNA
SNA and DRDA have different security mechanisms. DRDA allows a user to be
authenticated using SNA security mechanisms or DRDA mechanisms, which are
independent of the underlying network protocol.

For an SNA network connection, a DRDA requester can send security tokens by
using a SNA attach or a DRDA command. DB2 for z/OS as a requester uses SNA
security mechanisms if it uses a SNA network connection (except for Kerberos) and
DRDA security mechanisms for TCP/IP network connections (or when Kerberos
authentication is chosen, regardless of the network type).

Security mechanisms for DB2 for z/OS as a requester
DB2 for z/OS as a requester chooses SNA or DRDA security mechanisms based on
the network protocol and the authentication mechanisms that you use.

If you use SNA protocols, DB2 supports the following SNA authentication
mechanisms:
v User ID only (already verified)
v User ID and password
v User ID and PassTicket

Authentication is performed based on SNA protocols, which means that the
authentication tokens are sent in an SNA attach (FMH-5).

If you use TCP/IP protocols, DB2 supports the following DRDA authentication
mechanisms:
v User ID only (already verified)
v User ID and password
v User ID and PassTicke

282 Administration Guide



If you use TCP/IP protocols with the z/OS Integrated Cryptographic Service
Facility, DB2 also supports the following DRDA authentication mechanisms:
v Encrypted user ID and encrypted password
v Encrypted user ID and encrypted security-sensitive data

Authentication is performed based on DRDA protocols, which means that the
authentication tokens are sent in DRDA security flows.

Security mechanisms for DB2 for z/OS as a server
As a server, DB2 for z/OS can accept either SNA or DRDA authentication
mechanisms. This means that DB2 can authenticate remote users from either the
security tokens obtained from the SNA ATTACH (FMH-5) or from the DRDA
security commands described by each of the protocols. It accepts connection
requests from remote clients that use AES or DES encryption algorithm to protect
user IDs and passwords over a TCP/IP network.

Specifically, DB2 for z/OS as a server supports the following authentication
methods:
v User ID only (already verified at the requester)
v User ID and password
v User ID and PassTicket
v Kerberos tickets
v Unencrypted user ID and encrypted password
v Encrypted user ID and encrypted password
v User ID, password, and new password

DB2 for z/OS as a server also supports the following authentication mechanisms if
the z/OS Integrated Cryptographic Service Facility is installed and active:
v Encrypted user ID and encrypted security-sensitive data
v Encrypted user ID, encrypted password, and encrypted security-sensitive data
v Encrypted user ID, encrypted password, encrypted new password, and

encrypted security-sensitive data
v Encrypted user ID, encrypted password, encrypted new password, and

encrypted security-sensitive data

Communications database for the server
The communications database (CDB) is a set of DB2 catalog tables that let you control
aspects of how requests leave this DB2 and how requests come in. Columns in the
SYSIBM.LUNAMES and SYSIBM.USERNAMES tables pertain to security on the
inbound side (the server).

SYSIBM.LUNAMES columns
The SYSIBM.LUNAMES table is used only for requests that use SNA protocols.

LUNAME CHAR(8)
The LUNAME of the remote system. A blank value identifies a default row
that serves requests from any system that is not specifically listed
elsewhere in the column.

SECURITY_IN CHAR(1)
The acceptance option for a remote request from the corresponding
LUNAME:

Chapter 6. Managing access through RACF 283

|
|
|

|
|



V The option is “verify.” An incoming request must include one of
the following authentication entities:
v User ID and password
v User ID and RACF PassTicket
v User ID and RACF encrypted password (not recommended)
v Kerberos security tickets
v User ID and DRDA encrypted password
v User ID, password, and new password
v User ID and encrypted password, or encrypted user ID and

encrypted password

A The option is “already verified.” This is the default. With A, a
request does not need an authentication token, although the token
is checked if it is sent.

With this option, an incoming connection request is accepted if it
includes any of the following authentication tokens:
v User ID only
v All authentication methods that option V supports

If the USERNAMES column of SYSIBM.LUNAMES contains I or B,
RACF is not invoked to validate incoming connection requests that
contain only a user ID.

ENCRYPTPSWDS CHAR(1)
This column only applies to DB2 for z/OS or DB2 for z/OS partners when
passwords are used as authentication tokens. It indicates whether
passwords received from and sent to the corresponding LUNAME are
encrypted:

Y Yes, passwords are encrypted. For outbound requests, the
encrypted password is extracted from RACF and sent to the server.
For inbound requests, the password is treated as if it is encrypted.

N No, passwords are not encrypted. This is the default; any character
other than Y is treated as N. Specify N for CONNECT statements
that contain a USER parameter.

Recommendation: When you connect to a DB2 for z/OS partner that is at
Version 5 or a subsequent release, use RACF PassTickets
(SECURITY_OUT=’R’) instead of using passwords.

USERNAMES CHAR(1)
This column indicates whether an ID accompanying a remote request, sent
from or to the corresponding LUNAME, is subject to translation and “come
from” checking. When you specify I, O, or B, use the
SYSIBM.USERNAMES table to perform the translation.

I An inbound ID is subject to translation.

O An outbound ID, sent to the corresponding LUNAME, is subject to
translation.

B Both inbound and outbound IDs are subject to translation.

blank No IDs are translated.

284 Administration Guide



SYSIBM.USERNAMES columns
The SYSIBM.USERNAMES table is used by both SNA and TCP/IP connections.

TYPE CHAR(1)
Indicates whether the row is used for inbound or outbound translation:

S The row is used to obtain the system authorization ID for
establishing a trusted connection.

I The row applies to inbound IDs (not applicable for TCP/IP
connections).

O The row applies to outbound IDs.

The field should contain only I or O. Any other character, including blank,
causes the row to be ignored.

AUTHID VARCHAR(128)
An authorization ID that is permitted and perhaps translated. If blank, any
authorization ID is permitted with the corresponding LINKNAME; all
authorization IDs are translated in the same way. Outbound translation is
not performed on CONNECT statements that contain an authorization ID
for the value of the USER parameter.

LINKNAME CHAR(8)
Identifies the VTAM or TCP/IP network locations that are associated with
this row. A blank value in this column indicates that this name translation
rule applies to any TCP/IP or SNA partner.

If you specify a nonblank value for this column, one or both of the
following situations must be true:
v A row exists in table SYSIBM.LUNAMES that has an LUNAME value

that matches the LINKNAME value that appears in this column.
v A row exists in table SYSIBM.IPNAMES that has a LINKNAME value

that matches the LINKNAME value that appears in this column.

NEWAUTHID VARCHAR(128)
The translated authorization ID. If blank, no translation occurs.

Enabling change of user passwords
You can specify YES in the EXTENDED SECURITY field of the DSNTIPR
installation panel so that DB2 can return to the DRDA requester information about
errors and expired passwords.

When the DRDA requester is notified that the RACF password has expired, and
the requester has implemented function to allow passwords to be changed, the
requester can prompt the end user for the old password and a new password. The
requester sends the old and new passwords to the DB2 server. This function is
supported through DB2® Connect™.

With the extended security option, DB2 passes the old and new passwords to
RACF. If the old password is correct, and the new password meets the
installation’s password requirements, the end user’s password is changed and the
DRDA connection request is honored.

Chapter 6. Managing access through RACF 285

||
|



When a user changes a password, the user ID, the old password, and the new
password are sent to DB2 by the client system. The client system can optionally
encrypt these three tokens before they are sent.

Authorization failure code
If the DB2 server is installed with YES for the EXTENDED SECURITY field of the
DSNTIPR installation panel, detailed reason codes are returned to a DRDA client
when a DDF connection request fails because of security errors.

When using SNA protocols, the requester must have included support for
extended security sense codes. One such product is DB2 Connect.

If the proper requester support is present, the requester generates SQLCODE
-30082 (SQLSTATE ’08001’) with a specific indication for the failure. Otherwise, a
generic security failure code is returned.

Managing inbound SNA-based connection requests
Requests from a remote LU are subject to two security checks before they come
into contact with DB2. Those checks control what LUs can attach to the network
and verify the identity of a partner LU.

In addition, DB2 itself imposes several checks before accepting an attachment
request.

If using private protocols, the LOCATIONS table controls the locations that can
access DB2. To allow a remote location to access DB2, the remote location name
must be specified in the SYSIBM.LOCATIONS table. This check is only supported
for connections using private protocols.

Processing of remote attachment requests
The DB2 server completes the following sequence of authentication process before
accepting a remote attachment request that uses the SNA protocol.
1. As the following diagram shows, if the remote request has no authentication

token, DB2 checks the security acceptance option in the SECURITY_IN column
of table SYSIBM.LUNAMES. No password is sent or checked for the plan or
package owner that is sent from a DB2 subsystem.

286 Administration Guide



2. If the acceptance option is “verify” (SECURITY_IN = V), a security token is
required to authenticate the user. DB2 rejects the request if the token missing.

3. If the USERNAMES column of SYSIBM.LUNAMES contains I or B, the
authorization ID, and the plan or package owner that is sent by a DB2
subsystem, are subject to translation under control of the
SYSIBM.USERNAMES table. If the request is allowed, it eventually goes
through sign-on processing. If USERNAMES does not contain I or B, the
authorization ID is not translated.

4. DB2 calls RACF by the RACROUTE macro with REQUEST=VERIFY to check
the ID. DB2 uses the PASSCHK=NO option if no password is specified and

Activity at the DB2 server

Remote attach request using SNA protocols

ID and authentication check

Step 1: Is an
authentication
token present?

Step 2: Test
the value of
SECURITY_IN.

No =V
Token
required;
reject
request.

Yes =A

Step 3: Is
USERNAMES
I or B?

Check SYSIBM.LUNAMES

Yes

No

Check ID for sign-ons

Step 7: Is a
password
present?

No

Yes Step 8: Verify
ID by RACF.

Not authorized;
reject request.

Check USERNAMES table

Step 9: Seek a
translation row
in USERNAMES.

Not found;
reject request.

Found

Step 10: Obtain
the primary ID.

Connection processing

Not authorized;
reject request.

Step 5: Verify by
RACF that the ID
can access DB2.

Request accepted: continue
Request accepted: continue

Sign-on processing

Step 11: Run the sign-on
exit routine (DSN3@SGN).

Step 12: Local privilege
check at the server.

Step 6: Run the
connection exit
routine (DSN3@ATH).

Not authorized;
reject request.

Step 4: Verify
ID by RACF.

Check ID for connections

Figure 23. DB2 processing of remote attachment requests

Chapter 6. Managing access through RACF 287



ENCRYPT=YES if the ENCRYPTPSWDS column of SYSIBM.LUNAMES
contains Y. If the ID, password, or PassTicket cannot be verified, DB2 rejects
the request.
In addition, depending on your RACF environment, the following RACF
checks may also be performed:
v If the RACF APPL class is active, RACF verifies that the ID has been given

access to the DB2 APPL. The APPL resource that is checked is the LU name
that the requester used when the attachment request was issued. This is
either the local DB2 LU name or the generic LU name.

v If the RACF APPCPORT class is active, RACF verifies that the ID is
authorized to access z/OS from the Port of Entry (POE). The POE that
RACF uses in the verify call is the requesting LU name.

5. The remote request is now treated like a local connection request with a DIST
environment for the DSNR resource class. DB2 calls RACF by the RACROUTE
macro with REQUEST=AUTH, to check whether the authorization ID is
allowed to use DB2 resources that are defined to RACF.
The RACROUTE macro call also verifies that the user is authorized to use
DB2 resources from the requesting system, known as the port of entry (POE).

6. DB2 invokes the connection exit routine. The parameter list that is passed to
the routine describes where a remote request originated.

7. If no password exists, RACF is not called. The ID is checked in
SYSIBM.USERNAMES.

8. If a password exists, DB2 calls RACF through the RACROUTE macro with
REQUEST=VERIFY to verify that the ID is known with the password.
ENCRYPT=YES is used if the ENCRYPTPSWDS column of
SYSIBM.LUNAMES contains Y. If DB2 cannot verify the ID or password, the
request is rejected.

9. DB2 searches SYSIBM.USERNAMES for a row that indicates how to translate
the ID. The need for a row that applies to a particular ID and sending location
imposes a “come-from” check on the ID: If no such row exists, DB2 rejects the
request.

10. If an appropriate row is found, DB2 translates the ID as follows:
v If a nonblank value of NEWAUTHID exists in the row, that value becomes

the primary authorization ID.
v If NEWAUTHID is blank, the primary authorization ID remains unchanged.

11. The remote request is now treated like a local sign-on request. DB2 invokes
the sign-on exit routine. The parameter list that is passed to the routine
describes where a remote request originated.

12. The remote request now has a primary authorization ID, possibly one or more
secondary IDs, and an SQL ID. A request from a remote DB2 is also known by
a plan or package owner. Privileges and authorities that are granted to those
IDs at the DB2 server govern the actions that the request can take.

Controlling LU attachments to the network
VTAM checks to prevent an unauthorized LU from attaching to the network and
presenting itself to other LUs as an acceptable partner in communication. It
requires each LU that attaches to the network to identify itself by a password.

If that requirement is in effect for your network, your DB2 subsystem, like every
other LU on the network, must:
1. Choose a VTAM password.

288 Administration Guide



2. Code the password with the PRTCT parameter of the VTAM APPL statement,
when you define your DB2 to VTAM.

Verifying partner LUs
RACF and VTAM check the identity of an LU sending a request to your DB2.

Perform the following steps to specify partner-LU verification:
1. Code VERIFY=REQUIRED on the VTAM APPL statement, when you define

your DB2 to VTAM.
2. Establish a RACF profile for each LU from which you permit a request.

Accepting remote attachment requests
When VTAM has established a conversation for a remote application, that
application sends a remote request, which is a request to attach to your local DB2
subsystem.

Make sure that you do not confuse the remote request with a local attachment
request that comes through one of the DB2 attachment facilities—IMS, CICS, TSO,
and so on. A remote attachment request is defined by Systems Network
Architecture and LU 6.2 protocols; specifically, it is an SNA Function Management
Header 5.

In order to accept remote attachment requests, you must first define your DB2 to
VTAM with the conversation-level security set to “already verified”. That is, you
need to code SECACPT=ALREADYV on the VTAM APPL statement. The
SECACPT=ALREADYV setting provides more options than does
SECACPT=CONV or “conversation”, which is not recommended.

The primary tools for controlling remote attachment requests are entries in tables
SYSIBM.LUNAMES and SYSIBM.USERNAMES in the communications database.
You need a row in SYSIBM.LUNAMES for each system that sends attachment
requests, a dummy row that allows any system to send attachment requests, or
both. You might need rows in SYSIBM.USERNAMES to permit requests from
specific IDs or specific LUNAMES, or to provide translations for permitted IDs.

Managing inbound IDs through DB2
If you manage incoming IDs through DB2, you can avoid calls to RACF and
specify acceptance of many IDs by a single row in the SYSIBM.USERNAMES table.

To manage incoming IDs through DB2, put an I in the USERNAMES column of
SYSIBM.LUNAMES for the particular LU. If an O is already specified because you
are also sending requests to that LU, change O to B. Attachment requests from that
LU now go through the sign-on processing, and its IDs are subject to translation.

Managing inbound IDs through RACF
If you manage incoming IDs through RACF, you must register every acceptable ID
with RACF, and DB2 must call RACF to process every request.

You can use RACF or Kerberos can authenticate the user. Kerberos cannot be used
if you do not have RACF on the system.

To manage incoming IDs through RACF, leave USERNAMES blank for that LU, or
leave the O unchanged, if already specified. Requests from that LU now go
through the connection processing, and its IDs are not subject to translation.

Chapter 6. Managing access through RACF 289



Authenticating partner LUs
If RACF has already validated the identity of an LU and if you trust incoming IDs
from the LU, you do not need to validate them by an authentication token.

Put an A in the SECURITY_IN column of the row in SYSIBM.LUNAMES that
corresponds to the other LU; your acceptance level for requests from that LU is
now “already verified”. Requests from that LU are accepted without an
authentication token. (In order to use this option, you must have defined DB2 to
VTAM with SECACPT=ALREADYV.

If an authentication token does accompany a request, DB2 calls RACF to check the
authorization ID against it. To require an authentication token from a particular
LU, put a V in the SECURITY_IN column in SYSIBM.LUNAMES; your acceptance
level for requests from that LU is now “verify”. You must also register every
acceptable incoming ID and its password with RACF.

Performance considerations: Each request to RACF to validate authentication
tokens results in an I/O operation, which has a high performance cost.

Recommendation: To eliminate the I/O, allow RACF to cache security information
in VLF. To activate this option, add the IRRACEE class to the end of z/OS VLF
member COFVLFxx in SYS1.PARMLIB, as follows:
CLASS NAME(IRRACEE)
EMAJ (ACEE)

Encrypting passwords
You can encrypt passwords by using one of the following methods:
v RACF using PassTickets.
v DRDA password encryption support. DB2 for z/OS as a server supports DRDA

encrypted passwords and encrypted user IDs with encrypted passwords.
v The SET ENCRYPTION PASSWORD statement. This encryption method should

not be used for distributed access because the unencrypted passwords in the
SET ENCRYPTION PASSWORD statement flow from the client to the server.

Authenticating users through Kerberos
If your distributed environment uses Kerberos to manage users and perform user
authentication, DB2 for z/OS can use Kerberos security services to authenticate
remote users.

Translating inbound IDs
Ideally, each of your authorization IDs has the same meaning throughout your
entire network. In practice, that might not be so, and the duplication of IDs on
different LUs is a security exposure.

Example: Suppose that the ID DBADM1 is known to the local DB2 and has
DBADM authority over certain databases there; suppose also that the same ID
exists in some remote LU. If an attachment request comes in from DBADM1, and if
nothing is done to alter the ID, the wrong user can exercise privileges of DBADM1
in the local DB2. The way to protect against that exposure is to translate the
remote ID into a different ID before the attachment request is accepted.

You must be prepared to translate the IDs of plan owners, package owners, and
the primary IDs of processes that make remote requests. Do not plan to translate
all IDs in the connection exit routine—the routine does not receive plan and
package owner IDs.

290 Administration Guide



If you have decided to manage inbound IDs through DB2, you can translate an
inbound ID to some other value. Within DB2, you grant privileges and authorities
only to the translated value. The “translation” is not affected by anything you do
in your connection or sign-on exit routine. The output of the translation becomes
the input to your sign-on exit routine.

Recommendation: Do not translate inbound IDs in an exit routine; translate them
only through the SYSIBM.USERNAMES table.

The examples in the following table shows the possibilities for translation and how
to control translation by SYSIBM.USERNAMES. You can use entries to allow
requests only from particular LUs or particular IDs, or from combinations of an ID
and an LU. You can also translate any incoming ID to another value.

Table 67. Your SYSIBM.USERNAMES table. (Row numbers are added for reference.)

Row TYPE AUTHID LINKNAME NEWAUTHID

1 I blank LUSNFRAN blank

2 I BETTY LUSNFRAN ELIZA

3 I CHARLES blank CHUCK

4 I ALBERT LUDALLAS blank

5 I BETTY blank blank

The following table shows the search order of the SYSIBM.USERNAMES table.

Table 68. Precedence search order for SYSIBM.USERNAMES table

AUTHID LINKNAME Result

Name Name If NEWAUTHID is specified, AUTHID is translated
to NEWAUTHID for the specified LINKNAME.

Name Blank If NEWAUTHID is specified, AUTHID is translated
to NEWAUTHID for all LINKNAMEs.

Blank Name If NEWAUTHID is specified, it is substituted for
AUTHID for the specified LINKNAME.

Blank Blank Unavailable resource message (SQLCODE -904) is
returned.

DB2 searches SYSIBM.USERNAMES to determine how to translate for each of the
requests that are listed in the following table.

Table 69. How DB2 translates inbound authorization ids

Request How DB2 translates request

ALBERT requests
from LUDALLAS

DB2 searches for an entry for AUTHID=ALBERT and
LINKNAME=LUDALLAS. DB2 finds one in row 4, so the request is
accepted. The value of NEWAUTHID in that row is blank, so ALBERT is
left unchanged.

BETTY requests
from LUDALLAS

DB2 searches for an entry for AUTHID=BETTY and
LINKNAME=LUDALLAS; none exists. DB2 then searches for
AUTHID=BETTY and LINKNAME=blank. It finds that entry in row 5,
so the request is accepted. The value of NEWAUTHID in that row is
blank, so BETTY is left unchanged.

Chapter 6. Managing access through RACF 291



Table 69. How DB2 translates inbound authorization ids (continued)

Request How DB2 translates request

CHARLES
requests from
LUDALLAS

DB2 searches for AUTHID=CHARLES and LINKNAME=LUDALLAS;
no such entry exists. DB2 then searches for AUTHID=CHARLES and
LINKNAME=blank. The search ends at row 3; the request is accepted.
The value of NEWAUTHID in that row is CHUCK, so CHARLES is
translated to CHUCK.

ALBERT requests
from LUSNFRAN

DB2 searches for AUTHID=ALBERT and LINKNAME=LUSNFRAN; no
such entry exists. DB2 then searches for AUTHID=ALBERT and
LINKNAME=blank; again no entry exists. Finally, DB2 searches for
AUTHID=blank and LINKNAME=LUSNFRAN, finds that entry in row
1, and the request is accepted. The value of NEWAUTHID in that row is
blank, so ALBERT is left unchanged.

BETTY requests
from LUSNFRAN

DB2 finds row 2, and BETTY is translated to ELIZA.

CHARLES
requests from
LUSNFRAN

DB2 finds row 3 before row 1; CHARLES is translated to CHUCK.

WILBUR requests
from LUSNFRAN

No provision is made for WILBUR, but row 1 of the
SYSIBM.USERNAMES table allows any ID to make a request from
LUSNFRAN and to pass without translation. The acceptance level for
LUSNFRAN is “already verified”, so WILBUR can pass without a
password check by RACF. After accessing DB2, WILBUR can use only
the privileges that are granted to WILBUR and to PUBLIC (for DRDA
access) or to PUBLIC AT ALL LOCATIONS (for DB2 private-protocol
access).

WILBUR requests
from LUDALLAS

Because the acceptance level for LUDALLAS is “verify” as recorded in
the SYSIBM.LUNAMES table, WILBUR must be known to the local
RACF. DB2 searches in succession for one of the combinations
WILBUR/LUDALLAS, WILBUR/blank, or blank/LUDALLAS. None of
those is in the table, so the request is rejected. The absence of a row
permitting WILBUR to request from LUDALLAS imposes a
“come-from” check: WILBUR can attach from some locations
(LUSNFRAN), and some IDs (ALBERT, BETTY, and CHARLES) can
attach from LUDALLAS, but WILBUR cannot attach if coming from
LUDALLAS.

In the process of accepting remote attachment requests, any step that calls RACF is
likely to have a relatively high performance cost. To trade some of that cost for a
somewhat greater security exposure, have RACF check the identity of the other LU
just once. Then trust the partner LU, translating the inbound IDs and not requiring
or using passwords. In this case, no calls are made to RACF from within DB2; the
penalty is only that you make the partner LU responsible for verifying IDs.

If you update tables in the CDB while the distributed data facility is running, the
changes might not take effect immediately. If incoming authorization IDs are
managed through DB2 and if the ICSF is installed and properly configured, you
can use the DSNLEUSR stored procedure to encrypt translated authorization IDs
and store them in the NEWAUTHID column of the SYSIBM.USERNAMES table.
DB2 decrypts the translated authorization IDs during connection processing.

292 Administration Guide



Associating inbound IDs with secondary IDs
Your decisions on password encryption and ID translation determine the value that
you use for the primary authorization ID on an attachment request.

They also determine whether those requests are next treated as connection requests
or as sign-on requests. That means that the remote request next goes through the
same processing as a local request, and that you have the opportunity to associate
the primary ID with a list of secondary IDs in the same way you do for local
requests.

Managing inbound TCP/IP-based connection requests
DRDA connections that use TCP/IP have fewer security controls than do
connections that use SNA protocols. When planning to control inbound TCP/IP
connection requests, you must first decide whether you want the requests to have
authentication information, such as RACF passwords, RACF PassTickets, and
Kerberos tickets, passed along with the authorization ID.

If you require authentication, specify NO on the TCP/IP ALREADY VERIFIED
field of installation panel DSNTIP5, which is the default option, to indicate that
you require this authentication information. Also, ensure that the security
subsystem at your server is properly configured to handle the authentication
information that is passed to it. If you do not specify NO, all incoming TCP/IP
requests can connect to DB2 without any authentication.

For requests that use RACF passwords or PassTickets, enter the following RACF
command to indicate which user IDs that use TCP/IP are authorized to access
DDF (the distributed data facility address space):
PERMIT ssnm.DIST CLASS(DSNR) ID(yyy) ACCESS(READ)

WHEN(APPCPORT(TCPIP))

Consider the following questions:

Do you permit access by TCP/IP? If the serving DB2 for z/OS subsystem has a
DRDA port and resynchronization port specified in the BSDS, DB2 is enabled for
TCP/IP connections.

Do you manage inbound IDs through DB2 or RACF? All IDs must be passed to
RACF or Kerberos for processing. No option exists to handle incoming IDs through
DB2.

Do you trust the partner? TCP/IP does not verify partner LUs as SNA does. If
your requesters support mutual authentication, use Kerberos to handle this on the
requester side.

If you use passwords, are they encrypted? Passwords can be encrypted through:
v RACF using PassTickets
v DRDA password encryption support. DB2 for z/OS as a server supports DRDA

encrypted passwords and encrypted user IDs with encrypted passwords.

If you use Kerberos, are users authenticated? If your distributed environment uses
Kerberos to manage users and perform user authentication, DB2 for z/OS can use
Kerberos security services to authenticate remote users.

Do you translate inbound IDs? Inbound IDs are not translated when you use
TCP/IP.

Chapter 6. Managing access through RACF 293



How do you associate inbound IDs with secondary IDs? To associate an inbound
ID with secondary IDs, modify the default connection exit routine (DSN3@ATH).
TCP/IP requests do not use the sign-on exit routine.

Processing of TCP/IP-based connection requests
The DB2 server completes the following sequence of authentication process when
handling a remote connection request that uses the TCP/IP protocol.
1. As the following diagram shows, DB2 checks to see if an authentication token

(RACF encrypted password, RACF PassTicket, DRDA encrypted password, or
Kerberos ticket) accompanies the remote request.

2. If no authentication token is supplied, DB2 checks the TCPALVER subsystem
parameter to see if DB2 accepts IDs without authentication information.
v If TCPALVER=NO | SERVER, DB2 requires the minimum of a userid and a

password.
v If TCPALVER=SERVER_ENCRYPT, DB2 requires a userid and a password. In

addition, it requires that the security credentials be AES-encrypted or that the
connection is accepted on a port that ensures AT-TLS policy protection, such

Activity at the DB2 server

TCP/IP request from remote user

Verify remote connections

Step 1:
Is authentication
information present?

Yes

No
Step 2:
Does the serving
subsystem accept
remote requests
without verification?

TCPALVER=YES

TCPALVER=NO Reject
request.

Check ID for connections

Step 3:
Verify identity by RACF or Kerberos.

Not authorized;
reject request.

Connection processing

Step 4:
Verify by RACF that the ID can access DB2.

Not authorized;
reject request.

Step 5:
Run the connection exit routine (DSN3@ATH).

Step 6:
Check local privilege at the server.

Figure 24. DB2 processing of TCP/IP-based connection requests

294 Administration Guide

|
|

|
|

|
|
|



as a DB2 Security Port (SECPORT). Kerberos tickets are accepted. RACF
PassTickets, or non-encrypted security credentials, are accepted only when
the connection is secured by the TCP/IP network.

v If TCPALVER=YES | CLIENT, DB2 accepts TCP/IP connection requests that
contain only a userid.

3. The identity is a RACF ID that is authenticated by RACF if a password or
PassTicket is provided, or the identity is a Kerberos principal that is validated
by Kerberos Security Server, if a Kerberos ticket is provided. Ensure that the ID
is defined to RACF in all cases. When Kerberos tickets are used, the RACF ID
is derived from the Kerberos principal identity. To use Kerberos tickets, ensure
that you map Kerberos principal names with RACF IDs.
In addition, depending on your RACF environment, the following RACF
checks may also be performed:
v If the RACF APPL class is active, RACF verifies that the ID has access to the

DB2 APPL. The APPL resource that is checked is the LU name that the
requester used when the attachment request was issued. This is either the
local DB2 LU name or the generic LU name.

v If the RACF APPCPORT class is active, RACF verifies that the ID is
authorized to access z/OS from the port of entry (POE). The POE that RACF
uses in the RACROUTE VERIFY call depends on whether all the following
conditions are true:
– The current operating system is z/OS V1.5 or later
– The TCP/IP Network Access Control is configured
– The RACF SERVAUTH class is active

If all these conditions are true, RACF uses the remote client’s POE security
zone name that is defined in the TCP/IP Network Access Control file. If one
or more of these conditions is not true, RACF uses the literal string ’TCPIP’.
If this is a request to change a password, the password is changed.

4. The remote request is now treated like a local connection request (using the
DIST environment for the DSNR resource class). DB2 calls RACF to check the
ID’s authorization against the ssnm.DIST resource.

5. DB2 invokes the connection exit routine. The parameter list that is passed to
the routine describes where the remote request originated.

6. The remote request has a primary authorization ID, possibly one or more
secondary IDs, and an SQL ID. (The SQL ID cannot be translated.) The plan or
package owner ID also accompanies the request. Privileges and authorities that
are granted to those IDs at the DB2 server govern the actions that the request
can take.

Managing denial-of-service attacks
With DB2, you can manage denial-of-service attacks in the network connections to
a DB2 server.

The most common type of denial-of-service attack occurs when an attacker ″floods″
a network with connection requests to a DB2 server. If this occurs, the attacker
quickly exhausts the threshold for the maximum number of remote connections
that are defined to the DB2 server system. As a result, no additional remote
connections can be accepted by the DB2 server, including those from legitimate
client systems.

To prevent the typical denial-of-service attacks, DB2 monitors the traffic of inbound
connections and terminates those that don’t contain data for establishing a valid
connection.

Chapter 6. Managing access through RACF 295

|
|
|

|
|

|

|
|

|
|
|
|
|
|

|
|
|



Managing outbound connection requests
If you are planning to send requests to another DB2 subsystem, consider that the
security administrator of that subsystem might have chosen any of the options.
You need to know what those choices are and make entries in your CDB to
correspond to them. You can also choose some things independently of what the
other subsystem requires.

If you are planning to send remote requests to a DBMS that is not DB2 for z/OS,
you need to satisfy the requirements of that system.

DB2 chooses how to send authentication tokens based on the network protocols
that are used (SNA or TCP/IP). If the request is sent using SNA, the authentication
tokens are sent in the SNA attachment request (FMH5), unless you are using
Kerberos. If you use Kerberos, authentication tokens are sent with DRDA security
commands. If the request uses TCP/IP, the authentication tokens are always sent
using DRDA security commands.

At least one authorization ID is always sent to the server to be used for
authentication. That ID is one of the following values:
v The primary authorization ID of the process.
v If you connect to the server using a CONNECT statement with the USER

keyword, the ID that you specify as the USER ID. The CONNECT statement
allows non-RACF user IDs on the USER keyword. If connecting to a remote
location, the user ID is not authenticated by RACF.

However, other IDs can accompany some requests. You need to understand what
other IDs are sent because they are subject to translation. You must include these
other IDs in table SYSIBM.USERNAMES to avoid an error when you use outbound
translation. The following table shows the IDs that you send in the different
situations:

Table 70. IDs that accompany the primary ID on a remote request

In this situation: You send this ID also:

An SQL query, using DB2 private-protocol or
DRDA-protocol access

The plan owner

A remote BIND, COPY, or REBIND
PACKAGE command

The package owner

If the connection is to a remote non-DB2 for z/OS server using DRDA protocol
and if the outbound translation is specified, a row for the plan owner in the
USERNAMES table is optional.

Communications database for the requester
The communications database (CDB) is a set of DB2 catalog tables that let you control
aspects of remote requests. Columns in the SYSIBM.LUNAMES,
SYSIBM.IPNAMES, SYSIBM.USERNAMES, and SYSIBM.LOCATIONS tables
pertain to security issues related to the requesting system.

SYSIBM.LUNAMES columns:

The SYSIBM.LUNAMES table is used only for outbound requests that use SNA
protocols.

296 Administration Guide

|
|
|



LUNAME CHAR(8)
The LUNAME of the remote system. A blank value identifies a default row
that serves requests from any system that is not specifically listed
elsewhere in the column.

SECURITY_OUT (CHAR 1)
Indicates the security option that is used when local DB2 SQL applications
connect to any remote server that is associated with the corresponding
LUNAME.

A The letter A signifies the security option of already verified, and it
is the default. With A, outbound connection requests contain an
authorization ID and no authentication token. The value that is
used for an outbound request is either the DB2 user’s authorization
ID or a translated ID, depending on the value in the USERNAMES
column.

R The letter R signifies the RACF PassTicket security option.
Outbound connection requests contain a user ID and a RACF
PassTicket. The LUNAME column is used as the RACF PassTicket
application name.

The value that is used for an outbound request is either the DB2
user’s authorization ID or a translated ID, depending on the value
in the USERNAMES column. The translated ID is used to build the
RACF PassTicket. Do not specify R for CONNECT statements with
a USER parameter.

P The letter P signifies the password security option. Outbound
connection requests contain an authorization ID and a password.
The password is obtained from RACF if ENCRYPTPSWDS=Y, or
from SYSIBM.USERNAMES if ENCRYPTPSWDS=N. If you get the
password from SYSIBM.USERNAMES, the USERNAMES column
of SYSIBM.LUNAMES must contain B or O. The value that is used
for an outbound request is the translated ID.

ENCRYPTPSWDS CHAR(1)
Indicates whether passwords received from and sent to the corresponding
LUNAME are encrypted. This column only applies to DB2 for z/OS and
DB2 for z/OS partners when passwords are used as authentication tokens.

Y Yes, passwords are encrypted. For outbound requests, the
encrypted password is extracted from RACF and sent to the server.
For inbound requests, the password is treated as encrypted.

N No, passwords are not encrypted. This is the default; any character
but Y is treated as N.

Recommendation: When you connect to a DB2 for z/OS partner that is at
Version 5 or a subsequent release, use RACF PassTickets
(SECURITY_OUT=’R’) instead of encrypting passwords.

USERNAMES CHAR(1)
Indicates whether an ID accompanying a remote attachment request, which
is received from or sent to the corresponding LUNAME, is subject to
translation and “come from” checking. When you specify I, O, or B, use
the SYSIBM.USERNAMES table to perform the translation.

I An inbound ID is subject to translation.

Chapter 6. Managing access through RACF 297



O An outbound ID, sent to the corresponding LUNAME, is subject to
translation.

B Both inbound and outbound IDs are subject to translation.

blank No IDs are translated.

SYSIBM.IPNAMES columns:

The SYSIBM.IPNAMES table is used only for outbound requests that use TCP/IP
protocols.

LINKNAME CHAR(8)
The name used in the LINKNAME column of SYSIBM.LOCATIONS to
identify the remote system.

IPADDR
Specifies an IP address or domain name of a remote TCP/IP host.

SECURITY_OUT
Indicates the DRDA security option that is used when local DB2 SQL
applications connect to any remote server that is associated with this
TCP/IP host.

A The letter A signifies the security option of already verified, and it
is the default. Outbound connection requests contain an
authorization ID and no password. The value that is used for an
outbound request is either the DB2 user’s authorization ID or a
translated ID, depending on the value in the USERNAMES
column.

The authorization ID is not encrypted when it is sent to the
partner. For encryption, see option D.

R The letter R signifies the RACF PassTicket security option.
Outbound connection requests contain a user ID and a RACF
PassTicket. When a RACF PassTicket is generated, the LINKNAME
column value is used as the RACF PassTicket application name
and must match the following at the target server
v LUNAME - if the remote site is a DB2 subsystem that is defined

with only an LUNAME value and no GENERIC LU name value
or IPNAME value

v GENERIC - if the remote site is a DB2 subsystem that is defined
with a GENERIC LU name value in addition to an LUNAME
value but no IPNAME value

v IPNAME - if the remote site is a DB2 subsystem that is defined
with an IPNAME value that triggers the remote DB2
subsystem’s DDF to activate only its TCP/IP communications
support.

The value that is used for an outbound request is either the DB2
user’s authorization ID or a translated ID, depending on the value
in the USERNAMES column. The translated ID is used to build the
RACF PassTicket. Do not specify R for CONNECT statements with
a USER parameter.

298 Administration Guide

|
|

||
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|



The authorization ID is not encrypted when it is sent to the
partner.

D The letter D signifies the security option of user ID and
security-sensitive data encryption. Outbound connection requests
contain an authorization ID and no password. The authorization
ID that is used for an outbound request is either the DB2 user’s
authorization ID or a translated ID, depending on the
USERNAMES column.

This option indicates that the user ID and the security-sensitive
data are to be encrypted. If you do not require encryption, see
option A.

E The letter E signifies the security option of user ID, password, and
security-sensitive data encryption. Outbound connection requests
contain an authorization ID and a password. The password is
obtained from the SYSIBM.USERNAMES table. The USERNAMES
column must specify ″O″.

This option indicates that the user ID, password, and
security-sensitive data are to be encrypted. If you do not require
security-sensitive data encryption, see option P.

P The letter P signifies the password security option. Outbound
connection requests contain an authorization ID and a password.
The password is obtained from the SYSIBM.USERNAMES table. If
you specify P, the USERNAMES column must specify ″O″.

If you specify P and the server supports encryption, the user ID
and the password are encrypted. If the server does not support
encryption, the user ID and the password are sent to the partner in
clear text. If you also need to encrypt security-sensitive data, see
option E.

USERNAMES CHAR(1)
This column indicates whether an outbound request translates the
authorization ID. When you specify O, use the SYSIBM.USERNAMES table
to perform the translation.

O The letter O signifies an outbound ID that is subject to translation.
Rows in the SYSIBM.USERNAMES table are used to perform ID
translation. If a connection to any remote server is to be established
as trusted, a row in the SYSIBM.USERNAMES table is used to
obtain the system authorization ID.

S The letter S signifies the system authorization ID, within a trusted
context, obtained from the SYSIBM.USERNAMES table. If the
system authorization ID that is specified in the AUTHID column is
different from the primary authorization ID, DB2 sends the user
switch request on behalf of the primary authorization ID after
successfully establishing the trusted connection.

blank No translation is done.

SYSIBM.USERNAMES columns:

The SYSIBM.USERNAMES table is used by outbound connection requests that use
SNA and TCP/IP protocols.

Chapter 6. Managing access through RACF 299

|
|

|
|
|
|
|

||
|
|
|
|
|



TYPE CHAR(1)
Indicates whether the row is used for inbound or outbound translation:

S The row is used to obtain the outbound system authorization ID
for establishing a trusted connection.

I The row applies to inbound IDs.

O The row applies to outbound IDs.

The field should contain only I, O, or S. Any other character, including
blank, causes the row to be ignored.

AUTHID VARCHAR(128)
An authorization ID that is permitted and perhaps translated. If blank, any
authorization ID is permitted with the corresponding LINKNAME, and all
authorization IDs are translated in the same way.

LINKNAME CHAR(8)
Identifies the VTAM or TCP/IP network locations that are associated with
this row. A blank value in this column indicates that this name translation
rule applies to any TCP/IP or SNA partner.

If you specify a nonblank value for this column, one or both of the
following situations must be true:
v A row exists in table SYSIBM.LUNAMES that has an LUNAME value

that matches the LINKNAME value that appears in this column.
v A row exists in table SYSIBM.IPNAMES that has a LINKNAME value

that matches the LINKNAME value that appears in this column.

NEWAUTHID VARCHAR(128)
The translated authorization ID. If blank, no translation occurs.

PASSWORD CHAR(8)
A password that is sent with outbound requests. This password is not
provided by RACF and cannot be encrypted.

SYSIBM.LOCATIONS columns:

The SYSIBM.LOCATIONS table contains a row for every accessible remote server.
Each row associates a LOCATION name with the TCP/IP or SNA network
attributes for the remote server. Requesters are not defined in this table.

LOCATION CHAR(16)
Indicates the unique location name by which the the remote server is
known to local DB2 SQL applications.

LINKNAME CHAR(8)
Identifies the VTAM or TCP/IP network locations that are associated with
this row. A blank value in this column indicates that this name translation
rule applies to any TCP/IP or SNA partner.

If you specify a nonblank value for this column, one or both of the
following situations must be true:

300 Administration Guide

|



v A row exists in table SYSIBM.LUNAMES that has an LUNAME value
that matches the LINKNAME value that appears in this column.

v A row exists in table SYSIBM.IPNAMES that has a LINKNAME value
that matches the LINKNAME value that appears in this column.

PORT CHAR(32)
Indicates that TCP/IP is used for outbound DRDA connections when the
following statement is true:
v A row exists in SYSIBM.IPNAMES, where the LINKNAME column

matches the value that is specified in the SYSIBM.LOCATIONS
LINKNAME column.

If the previously mentioned row is found, and the SECURE column has a
value of ’N’, the value of the PORT column is interpreted as follows:
v If PORT is blank, the default DRDA port (446) is used.
v If PORT is nonblank, the value that is specified for PORT can take one

of two forms:
– If the value in PORT is left-justified with one to five numeric

characters, the value is assumed to be the TCP/IP port number of the
remote database server.

– Any other value is assumed to be a TCP/IP service name, which you
can convert to a TCP/IP port number by using the TCP/IP
getservbyname socket call. TCP/IP service names are not
case-sensitive.

If the previously mentioned row is found, and the SECURE column has a
value of ’Y’, the value of the PORT column is interpreted as follows:
v If PORT is blank, the default secure DRDA port (448) is used.
v If PORT is nonblank, the value that is specified for PORT takes the value

of the configured secure DRDA port at the remote server.

TPN VARCHAR(64)
Used only when the local DB2 begins an SNA conversation with another
server. When used, TPN indicates the SNA LU 6.2 transaction program
name (TPN) that will allocate the conversation. A length of zero for the
column indicates the default TPN. For DRDA conversations, this is the
DRDA default, which is X’07F6C4C2’.

For DB2 private protocol conversations, this column is not used. For an
SQL/DS™ server, TPN should contain the resource ID of the SQL/DS
machine.

DBALIAS(128)
Used to access a remote database server. If DBALIAS is blank, the location
name is used to access the remote database server. This column does not
change the name of any database objects sent to the remote site that
contains the location qualifier.

TRUSTED
Indicates whether the connection to the remote server can be trusted. This
is restricted to TCP/IP only. This column is ignored for connections that
use SNA.

Y The location is trusted. Access to the remote location requires a
trusted context that is defined at the remote location.

N The location is not trusted.

Chapter 6. Managing access through RACF 301

|
|
|

|
|
|

|
|

|

|
|

|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|

||
|

||



SECURE
Indicates the use of the Secure Socket Layer (SSL) protocol for outbound
DRDA connections when local DB2 applications connect to the remote
database server by using TCP/IP.

Y A secure SSL connection is required for the outbound DRDA
connection.

N A secure connection is not required for the outbound DRDA
connection.

Processing of outbound connection requests
The DB2 subsystem completes the following steps when sending out a connection
request:

1. The DB2 subsystem that sends the request checks whether the primary
authorization ID has the privilege to execute the plan or package.
DB2 determines which value in the LINKNAME column of the
SYSIBM.LOCATIONS table matches either the LUNAME column in the
SYSIBM.LUNAMES table or the LINKNAME column in the SYSIBM.IPNAMES
table. This check determines whether SNA or TCP/IP protocols are used to
carry the DRDA request. (Statements that use DB2 private protocol, not DRDA,
always use SNA.)

Step 1:
Check local privilege

Step 2:
Is outbound translation specified?

Translate remote primary ID using
NEWAUT HID column of
SYSIBM.USERNAMES.

Remote primary ID is the same
as the local primary ID.

Step 3:
Check SECURITY_OUT column of
SYSIBM.LUNAMES or SYSIBM.USERNAMES.

NoYes

Step 4:
Send request.

Figure 25. Steps in sending a request from a DB2 subsystem

302 Administration Guide

|
|
|
|

||
|

||
|



2. When a plan is executed, the authorization ID of the plan owner is sent with
the primary authorization ID. When a package is bound, the authorization ID
of the package owner is sent with the primary authorization ID. If the
USERNAMES column of the SYSIBM.LUNAMES table contains O or B, or if the
USERNAMES column of the SYSIBM.IPNAMES table contains O, both IDs are
subject to translation under control of the SYSIBM.USERNAMES table. Ensure
that these IDs are included in SYSIBM.USERNAMES, or SQLCODE -904 is
issued. DB2 translates the ID as follows:
v If a nonblank value of NEWAUTHID is in the row, that value becomes the

new ID.
v If NEWAUTHID is blank, the ID is not changed.
If the SYSIBM.USERNAMES table does not contain a new authorization ID to
which the primary authorization ID is translated, the request is rejected with
SQLCODE -904.
If the USERNAMES column does not contain O or B, the IDs are not translated.

3. SECURITY_OUT is checked for outbound security options as shown in the
following diagram.

Chapter 6. Managing access through RACF 303



A Already verified. No password is sent with the authorization ID. This
option is valid only if the server accepts already verified requests.
v For SNA, the server must have specified A in the SECURITY_IN

column of SYSIBM.LUNAMES.
v For TCP/IP, the server must have specified YES in the TCP/IP

ALREADY VERIFIED field of installation panel DSNTIP5.

R RACF PassTicket. If the primary authorization ID was translated, that
translated ID is sent with the PassTicket.

P Password. The outbound request must be accompanied by a password:
v If the requester is DB2 for z/OS and uses SNA protocols, passwords

can be encrypted if you specify Y in the ENCRYPTPSWDS column of
SYSIBM.LUNAMES. If passwords are encrypted, the password is
obtained from RACF. If passwords are not encrypted, the password
is obtained from the PASSWORD column of SYSIBM.USERNAMES.

v If the requester uses TCP/IP protocols, the password is obtained
from the PASSWORD column of SYSIBM.USERNAMES. If the

P:
SNA or TCP/IP protocol?

Encrypt?

Get password
from RACF.

Encrypt?

Get password from
SYSIBM.USERNAMES.

Error
- 904 or
- 30082

D:
ICSF enabled and
server supports encryption?

No password sent.
Get authorization ID
and encrypt with ICSF.

Get password from
SYSIBM.USERNAMES
and encrypt with ICSF.

No YesNoYes

TCP/IPSNA

No Yes

Step 2

Error
- 904 or
- 30082

E:
ICSF enabled and
server supports encryption?

A:
No password
is sent.

R:
Get PassTicket
from RACF.

Get password from
SYSIBM.USERNAMES
and encrypt with ICSF.

No Yes

Step 4:
Send request.

Figure 26. Details of Step 3

304 Administration Guide



Integrated Cryptographic Service Facility is enabled and properly
configured and the server supports encryption, the password is
encrypted.
Recommendation: Use RACF PassTickets to avoid sending
unencrypted passwords over the network.

D User ID and security-sensitive data encryption. No password is sent
with the authorization ID. If the Integrated Cryptographic Service
Facility (ICSF) is enabled and properly configured and the server
supports encryption, the authorization ID is encrypted before it is sent.
If the ICSF is not enabled or properly configured, SQL return code –904
is returned. If the server does not support encryption, SQL return code
–30082 is returned.

E User ID, password, and security-sensitive data encryption. If the ICSF
is enabled and properly configured and the server supports encryption,
the password is encrypted before it is sent. If the ICSF is not enabled or
properly configured, SQL return code –904 is returned. If the server
does not support encryption, SQL return code –30082 is returned.

4. Send the request.

Translating outbound IDs
If an ID on your system is duplicated on a remote system, you can translate
outbound IDs to avoid confusion. You can also translate IDs to ensure that they are
accepted by the remote system.

To indicate that you want to translate outbound user IDs, perform the following
steps:
1. Specify an O in the USERNAMES column of table SYSIBM.IPNAMES or

SYSIBM.LUNAMES.
2. Use the NEWAUTHID column of SYSIBM.USERNAMES to specify the ID to

which the outbound ID is translated.

Example 1: Suppose that the remote system accepts from you only the IDs
XXGALE, GROUP1, and HOMER.
1. Specify that outbound translation is in effect for the remote system LUXXX by

specifying in SYSIBM.LUNAMES the values that are shown in the following
table.

Table 71. SYSIBM.LUNAMES to specify that outbound translation is in effect for the remote
system LUXXX

LUNAME USERNAMES

LUXXX O

If your row for LUXXX already has I for the USERNAMES column (because
you translate inbound IDs that come from LUXXX), change I to B for both
inbound and outbound translation.

2. Translate the ID GALE to XXGALE on all outbound requests to LUXXX by
specifying in SYSIBM.USERNAMES the values that are shown in the following
table.

Chapter 6. Managing access through RACF 305



Table 72. Values in SYSIBM. USERNAMES to translate GALE to XXGALE on outbound
requests to LUXXX

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O GALE LUXXX XXGALE GALEPASS

3. Translate EVAN and FRED to GROUP1 on all outbound requests to LUXXX by
specifying in SYSIBM.USERNAMES the values that are shown in the following
table.

Table 73. Values in SYSIBM. USERNAMES to translate EVAN and FRED to GROUP1 on
outbound requests to LUXXX

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O EVAN LUXXX GROUP1 GRP1PASS

O FRED LUXXX GROUP1 GRP1PASS

4. Do not translate the ID HOMER on outbound requests to LUXXX. (HOMER is
assumed to be an ID on your DB2, and on LUXXX.) Specify in
SYSIBM.USERNAMES the values that are shown in the following table.

Table 74. Values in SYSIBM. USERNAMES to not translate HOMER on outbound requests
to LUXXX

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O HOMER LUXXX (blank) HOMERSPW

5. Reject any requests from BASIL to LUXXX before they are sent. To do that,
leave SYSIBM.USERNAMES empty. If no row indicates what to do with the ID
BASIL on an outbound request to LUXXX, the request is rejected.

Example 2: If you send requests to another LU, such as LUYYY, you generally need
another set of rows to indicate how your IDs are to be translated on outbound
requests to LUYYY.

However, you can use a single row to specify a translation that is to be in effect on
requests to all other LUs. For example, if HOMER is to be sent untranslated
everywhere, and DOROTHY is to be translated to GROUP1 everywhere, specify in
SYSIBM.USERNAMES the values that are shown in the following table.

Table 75. Values in SYSIBM. USERNAMES to not translate HOMER and to translate
DOROTHY to GROUP1

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O HOMER (blank) (blank) HOMERSPW

O DOROTHY (blank) GROUP1 GRP1PASS

You can also use a single row to specify that all IDs that accompany requests to a
single remote system must be translated. For example, if every one of your IDs is
to be translated to THEIRS on requests to LUYYY, specify in SYSIBM.USERNAMES
the values that are shown in the following table.

Table 76. Values in SYSIBM. USERNAMES to translate every ID to THEIRS

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O (blank) LUYYY THEIR THEPASS

306 Administration Guide



If the ICSF is installed and properly configured, you can use the DSNLEUSR
stored procedure to encrypt the translated outbound IDs that are specified in the
NEWAUTHID column of SYSIBM.USERNAMES. DB2 decrypts the translated
outbound IDs during connection processing.

Sending passwords
For the tightest security, do not send passwords through the network. Instead, use
one of the following security mechanisms:
v RACF encrypted passwords
v RACF PassTickets
v Kerberos tickets
v DRDA-encrypted passwords or DRDA-encrypted user IDs with encrypted

passwords

If you have to send passwords through the network, you can put the password for
an ID in the PASSWORD column of the SYSIBM.USERNAMES table.

Recommendation: Use the DSNLEUSR stored procedure to encrypt passwords in
SYSIBM.USERNAMES. If the ICSF is installed and properly configured, you can
use the DSNLEUSR stored procedure to encrypt passwords in the
SYSIBM.USERNAMES table. DB2 decrypts the password during connection
processing.

DB2 for z/OS allows the use of RACF encrypted passwords or RACF PassTickets.
However, workstations, such as Windows® workstations, do not support these
security mechanisms. RACF encrypted passwords are not a secure mechanism
because they can be replayed. RACF PassTickets are not compatible with
SECURITY_ENCRYPT; they are allowed only when the connections are secured by
the TCP/IP network.

Recommendation: Do not use RACF encrypted passwords unless you are
connecting to a previous release of DB2 for z/OS.

Sending RACF-encrypted passwords
For DB2 subsystems that use the SNA protocols to communicate with each other,
you can specify password encryption in the SYSIBM.LUNAMES table.

Table 77. Specifying password encryption in SYSIBM.LUNAMES

LUNAME USERNAMES ENCRYPTPSWDS

LUXXX O Y

The partner DB2 must also specify password encryption in its SYSIBM.LUNAMES
table. Both partners must register each ID and its password with RACF. Then, for
every request to LUXXX, your DB2 calls RACF to supply an encrypted password
to accompany the ID. With password encryption, you do not use the PASSWORD
column of SYSIBM.USERNAMES, so the security of that table becomes less critical.

Sending RACF PassTickets
To send RACF PassTickets with your remote requests to a particular remote
system, you can specify ’R’ in the SECURITY_OUT column of the
SYSIBM.IPNAMES or SYSIBM.LUNAMES table for that system.

Perform the following steps to set up RACF to generate PassTickets:

Chapter 6. Managing access through RACF 307

|
|
|



1. Activate the RACF PTKTDATA class by issuing the following RACF
commands:
SETROPTS CLASSACT(PTKTDATA)
SETROPTS RACLIST(PTKTDATA)

2. Define a RACF profiles for each remote system by entering the system name as
it appears in the LINKNAME column in the SYSIBM.LOCATIONS table.
For example, issue the following command defines a profile for a remote
system, DB2A, in the RACF PTKTDATA class:
RDEFINE PTKTDATA DB2A SSIGNON(KEYMASKED(E001193519561977))

3. Refresh the RACF PTKTDATA definition with the new profiles by issuing the
following command:
SETROPTS RACLIST(PTKTDATA) REFRESH

Sending encrypted passwords from DB2 for z/OS clients
As a requester, a DB2 for z/OS client can send connection requests that use 256-bit
Advanced Encryption Standard (AES) or 56-bit Data Encryption Standards (DES)
encryption security through a TCP/IP network to remote servers.

If the DB2 for z/OS client supports DRDA Security Manager (SECMGR) 9 (or
higher) and if z/OS ICSF is configured and started, it can send AES requests to a
server. After the first successful connection, it can determine whether or not a
remote server supports AES encryption security. If the remote server also supports
DRDA SECMGR 9 (or higher), it accepts AES requests and encrypts the user IDs
and passwords that the client sends in AES.

As a client, DB2 for z/OS only supports IPNAMES.SECURITY_OUT option ’P’
(″password″) for AES encryption and decryption. It does not support
IPNAMES.SECURITY_OUT option ’D’ (″user ID and security-sensitive data
encryption″) or ’E’ (″user ID, password, and security-sensitive data encryption″).
These outbound security options remain encrypted in DES.

Sending encrypted passwords from workstation clients

As a server, DB2 for z/OS can accept requests from remote workstation clients that
use 256-bit Advanced Encryption Standard (AES) or 56-bit Data Encryption
Standards (DES) encryption security over a TCP/IP network connection.

Depending on the DRDA level, a remote client can use AES or DES encryption
algorithm for sending passwords, user IDs and passwords, or other
security-sensitive data to a DB2 for z/OS server. If both the DB2 for z/OS server
and the remote client support DRDA Security Manager (SECMGR) 9 or higher and
even if the client does not explicitly request for AES, AES becomes the default
encryption algorithm for user IDs and passwords, and DES remains the default
encryption algorithm for security-sensitive data. In other words, if the client
explicitly requests for AES encryption, only user IDs, passwords, or both are
encrypted in AES, and any data in the request is still encrypted in DES. Any
persistent attempt to encrypt the data in AES will cause the client itself to reject the
connection request.

To enable the DB2 for z/OS AES server support, you must install and configure
z/OS Integrated Cryptographic Services Facility (ICSF). During DB2 startup,
DSNXINIT invokes the MVS LOAD macro service to load various ICSF services,
including the ICSF CSNESYE and CSNESYD modules that DB2 calls for processing
AES encryption and decryption requests. If ICSF is not installed or if ICSF services

308 Administration Guide

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|



are not available, DB2 will not be able to provide AES support. Instead, it will use
DES for processing remote requests if the client does not explicitly request for AES
encryption.

To use the DES encryption, you can enable DB2 Connect to send encrypted
passwords by setting database connection services (DCS) authentication to
DCS_ENCRYPT in the DCS directory entry. When a client application issues an
SQL CONNECT, the client negotiates this support with the database server. If
supported, a shared private key is generated by the client and server using the
Diffie-Hellman public key technology and the password is encrypted using 56-bit
DES with the shared private key. The encrypted password is non-replayable, and
the shared private key is generated on every connection. If the server does not
support password encryption, the application receives SQLCODE -30073 (DRDA
security manager level 6 is not supported).

Chapter 6. Managing access through RACF 309

|
|
|



310 Administration Guide



Chapter 7. Managing access through trusted contexts

By enabling you to create and use trusted contexts to manage access to your DB2
servers, DB2 helps satisfy the need for data security and accountability.

You can use trusted connections within a trusted context. When you do this, you
can reuse the authorization and switch users of the connection without the
database server needing to authenticate the IDs.

Trusted contexts
A trusted context is an independent database entity that you can define based on a
system authorization ID and connection trust attributes.

The trust attributes specify a set of characteristics about a specific connection.
These attributes include the IP address, domain name, or SERVAUTH security zone
name of a remote client and the job or task name of a local client.

A trusted context allows for the definition of a unique set of interactions between
DB2 and the external entity, including the following abilities:
v The ability for the external entity to use an established database connection with

a different user without the need to authenticate that user at the DB2 server.
This ability eliminates the need to manage end-user passwords by the external
entity. Also, a database administrator can assume the identity of other users and
perform actions on their behalf.

v The ability for a DB2 authorization ID to acquire one or more privileges within a
trusted context that are not available to it outside of that trusted context. This is
accomplished by associating a role with the trusted context.

The following client applications provide support for the trusted context:
v The DB2 Universal Java Driver introduces new APIs for establishing trusted

connections and switching users of a trusted connection.
v The DB2 CLI/ODBC Driver introduces new keywords for connecting APIs to

establish trusted connections and switch users of a trusted connection.
v The Websphere Application Server 6.0 exploits the trusted context support

through its ″propagate client identity″ property.

Trusted connections
A trusted connection is a database connection that is established when the
connection attributes match the attributes of a unique trusted context that is
defined at the server. It can be established locally or at a remote location.

A trusted context allows you to establish a trusted relationship between DB2 and
an external entity, such as a middleware server. DB2 evaluates a series of trust
attributes to determine if a specific context is to be trusted. Currently, the only
attribute that DB2 considers is the database connection. The relationship between a
connection and a trusted context is established when the connection to the server is
first created, and that relationship remains as long as that connection exists.

© Copyright IBM Corp. 1982, 2009 311

|

|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

|

|
|

|
|

|
|

|

|
|
|

|
|
|
|
|
|



Defining trusted contexts
Before you can create a trusted connection, you must define a trusted context by
using a system authorization ID and connection trust attributes.

A system authorization ID is the DB2 primary authorization ID that is used to
establish the trusted connection. For local connections, the system authorization ID
is derived as shown in the following table.

Table 78. System authorization ID for local connections

Source System authorization ID

Started task (RRSAF) USER parameter on JOB statement or RACF USER

TSO TSO logon ID

BATCH USER parameter on JOB statement

For remote connections, the system authorization ID is derived from the system
user ID that is provided by an external entity, such as a middleware server.

The connection trust attributes identify a set of characteristics about the specific
connection. The connection trust attributes are required for the connection to be
considered a trusted connection. For a local connection, the connection trust
attribute is the job or started task name. For a remote connection, the connection
trust attribute is the client’s IP address, domain name, or SERVAUTH security zone
name. The connection trust attributes are as follows:

ADDRESS
Specifies the client’s IP address or domain name, used by the connection to
communicate with DB2. The protocol must be TCP/IP.

SERVAUTH
Specifies the name of a resource in the RACF SERVAUTH class. This
resource is the network access security zone name that contains the IP
address of the connection to communicate with DB2.

ENCRYPTION
Specifies the minimum level of encryption of the data stream (network
encryption) for the connection. Supported values are as follows:
v NONE - No encryption. This is the default.
v LOW - DRDA data stream encryption.
v HIGH - Secure Socket Layer (SSL) encryption.

JOBNAME
Specifies the local z/OS started task or job name. The value of JOBNAME
depends on the source of the address space, as shown in the following
table.

Table 79. JOBNAME for local connections

Source JOBNAME

Started task (RRSAF) Job or started task name

TSO TSO logon ID

BATCH Job name on JOB statement

The JOBNAME attribute cannot be specified with the ADDRESS,
SERVAUTH, or ENCRYPTION attributes.

312 Administration Guide

|

|
|

|
|
|

||

||

||

||

||
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

||

||

||

||

||
|
|
|



Creating local trusted connections
You can establish a trusted connection to a local DB2 subsystem by using RRSAF
or the DSN command processor under TSO and DB2I.

When you attempt to create a local trusted connection, DB2 searches for a trusted
context that matches the primary authorization ID and the job or started task name
that you supply. If DB2 finds a matching trusted context, DB2 checks if the
DEFAULT SECURITY LABEL attribute is defined in the trusted context.

If the DEFAULT SECURITY LABEL attribute is defined with a security label, DB2
verifies the security label with RACF. This security label is used for multilevel
security verification for the system authorization ID. If verification is successful,
the connection is established as trusted. If the verification is not successful, the
connection is established as a normal connection without any additional privileges.

In addition, the DB2 online utilities can run in a trusted connection if a matching
trusted context is defined, if the primary authorization ID matches the SYSTEM
AUTHID value of the trusted context, and if the job name matches the JOBNAME
attribute defined for the trusted context.

Establishing remote trusted connections by DB2 for z/OS requesters
A DB2 for z/OS requester can establish a trusted connection to a remote location
by setting up the new TRUSTED column in the SYSIBM.LOCATIONS table.

How DB2 obtains the system authorization ID to establish the trusted connection
depends on the value of the SECURITY_OUT option in the SYSIBM.IPNAMES
table. The SECURITY_OUT option in the SYSIBM.IPNAMES table must be ’E’, ’P’,
or ’R’.

When the z/OS requester receives an SQL CONNECT with or without the USER
and USING clauses to a remote location or if an application references a remote
table or procedure, DB2 looks at the SYSIBM.LOCATIONS table to find a matching
row. If DB2 finds a matching row, it checks the TRUSTED column. If the value of
TRUSTED column is set to ’Y’, DB2 looks at the SYSIBM.IPNAMES table. The
values in the SECURITY_OUT column and USERNAMES column are used to
determine the system authorization ID as follows:

SECURITY_OUT = ’P’ or ’E’ and USERNAMES = ’S’
The system authorization ID credentials that are used to establish the
trusted connection are obtained from the row in the SYSIBM.USERNAMES
table with TYPE ’S’.

DB2 sends the user switch request on behalf of the primary authorization
ID without authentication under two conditions. First, the system
authorization ID value in the AUTHID column is different from the
primary authorization ID. Second, a trusted connection is successfully
established.

SECURITY_OUT=’P’ or ’E’ and USERNAMES = ’O’
If a row with TYPE ’S’ is defined in the SYSIBM.USERNAMES table, the
system authorization ID credentials that are used to establish the trusted
connection are obtained from the row.

After successfully establishing the trusted connection, DB2 obtains the
translated authorization ID information for the primary authorization ID

Chapter 7. Managing access through trusted contexts 313

|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|



from the row in the SYSIBM.USERNAMES table with TYPE ’O’. DB2 sends
the user switch request on behalf of the primary authorization ID with
authentication.

If a row with TYPE ’S’ is not defined in the SYSIBM.USERNAMES table,
DB2 obtains the system authorization ID information that is used to
establish the trusted connection from the row in the SYSIBM.USERNAMES
table with TYPE ’O’.

SECURITY_OUT = ’R’ and USERNAMES = ’ ’
The primary authorization ID is used as the system authorization ID to
establish the trusted connection.

SECURITY_OUT = ’R’ and USERNAMES = ’S’
The system authorization ID that is used to establish the trusted connection
is obtained from the row in the SYSIBM.USERNAMES table with
TYPE=’S’.

After establishing the trusted connection successfully, DB2 sends the user
switch request on behalf of the primary authorization ID without
authentication.

SECURITY_OUT = ’R’ and USERNAMES = ’O’
The system authorization ID that is used to establish the trusted connection
is obtained from the row in the SYSIBM.USERNAMES table with TYPE ’S’.

After successfully establishing the trusted connection, DB2 obtains the
translated authorization ID for the primary authorization ID from the row
in the SYSIBM.USERNAMES table with TYPE ’O’. DB2 sends the user
switch request on behalf of the primary authorization ID with RACF
passticket authentication.

If the SECURITY_OUT option is not correctly set up, DB2 returns an error.

Establishing remote trusted connections to DB2 for z/OS servers
When the DB2 for z/OS server receives a remote request to establish a trusted
connection, DB2 checks to see if an authentication token accompanies the request.

The authentication token can be a password, a RACF passticket, or a Kerberos
ticket. The requester goes through the standard authorization processing at the
server. If the authorization is successful, DB2 invokes the connection exit routine,
which associates the primary authorization ID, possibly one or more secondary
authorization IDs, and an SQL ID with the remote request. DB2 searches for a
matching trusted context. If DB2 finds a matching trusted context, it validates the
following attributes:
v If the SERVAUTH attribute is defined for the identified trusted context and

TCP/IP provides a RACF SERVAUTH profile name to DB2 during the
establishment of the connection, DB2 matches the SERVAUTH profile name with
the SERVAUTH attribute value.

v If the SERVAUTH attribute is not defined or the SERVAUTH name does not
match the SERVAUTH that is defined for the identified trusted context, DB2
matches the remote client’s TCP/IP address with the ADDRESS attribute that is
defined for the identified trusted context.

v If the ENCRYPTION attribute is defined, DB2 validates whether the connection
is using the proper encryption as specified in the value of the ENCRYPTION
attribute.

314 Administration Guide

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|

|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|



v If the DEFAULT SECURITY LABEL attribute is defined for the system
authorization ID, DB2 verifies the security label with RACF. This security label is
used for verifying multilevel security for the system authorization ID. However,
if the system authorization ID is also in the ALLOW USER clause with
SECURITY LABEL, then that one is used.

If the validation is successful, DB2 establishes the connection as trusted. If the
validation is not successful, the connection is established as a normal connection
without any additional privileges, DB2 returns a warning, and SQLWARN8 is set.

Switching users of a trusted connection
When a trusted connection is established, DB2 enables the trusted connection to be
reused under a different user on a transaction boundary. A trusted connection can
be reused at a local DB2 subsystem by using RRSAF, the DSN command processor
under TSO, DB2I, and the SQL CONNECT statement with the USER and USING
clauses.

To reuse a trusted connection, you must add the specific user to the trusted
context. If you specify ’PUBLIC’ as the user, DB2 allows the trusted connection to
be used by any authorization ID; the trusted connection can be used by a different
user with or without authentication. However, you can require authentication by
specifying the WITH AUTHENTICATION clause.

You can use RRSAF, the DSN command processor under TSO, and DB2I to switch
to a new user on a trusted connection without authentication. If authentication is
required, you can use the SQL CONNECT statement with the USER and USING
clauses. The SQL CONNECT semantics prevent the use of CONNECT TO with the
USER and USING clauses to switch authorization IDs on a remote connection.

Reusing a local trusted connection through the DSN
command processor and DB2I

You can use the DSN command processor and DB2I to switch the user on a trusted
connection if the DSN ASUSER option is specified.

DB2 establishes a trusted connection if the primary authorization ID and job name
match a trusted context that is defined in DB2. The user ID that is specified for the
ASUSER option goes through the standard authorization processing. If the user ID
is authorized, DB2 runs the connection exit routine to associate the primary and
secondary IDs.

DB2 then searches to see if the primary authorization ID is allowed to use the
trusted connection without authentication. If the primary authorization ID is
allowed to use the trusted connection without authentication, DB2 determines if
the SECURITY LABEL attribute is defined in the trusted context for the user either
explicitly or implicitly. If the SECURITY LABEL attribute is defined with a security
label, DB2 verifies the security label with RACF. If the verification of the security
label is successful, the trusted connection is established and used by the user ID
that is specified for the ASUSER option. DB2 uses the security label for multilevel
security verification for the user.

If the primary authorization ID that is associated with the user ID that is specified
for the ASUSER option is not allowed or requires authentication information, the
connection request fails. If the security label verification is not successful, the
connection request fails.

Chapter 7. Managing access through trusted contexts 315

|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|



Reusing a remote trusted connection by DB2 for z/OS
requesters

After establishing a trusted connection with a system authorization ID, the DB2 for
z/OS requester automatically switches the user on the connection to the primary
authorization ID on the remote trusted connection in the following scenarios:
v The system authorization ID is different from the primary authorization ID that

is associated with the application user.
v The system authorization ID is different from the authorization ID that is

specified in the SQL CONNECT statement with the USER and USING clauses.
v Outbound translation is required for the primary authorization ID.

Reusing a remote trusted connection through DB2 for z/OS
servers

The DB2 for z/OS server performs the following steps when it receives a request
to switch users on a trusted connection:
1. DB2, on successful authorization, invokes the connection exit routine. The

invocation associates the primary authorization ID, possibly one or more
secondary authorization IDs, and an SQL ID with the remote request. This new
set of IDs replaces the previous set of IDs that was associated with the request.

2. DB2 determines if the primary authorization ID is allowed to use the trusted
connection. If the WITH AUTHENTICATION clause is specified for the user,
DB2 requires an authentication token for the user. The authentication token can
be a password, a RACF passticket, or a Kerberos ticket.

3. Assuming that the primary authorization ID is allowed, DB2 determines the
trusted context for any SECURITY LABEL definition. If a specific SECURITY
LABEL is defined for this user, it becomes the SECURITY LABEL for this user.
If no specific SECURITY LABEL is defined for this user but a DEFAULT
SECURITY LABEL is defined for the trusted context, DB2 verifies the validity
of this SECURITY LABEL for this user through RACF by issuing the
RACROUTE VERIFY request.
If the primary authorization ID is allowed, DB2 performs a connection
initialization. This results in an application environment that truly mimics the
environment that is initialized if the new user establishes the connection in the
normal DB2 manner. For example, any open cursor is closed, and temporary
table information is dropped.

4. If the primary authorization ID is not allowed to use the trusted connection or
if SECURITY LABEL verification fails, the connection is returned to an
unconnected state. The only operation that is allowed is to establish a valid
authorization ID to be associated with the trusted connection. Until a valid
authorization is established, if any SQL statement is issued, an error
(SQLCODE -900) is returned.

Reusing a local trusted connection through RRSAF
If you use Resource Recovery Services Attachment Facility (RRSAF) to switch to a
new user on a trusted connection, DB2 obtains the primary authorization ID and
runs the sign-on exit routine.

DB2 then searches to determine if the primary authorization ID is allowed to use
the trusted connection without authentication. If the primary authorization ID is
allowed, DB2 determines if SECURITY LABEL is explicitly or implicitly defined in
the trusted context for the user. If SECURITY LABEL is defined, DB2 verifies the

316 Administration Guide

|

|

|
|
|

|
|

|
|

|

|

|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|
|



SECURITY LABEL with RACF by using the RACROUTE VERIFY request. If the
SECURITY LABEL verification is successful, the trusted connection is used by the
new user.

If the primary authorization ID is not allowed to use the trusted connection
without authentication, DB2 returns the connection to an unconnected state. The
only action that you can take is to try running the sign-on exit routine again. Until
a valid authorization is established, any SQL statement that you issue causes DB2
to return an error.

Reusing a local trusted connection through the SQL
CONNECT statement

You can switch users on a trusted connection by using the SQL CONNECT
statement with the USER and USING clauses.

DB2, on successful authorization, invokes the connection exit routine if it is
defined. The connection then has a primary authorization ID, zero or more
secondary IDs, and an SQL ID.

DB2 searches to determine if the primary authorization ID is allowed to use the
trusted connection. If the primary authorization ID is allowed, DB2 determines if
the SECURITY LABEL attribute is defined in the trusted context for the user either
explicitly or implicitly. If the SECURITY LABEL attribute is defined with a security
label, DB2 verifies the security label with RACF. If the security label verification is
successful, DB2 switches the user on the trusted connection. DB2 uses the security
label for multilevel security verification for the user.

If the primary authorization ID is not allowed to use the trusted connection or if
the security label verification is not successful, DB2 returns the connection to an
unconnected state. The only action you can take is to establish a valid
authorization ID to be associated with the trusted connection. Until a valid
authorization is established, any SQL statement that you issue causes DB2 to
return an error.

Defining external security profiles
You can control the users who can be switched in a trusted connection by defining
an external security profile in RACF and authorizing users to use the profile.

To define an external security profile in RACF:
1. Create a general resource profile in RACF for the DSNR class by issuing the

following command:
RDEFINE DSNR (TRUSTEDCTX.PROFILE1) UACC(NONE)

2. Add users to the TRUSTEDCTX.PROFILE1 profile and define their level of
access authority by issuing the following command:
PERMIT TRUSTEDCTX.PROFILE1 CLASS(DSNR) ID(USER1 USER2) ACCESS(READ)

3. Associate the profile with the trusted context definition by using the
EXTERNAL SECURITY PROFILE keyword in the trusted context user clause
definition.

You can remove users who can be switched in a trusted connection individually
from the TRUSTEDCTX.PROFILE1 profile in RACF. You can also remove all users
by simply dissociating the profile from the trusted context definition.

Chapter 7. Managing access through trusted contexts 317

|
|
|

|
|
|
|
|

|

|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|



Enabling users to perform actions on behalf of others
Within a trusted context, you can allow users to perform actions on objects on
behalf of others.

You can specify the DSN ASUSER option with the authorization ID of the object
owner. During the connection processing, the authorization ID is used to determine
if a trusted context exists for this authorization ID. If a trusted context exists, a
trusted connection is established. The primary authorization ID that is associated
with the user ID and specified in the ASUSER option is used to determine if the
user can be switched on the trusted connection.

If the user ID that is specified in the ASUSER option is allowed to use the trusted
connection, the user runs under the authorization ID of the object owner and can
perform actions on behalf of the object owner. The authorization ID of the original
user is traced for audit purposes.

Performing tasks on objects for other users
If you have DBADM authority, you can assume the identity of other users within a
trusted context and perform tasks on their behalf.

After you successfully assume the identity of a view owner, you inherit all the
privileges from the ID that owns the view and can therefore perform the CREATE,
DROP, and GRANT actions on the view.

To perform tasks on behalf of another user:
1. Define a trusted context. Make sure that the SYSTEM AUTH ID is the primary

authorization ID that you use in SPUFI.
2. Specify the primary authorization ID as the JOBNAME for the trusted

connection
3. Specify the primary authorization ID of the user whose identity you want to

assume
4. Log onto TSO with your primary authorization ID
5. Set the ASUSER option on the DB2I DEFAULTS panel to the primary

authorization ID of the user whose identity you want to assume
6. Perform the desired actions by using privileges of the specified user.

Assume that you have DBADM authority, your primary authorization ID is BOB,
and you want to drop a view that is owned by user SALLY. You can issue the
following statement to create and enable a trusted context called CTXLOCAL in
which BOB can drop the selected view on SALLY’s behalf:
CREATE TRUSTED CONTEXT CTXLOCAL
BASED UPON CONNECTION USING SYSTEM AUTHID BOB
ATTRIBUTES (JOBNAME 'BOB')
ENABLE
ALLOW USE FOR SALLY;

After logging onto TSO, you can set the ASUSER option to SALLY in the DB2I
DEFAULTS panel and invoke SPUFI to process SQL statements. DB2 obtains the
primary authorization ID BOB and JOBNAME BOB from the TSO log-on session,
authenticates BOB, searches for the matching trusted context (CTXLOCAL), and
establishes a trusted connection. DB2 then authenticates the primary authorization
ID SALLY and validates all privileges that are assigned to SALLY. After successful
authentication and validation, you, BOB, can drop the view that is owned by

318 Administration Guide

|

|
|

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|
|

|

|
|

|
|

|
|

|

|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|



SALLY.

Chapter 7. Managing access through trusted contexts 319

|



320 Administration Guide



Chapter 8. Managing access through data definition control

Data definition control is a DB2 security measure that provides additional constraints
to existing authorization checks. You can use data definition control to manage
access to your DB2 data.

Data definition statements
Data definition statements are a subset of statements that are referred to as data
definition language.

The following data definition statements are controlled through the DB2 data
definition control support.

Table 80. Data definition Statements

Object CREATE statement ALTER statement DROP statement

Alias CREATE ALIAS DROP ALIAS

Database CREATE DATABASE ALTER DATABASE DROP DATABASE

Index CREATE INDEX ALTER INDEX DROP INDEX

Storage group CREATE STOGROUP ALTER STOGROUP DROP STOGROUP

Synonym CREATE SYNONYM DROP SYNONYM

Table CREATE TABLE ALTER TABLE DROP TABLE

Table space CREATE TABLESPACE ALTER TABLESPACE DROP TABLESPACE

View CREATE VIEW DROP VIEW

The data definition control support also controls the COMMENT and LABEL
statements.

Data definition control support
If you want to use data definition statements for your plans and packages, you
must install the data definition control support on the DB2 DSNTIPZ installation
panel.

As shown in the following example, you can specify appropriate values for several
installation options to install the data definition control support and to control data
definition behaviors.

© Copyright IBM Corp. 1982, 2009 321



Registration tables
If you use data definition control support, you must create and maintain an
application registration table (ART) and an object registration table (ORT). You can
register plans and package collections in the ART and objects that are associated
with the plans and collections in the ORT.

DB2 consults these two registration tables before accepting a data definition
statement from a process. It denies a request to create, alter, or drop a particular
object if the registration tables indicate that the process is not allowed to do so.

Both ART and ORT contain the CREATOR and CHANGER columns. The
CREATOR and CHANGER columns are CHAR(26) and large enough for a
three-part authorization ID. You need to separate each 8-byte part of the ID with a
period in byte 9 and in byte 18. If you enter only the primary authorization ID,
consider entering it right-justified in the field (that is, preceded by 18 blanks).

In addition to the CREATOR and CHANGER columns, an ART also contains the
following columns, some of which are optional and reserved for administrator use;
DB2 does not use these columns.

Table 81. Columns of the ART

Column name Description

APPLIDENT Indicates the collection-ID of the package that executes the data
definition language. If no package exists, it indicates the name
of the plan that executes the data definition language.

APPLIDENTTYPE Indicates the type of application identifier.

APPLICATIONDESC1 Optional data. Provides a more meaningful description of each
application than the eight-byte APPLIDENT column can contain.

DEFAULTAPPL Indicates whether all data definition language should be
accepted from this application.

DSNTIPZ INSTALL DB2 - DATA DEFINITION CONTROL SUPPORT
===>

Enter data below:

1 INSTALL DD CONTROL SUPT. ===> NO YES - activate the support
NO - omit DD control support

2 CONTROL ALL APPLICATIONS ===> NO YES or NO
3 REQUIRE FULL NAMES ===> YES YES or NO
4 UNREGISTERED DDL DEFAULT ===> ACCEPT Action for unregistered DDL:

ACCEPT - allow it
REJECT - prohibit it
APPL - consult ART

5 ART/ORT ESCAPE CHARACTER ===> Used in ART/ORT Searches
6 REGISTRATION OWNER ===> DSNRGCOL Qualifier for ART and ORT
7 REGISTRATION DATABASE ===> DSNRGFDB Database name
8 APPL REGISTRATION TABLE ===> DSN_REGISTER_APPL Table name
9 OBJT REGISTRATION TABLE ===> DSN_REGISTER_OBJT Table name

Note: ART = Application Registration Table
ORT = Object Registration Table

PRESS: ENTER to continue RETURN to exit HELP for more information

Figure 27. DSNTIPZ installation panel with default values

322 Administration Guide



Table 81. Columns of the ART (continued)

Column name Description

QUALIFIEROK Indicates whether the application can supply a missing name
part for objects that are named in the ORT. Applies only if
REQUIRE FULL NAMES = NO.

CREATOR1, 2 Optional data. Indicates the authorization ID that created the
row.

CREATETIMESTAMP1 Optional data. Indicates when a row was created. If you use
CURRENT TIMESTAMP, DB2 automatically enters the value of
CURRENT TIMESTAMP When you load or insert a row.

CHANGER1, 2 Optional data. Indicates the authorization ID that last changed
the row.

CHANGETIMESTAMP1 Optional data. Indicates when a row was changed. If you use
CURRENT TIMESTAMP, DB2 automatically enters the value of
CURRENT TIMESTAMP When you update a row.

An ORT also contains the following columns, some of which are optional and
reserved for administrator use; DB2 does not use these columns.

Table 82. Columns of the ORT

Column name Description

QUALIFIER Indicates the object name qualifier.

NAME Indicates the unqualified object name.

TYPE Indicates the type of object.

APPLMATCHREQ Indicates whether an application that names this object must
match the one that is named in the APPLIDENT column.

APPLIDENT Collection-ID of the plan or package that executes the data
definition language.

APPLIDENTTYPE Indicates the type of application identifier.

APPLICATIONDESC1 Optional data. Provides a more meaningful description of each
application than the eight-byte APPLIDENT column can contain.

CREATOR1, 2 Optional data. Indicates the authorization ID that created the
row.

CREATETIMESTAMP1 Optional data. Indicates when a row was created. If you use
CURRENT TIMESTAMP, DB2 automatically enters the value of
CURRENT TIMESTAMP When you load or insert a row.

CHANGER1, 2 Optional data. Indicates the authorization ID that last changed
the row.

CHANGETIMESTAMP1 Optional data. Indicates when a row was changed. If you use
CURRENT TIMESTAMP, DB2 automatically enters the value of
CURRENT TIMESTAMP When you update a row.

Installing data definition control support
You can install the data definition control support that is available through the DB2
DSNTIPZ installation panel.

To install data definition control support:
1. Enter YES for option 1 on the DSNTIPZ installation panel, as shown in the

following example.

Chapter 8. Managing access through data definition control 323



1 INSTALL DD CONTROL SUPT. ===> YES

2. Enter the names and owners of the registration tables in your DB2 subsystem
and the databases in which these tables reside for options 6, 7, 8, and 9 on the
DSNTIPZ installation panel.
The default values for these options are as follows:
6 REGISTRATION OWNER ===> DSNRGCOL
7 REGISTRATION DATABASE ===> DSNRGFDB
8 APPL REGISTRATION TABLE ===> DSN_REGISTER_APPL
9 OBJT REGISTRATION TABLE ===> DSN_REGISTER_OBJT

You can accept the default names or assign names of your own. If you specify
your own table names, each name can have a maximum of 17 characters.

3. Enter an escape character for option 5 on the DSNTIPZ installation panel if you
want to use the percent character (%) or the underscore character (_) as a
regular character in the ART or ORT.
You can use any special character other than underscore or percent as the
escape character. For example, you can use the pound sign (#) as an escape
character. If you do, the value for option looks like this:
5 ART/ORT ESCAPE CHARACTER ===> #

After you specify the pound sign as an escape character, the pound sign can be
used in names in the same way that an escape character is used in an SQL
LIKE predicate.

4. Register plans, packages, and objects in the ART and ORT.
Choose the plans, packages, and objects to register based on whether you want
to control data definition by application name or object name.

5. Enter the values for the three other options on the DSNTIPZ installation panel
as follows:
2 CONTROL ALL APPLICATIONS ===>
3 REQUIRE FULL NAMES ===>
4 UNREGISTERED DDL DEFAULT ===>

Enabling data definition control
You can use data definition control after you install the DB2 data definition control
support and create the ART and ORT.

You can use data definition control in the following four ways:
v Controlling data definition by application name
v Controlling data definition by application name with exceptions
v Controlling data definition by object name
v Controlling data definition by object name with exceptions

Controlling data definition by application name
The simplest way to implement data definition control is to give one or more
applications total control over the use of data definition statements in the
subsystem.

To control data definition by application name, perform the following steps:
1. Enter YES for the first option on the DSNTIPZ installation panel, as shown:

2 CONTROL ALL APPLICATIONS ===> YES

When you specify YES, only package collections or plans that are registered in
the ART are allowed to use data definition statements.

324 Administration Guide



2. In the ART, register all package collections and plans that you will allow to
issue DDL statements, and enter the value Y in the DEFAULTAPPL column for
these package collections. You must supply values for the APPLIDENT,
APPLIDENTTYPE, and DEFAULTAPPL columns of the ART. You can enter
information in other columns for your own use.

Example: Suppose that you want all data definition language in your subsystem to
be issued only through certain applications. The applications are identified by the
following application plan names, collection-IDs, and patterns:

PLANA
The name of an application plan

PACKB
The collection-ID of a package

TRULY%
A pattern name for any plan name beginning with TRULY

TR% A pattern name for any plan name beginning with TR

The following table shows the entries that you need in your ART.

Table 83. Table DSN_REGISTER_APPL for total subsystem control

APPLIDENT APPLIDENTTYPE DEFAULTAPPL

PLANA P Y

PACKB C Y

TRULY% P Y

TR% P Y

If the row with TR% for APPLIDENT contains the value Y for DEFAULTAPPL, any
plan with a name beginning with TR can execute data definition language. If
DEFAULTAPPL is later changed to N to disallow that use, the changed row does
not prevent plans beginning with TR from using data definition language; the row
merely fails to allow that specific use. In this case, the plan TRXYZ is not allowed
to use data definition language. However, the plan TRULYXYZ is allowed to use
data definition language, by the row with TRULY% specified for APPLIDENT.

Controlling data definition by application name with
exceptions

Registering application names with some exceptions is one of four methods for
controlling data definition. If you want to give one or more applications almost
total control over data definition language on all objects, you can reserve a few
objects that can be created, altered, or dropped by applications that are not
registered in the ART.

To control data definition by application name with exceptions, perform the
following steps:
1. Choose not to control all applications. On the DSNTIPZ installation panel,

specify the following value for option 2:
2 CONTROL ALL APPLICATIONS ===> NO

When you specify NO, you allow unregistered applications to use data
definition statements on some objects.

Chapter 8. Managing access through data definition control 325



2. On the DSNTIPZ installation panel, specify the following for option 4:
4 UNREGISTERED DDL DEFAULT ===> APPL

When you specify APPL, you restrict the use of data definition statements for
objects that are not registered in the ORT. If an object is registered in the ORT,
any applications that are not registered in the ART can use data definition
language on the object. However, if an object is not registered in the ORT, only
applications that are registered in the ART can use data definition language on
the object.

3. In the ART, register package collections and plans that you will allow to issue
data definition statements on any object. Enter the value Y in the
DEFAULTAPPL column for these package collections. Applications that are
registered in the ART retain almost total control over data definition. Objects
that are registered in the ORT are the only exceptions.

4. In the ORT, register all objects that are exceptions to the subsystem data
definition control that you defined in the ART. You must supply values for the
QUALIFIER, NAME, TYPE, APPLMATCHREQ, APPLIDENT, and
APPLIDENTTYPE columns of the ORT. You can enter information in other
columns of the ORT for your own use.

Example: Suppose that you want almost all of the data definition language in your
subsystem to be issued only through an application plan (PLANA) and a package
collection (PACKB).

The following table shows the entries that you need in your ART.

Table 84. Table DSN_REGISTER_APPL for total subsystem control with exceptions

APPLIDENT APPLIDENTTYPE DEFAULTAPPL

PLANA P Y

PACKB C Y

However, suppose that you also want the following specific exceptions:
v Object KIM.VIEW1 can be created, altered, or dropped by the application plan

PLANC.
v Object BOB.ALIAS can be created, altered, or dropped only by the package

collection PACKD.
v Object FENG.TABLE2 can be created, altered, or dropped by any plan or

package collection.
v Objects with names that begin with SPIFFY.MSTR and exactly one following

character can be created, altered, or dropped by any plan that matches the name
pattern TRULY%. For example, the plan TRULYJKL can create, alter, or drop the
object SPIFFY.MSTRA.

The following table shows the entries that are needed to register these exceptions
in the ORT.

Table 85. Table DSN_REGISTER_OBJT for subsystem control with exceptions

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

KIM VIEW1 C Y PLANC P

BOB ALIAS C Y PACKD C

FENG TABLE2 C N

326 Administration Guide



Table 85. Table DSN_REGISTER_OBJT for subsystem control with exceptions (continued)

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

SPIFFY MSTR_ C Y TRULY% P

You can register objects in the ORT individually, or you can register sets of objects.

Controlling data definition by object name
Registering object names is one of four methods for controlling data definition. If
you want all objects in the subsystem to be registered and you want several
applications to control specific sets of objects, you need to control by object name.

When you control by object name, all objects are registered regardless of whether
they are controlled by specific applications. To control data definition by object
name, perform the following steps:
1. Choose not to control all applications. On the DSNTIPZ installation panel,

specify the following value for option 2:
2 CONTROL ALL APPLICATIONS ===> NO

When you specify NO, you allow unregistered applications to use data
definition statements on some objects.

2. On the DSNTIPZ installation panel, fill in option 4 as follows:
4 UNREGISTERED DDL DEFAULT ===> REJECT

When you specify REJECT for option 4, you totally restrict the use of data
definition statements for objects that are not registered in the ORT. Therefore,
no application can use data definition statements for any unregistered object.

3. In the ORT, register all of the objects in the subsystem, and enter Y in the
APPLMATCHREQ column. You must supply values for the QUALIFIER,
NAME, TYPE, APPLMATCHREQ, APPLIDENT, and APPLIDENTTYPE
columns of the ORT. You can enter information in other columns of the ORT for
your own use.

4. In the ART, register any plan or package collection that can use a set of objects
that you register in the ORT with an incomplete name. Enter the value Y in the
QUALIFIEROK column. These plans or package collections can use data
definition language on sets of objects regardless of whether a set of objects has
a value of Y in the APPLMATCHREQ column.

Example: The following table shows entries in the ORT for a DB2 subsystem that
contains the following objects that are controlled by object name:
v Two storage groups (STOG1 and STOG2) and a database (DATB1) that are not

controlled by a specific application. These objects can be created, altered, or
dropped by a user with the appropriate authority by using any application, such
as SPUFI or QMF.

v Two table spaces (TBSP1 and TBSP2) that are not controlled by a specific
application. Their names are qualified by the name of the database in which
they reside (DATB1).

v Three objects (OBJ1, OBJ2, and OBJ3) whose names are qualified by the
authorization IDs of their owners. Those objects might be tables, views, indexes,
synonyms, or aliases. Data definition statements for OBJ1 and OBJ2 can be
issued only through the application plan named PLANX. Data definition
statements for OBJ3 can be issued only through the package collection named
PACKX.

Chapter 8. Managing access through data definition control 327



v Objects that match the qualifier pattern E%D and the name OBJ4 can be created,
altered, or deleted by application plan SPUFI. For example, the objects
EDWARD.OBJ4, ED.OBJ4, and EBHARD.OBJ4, can be created, altered, or deleted
by application plan SPUFI. Entry E%D in the QUALIFIER column represents all
three objects.

v Objects with names that begin with TRULY.MY_, where the underscore character
is actually part of the name. Assuming that you specify # as the escape character,
all of the objects with this name pattern can be created, altered, or dropped only
by plans with names that begin with TRULY.

Table 86. Table DSN_REGISTER_OBJT for total control by object

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

STOG1 S N

STOG2 S N

DATB1 D N

DATB1 TBSP1 T N

DATB1 TBSP2 T N

KIM OBJ1 C Y PLANX P

FENG OBJ2 C Y PLANX P

QUENTIN OBJ3 C Y PACKX C

E%D OBJ4 C Y SPUFI P

TRULY MY#_% C Y TRULY% P

Assume the following installation option:
3 REQUIRE FULL NAMES ===> YES

The entries do not specify incomplete names. Hence, objects that are not
represented in the table cannot be created in the subsystem, except by an ID with
installation SYSADM authority.

Controlling data definition by object name with exceptions
Registering object names with some exceptions is one of four methods for
controlling data definition.

If you want several applications to control specific sets of registered objects and to
allow other applications to use data definition statements for unregistered objects,
perform the following steps:
1. Choose not to control all applications. On the DSNTIPZ installation panel,

specify the following value for option 2:
2 CONTROL ALL APPLICATIONS ===> NO

When you specify NO, you allow unregistered applications to use data
definition statements on some objects.

2. On the DSNTIPZ installation panel, fill in option 4 as follows:
4 UNREGISTERED DDL DEFAULT ===> ACCEPT

This option does not restrict the use of data definition statements for objects
that are not registered in the ORT. Therefore, any application can use data
definition language for any unregistered object.

328 Administration Guide



3. Register all controlled objects in the ORT. Use a name and qualifier to identify
a single object. Use only one part of a two-part name to identify a set of objects
that share just that part of the name. For each controlled object, use
APPLMATCHREQ = Y. Enter the name of the plan or package collection that
controls the object in the APPLIDENT column.

4. For each set of controlled objects (identified by only a simple name in the
ORT), register the controlling application in the ART. You must supply values
for the APPLIDENT, APPLIDENTTYPE, and QUALIFIEROK columns of the
ART.

Example: The following two tables assume that the installation option REQUIRE
FULL NAMES is set to NO. The following table shows entries in the ORT for the
following controlled objects:

Table 87. Table DSN_REGISTER_OBJT for object control with exceptions

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

KIM OBJ1 C Y PLANX P

FENG OBJ2 C Y PLANX P

QUENTIN OBJ3 C Y PACKX C

EDWARD OBJ4 C Y PACKX C

TABA C Y PLANA P

TABB C Y PACKB C

v The objects KIM.OBJ1, FENG.OBJ2, QUENTIN.OBJ3, and EDWARD.OBJ4, all of
which are controlled by PLANX or PACKX. DB2 cannot interpret the object
names as incomplete names because the objects that control them, PLANX and
PACKX, are registered, with QUALIFIEROK=N, in the corresponding ART as
shown in the following table:

Table 88. Table DSN_REGISTER_APPL for object control with exceptions

APPLIDENT APPLIDENTTYPE DEFAULTAPPL QUALIFIEROK

PLANX P N N

PACKX C N N

PLANA P N Y

PACKB C N Y

In this situation, with the combination of installation options shown previously,
any application can use data definition language for objects that are not covered
by entries in the ORT. For example, if HOWARD has the CREATETAB privilege,
HOWARD can create the table HOWARD.TABLE10 through any application.

v Two sets of objects, *.TABA and *.TABB, are controlled by PLANA and PACKB,
respectively.

Registering object sets
Registering object sets enables you to save time and to simplify object registration.

Registering object sets is not a data definition control method; you must install of
the data definition control methods before you can register any object sets.

Chapter 8. Managing access through data definition control 329



Because complete two-part names are not required for every object that is
registered in the ORT, you can use incomplete names to register sets of objects. To
use incomplete names and register sets of objects, fill in option 3 on the DSNTIPZ
installation panel as follows:
3 REQUIRE FULL NAMES ===> NO

The default value YES requires you to use both parts of the name for each
registered object. If you specify the value NO, an incomplete name in the ORT
represents a set of objects that all share the same value for one part of a two-part
name. Objects that are represented by incomplete names in the ORT require an
authorizing entry in the ART.

Example: If you specify NO for option 3, you can include entries with incomplete
names in the ORT. The following table shows entries in the ORT for the following
objects:

Table 89. Table DSN_REGISTER_OBJT for objects with incomplete names

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

TABA C Y PLANX P

TABB C Y PACKY C

SYSADM C N

DBSYSADM T N

USER1 TABLEX C N

v Two sets of objects, *.TABA and *.TABB, which are controlled by PLANX and
PACKY, respectively. Only PLANX can create, alter, or drop any object whose
name is *.TABA. Only PACKY can create, alter, or drop any object whose name
is *.TABB. PLANX and PACKY must also be registered in the ART with
QUALIFIEROK set to Y, as shown in the following table: That setting allows the
applications to use sets of objects that are registered in the ORT with an
incomplete name.

Table 90. Table DSN_REGISTER_APPL for plans that use sets of objects

APPLIDENT APPLIDENTTYPE DEFAULTAPPL QUALIFIEROK

PLANA P N Y

PACKB C N Y

v Tables, views, indexes, or aliases with names like SYSADM.*.
v Table spaces with names like DBSYSADM.*; that is, table spaces in database

DBSYSADM.
v Tables with names like USER1.* and tables with names like *.TABLEX.

ART entries for objects with incomplete names in the ORT: APPLMATCHREQ=N
and objects SYSADM.*, DBSYSADM.*, USER1.*, and *.TABLEX can be created,
altered, or dropped by any package collection or application plan. However, the
collection or plan that creates, alters, or drops such an object must be registered in
the ART with QUALIFIEROK=Y to allow it to use incomplete object names.

Disabling data definition control
When data definition control is active, only IDs with the installation SYSADM or
installation SYSOPR authority are able to stop a database, a table space, or an
index space that contains a registration table or index.

330 Administration Guide



When the object is stopped, only an ID with one of those authorities can start it
again.

An ID with the installation SYSADM authority can execute data definition
statements regardless of whether data definition control is active and whether the
ART or ORT is available. To bypass data definition control, an ID with the
installation SYSADM authority can use the following methods:
v If the ID is the owner of the plan or package that contains the statement, the ID

can bypass data definition control by using a static SQL statement.
v If the ID is the current SQL ID, the ID can bypass data definition control

through a dynamic CREATE statement.
v If the ID is the current SQL ID, the primary ID, or any secondary ID of the

executing process, the ID can bypass data definition control through a dynamic
ALTER or DROP statement.

Managing registration tables and indexes
You can create, update, and drop registration tables and indexes. You can also
create table spaces for or add columns to registration tables.

Creating registration tables and indexes
The ART, the ORT, and the required unique indexes on them are created when you
install the data definition control support. If you drop any of these objects, you can
re-create them.

You can use the following CREATE statements to recreate ART, the ORT, or the
required unique indexes:

CREATE statements for the ART and its index:
CREATE TABLE DSNRGCOL.DSN_REGISTER_APPL

(APPLIDENT VARCHAR(128) NOT NULL WITH DEFAULT,
APPLIDENTTYPE CHAR(1) NOT NULL WITH DEFAULT,
APPLICATIONDESC VARCHAR(30) NOT NULL WITH DEFAULT,
DEFAULTAPPL CHAR(1) NOT NULL WITH DEFAULT,
QUALIFIEROK CHAR(1) NOT NULL WITH DEFAULT,
CREATOR CHAR(26) NOT NULL WITH DEFAULT,
CREATETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT,
CHANGER CHAR(26) NOT NULL WITH DEFAULT,
CHANGETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT)
IN DSNRGFDB.DSNRGFTS;

CREATE UNIQUE INDEX DSNRGCOL.DSN_REGISTER_APPLI
ON DSNRGCOL.DSN_REGISTER_APPL
(APPLIDENT, APPLIDENTTYPE, DEFAULTAPPL DESC, QUALIFIEROK DESC)
CLUSTER;

CREATE statements for the ORT and its index:
CREATE TABLE DSNRGCOL.DSN_REGISTER_OBJT

(QUALIFIER CHAR(8) NOT NULL WITH DEFAULT,
NAME CHAR(18) NOT NULL WITH DEFAULT,
TYPE CHAR(1) NOT NULL WITH DEFAULT,
APPLMATCHREQ CHAR(1) NOT NULL WITH DEFAULT,
APPLIDENT VARCHAR(128) NOT NULL WITH DEFAULT,
APPLIDENTTYPE CHAR(1) NOT NULL WITH DEFAULT,
APPLICATIONDESC VARCHAR(30) NOT NULL WITH DEFAULT,
CREATOR CHAR(26) NOT NULL WITH DEFAULT,

Chapter 8. Managing access through data definition control 331



CREATETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT,
CHANGER CHAR(26) NOT NULL WITH DEFAULT,
CHANGETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT)
IN DSNRGFDB.DSNRGFTS;

CREATE UNIQUE INDEX DSNRGCOL.DSN_REGISTER_OBJTI
ON DSNRGCOL.DSN_REGISTER_OBJT
(QUALIFIER, NAME, TYPE) CLUSTER;

You can alter these CREATE statements in the following ways:
v Add columns to the ends of the tables
v Assign an auditing status
v Choose buffer pool or storage options for indexes
v Declare table check constraints to limit the types of entries that are allowed

Naming registration tables and indexes
Every member of a data sharing group must have the same names for the ART
and ORT tables. Avoid changing the names of the ART and ORT tables.

If you change the names, owners, or residing database of your ART and ORT, you
must reinstall DB2 in update mode and make the corresponding changes on the
DSNTIPZ installation panel.

Name the required index by adding the letter I to the corresponding table name.
For example, suppose that you are naming a required index for the ART named
ABC. You should name the required index ABCI.

Dropping registration tables and indexes
If you drop any of the registration tables or their indexes, most data definition
statements are rejected until the dropped objects are re-created.

The only data definition statements that are allowed under such circumstances are
those that create the following objects:
v Registration tables that are defined during installation
v Indexes of the registration tables that are defined during installation
v Table spaces that contain the registration tables that are defined during

installation
v The database that contains the registration tables that are defined during

installation

Creating table spaces for registration tables
The DSNTIJSG installation job creates a segmented table space to hold the ART
and ORT when you issue this statement:
CREATE TABLESPACE DSNRGFTS IN DSNRGFDB SEGSIZE 4 CLOSE NO;

If you want to use a table space with a different name or different attributes, you
can modify the DSNTIJSG job before installing DB2. Alternatively, you can drop
the table space and re-create it, the ART and ORT tables, and their indexes.

Adding columns to registration tables
You can use the ALTER TABLE statement to add columns to the ART or ORT for
your own use. If you add columns, the additional columns must come at the end
of the table, after existing columns.

332 Administration Guide



Use a special character, such as the plus sign (+), in your column names to avoid
possible conflict. If IBM adds columns to the ART or the ORT in future releases,
the column names will contain only letters and numbers.

Updating registration tables
You can use either the LOAD utility or with the INSERT, UPDATE, or DELETE
SQL statements to update the ART or ORT.

Because security provisions are important, allow only a restricted set of
authorization IDs, or perhaps only those with the SYSADM authority, to update
the ART. Consider assigning a validation exit routine to the ORT, to allow
applications to change only those rows that have the same application identifier in
the APPLIDENT column.

A registration table cannot be updated until all jobs whose data definition
statements are controlled by the table have completed.

Chapter 8. Managing access through data definition control 333



334 Administration Guide



Chapter 9. Protecting data through encryption and RACF

You can use the DB2 built-in data encryption functions or Secure Socket Layer
(SSL) support to protect your sensitive data. You can also use the security features
of RACF or an equivalent system to protect your data sets.

Encrypting your data through DB2 built-in functions
DB2 provides built-in data encryption and decryption functions that you can use to
encrypt sensitive data, such as credit card numbers and medical record numbers.

You can encrypt data at the column or value level. You must install the Integrated
Cryptographic Service Facility to use the built-in functions for data encryption.

When you use data encryption, DB2 requires the correct password to retrieve the
data in a decrypted format. If an incorrect password is provided, DB2 does not
decrypt the data.

The ENCRYPT keyword encrypts data. The DECRYPT_BIT, DECRYPT_CHAR, and
DECRYPT_DB keywords decrypt data. These functions work like other built-in
functions. To use these functions on data, the column that holds the data must be
properly defined.

Built-in encryption functions work for data that is stored within DB2 subsystem
and is retrieved from within that same DB2 subsystem. The encryption functions
do not work for data that is passed into and out of a DB2 subsystem. This task is
handled by DRDA data encryption, and it is separate from built-in data encryption
functions.

Attention: DB2 cannot decrypt data without the encryption password, and DB2
does not store encryption passwords in an accessible format. If you forget the
encryption password, you cannot decrypt the data, and the data might become
unusable.

Defining columns for encrypted data
When data is encrypted, it is stored as a binary data string. Therefore, encrypted
data should be stored in columns that are defined as VARCHAR FOR BIT DATA.

Columns that hold encrypted data also require additional bytes to hold a header
and to reach a multiple of 8 bytes.

Suppose that you have non-encrypted data in a column that is defined as
VARCHAR(6). Use the following calculation to determine the column definition for
storing the data in encrypted format:
Maximum length of non-encrypted data 6 bytes
Number of bytes to the next multiple of 8 2 bytes
24 bytes for encryption key 24 bytes

--------
Encrypted data column length 32 bytes

Therefore, define the column for encrypted data as VARCHAR(32) FOR BIT DATA.

© Copyright IBM Corp. 1982, 2009 335

|
|



If you use a password hint, DB2 requires an additional 32 bytes to store the hint.
Suppose that you have non-encrypted data in a column that is defined as
VARCHAR(10). Use the following calculation to determine the column definition
for storing the data in encrypted format with a password hint:
Maximum length of non-encrypted data 10 bytes
Number of bytes to the next multiple of 8 6 bytes
24 bytes for encryption key 24 bytes
32 bytes for password hint 32 bytes

--------
Encrypted data column length 72 bytes

Therefore, define the column for encrypted data as VARCHAR(72) FOR BIT DATA.

Defining column-level encryption
For column-level encryption, all encrypted values in a column are encrypted with the
same password.

Column-level encryption uses the SET ENCRYPTION PASSWORD statement to
manage passwords and hints, the ENCRYPT keyword to indicate which data
should be encrypted, and the DECRYPT_BIT, DECRYPT_CHAR, or DECRYPT_DB
keyword to decrypt data. The following statement and keywords are used with
column-level encryption:

SET ENCRYPTION PASSWORD
Sets the password (and optionally sets the password hint) that DB2 holds
for encryption and decryption. DB2 holds this value until it is replaced or
until the application finishes.

Recommendation: Use host variables instead of literal values for all
passwords and password hints. If statements contain literal values for
passwords and password hints, the security of the encrypted data can be
compromised in the DB2 catalog and in a trace report.

ENCRYPT
Indicates which column or columns require encryption. DB2 sets the
password on the indicated data to the password that DB2 holds at the time
a statement with the ENCRYPT keyword is issued.

DECRYPT_BIT, DECRYPT_CHAR, DECRYPT_DB
Checks for the correct password and decrypts data when the data is
selected.

When encrypted data is selected, DB2 must hold the same password that was held
at the time of encryption to decrypt the data. To ensure that DB2 holds the correct
password, issue a SET ENCRYPTION PASSWORD statement with the correct
password immediately before selecting encrypted data.

Example: Suppose that you need to create an employee table EMP that contains
employee ID numbers in encrypted format. Suppose also that you want to set the
password for all rows in an encrypted column to the host variable hv_pass. Finally,
suppose that you want to select employee ID numbers in decrypted format.
Perform the following steps:
1. Create the EMP table with the EMPNO column. The EMPNO column must be

defined with the VARCHAR data type, must be defined FOR BIT DATA, and
must be long enough to hold the encrypted data. The following statement
creates the EMP table:
CREATE TABLE EMP (EMPNO VARCHAR(32) FOR BIT DATA);

336 Administration Guide



2. Set the encryption password. The following statement sets the encryption
password to the host variable :hv_pass:
SET ENCRYPTION PASSWORD = :hv_pass;

3. Use the ENCRYPT keyword to insert encrypted data into the EMP table by
issuing the following statements:
INSERT INTO EMP (EMPNO) VALUES(ENCRYPT('47138'));
INSERT INTO EMP (EMPNO) VALUES(ENCRYPT('99514'));
INSERT INTO EMP (EMPNO) VALUES(ENCRYPT('67391'));

4. Select the employee ID numbers in decrypted format:
SELECT DECRYPT_CHAR(EMPNO) FROM EMP;

If you provide the correct password, DB2 returns the employee ID numbers in
decrypted format.

Creating views with column-level encryption
You can use column-level encryption in combination with views. You can create a
view that selects decrypted data from a table.

To do this, define the view with a decryption function in the defining fullselect. If
the correct password is provided when the view is queried, DB2 will return
decrypted data.

Example: Suppose that you want to create a view that contains decrypted
employee ID numbers from the EMP table.
1. Create a view on the EMP table by using the following statement:

CREATE VIEW CLR_EMP (EMPNO) AS SELECT DECRYPT_CHAR(EMPNO) FROM EMP;

2. Set the encryption password so that the fullselect in the view definition can
retrieve decrypted data. Use the following statement:
SET ENCRYPTION PASSWORD = :hv_pass;

3. Select the desired data from the view by using the following statement:
SELECT EMPNO FROM CLR_EMP;

Using password hints with column-level encryption
DB2 can store encryption password hints to help with forgotten encryption
passwords. Each password hint uses 32 bytes in the encrypted column.

For column-level encryption, the password hint is set with the SET ENCRYPTION
PASSWORD statement. The GETHINT function returns the password hint.

Example: Use the following statement to set the password hint to the host variable
hv_hint:
SET ENCRYPTION PASSWORD = :hv_pass WITH HINT = :hv_hint;

Example: Suppose that the EMPNO column in the EMP table contains encrypted
data and that you submitted a password hint when you inserted the data. Suppose
that you cannot remember the encryption password for the data. Use the following
statement to return the password hint:
SELECT GETHINT (EMPNO) FROM EMP;

Defining value-level encryption
When you use value-level encryption, each value in a given column can be encrypted
with a different password. You set the password for each value by using the
ENCRYPT keyword with the password.

Chapter 9. Protecting data through encryption and RACF 337



The following keywords are used with value-level encryption:

ENCRYPT
Indicates which data requires encryption. Also, encryption passwords, and
optionally password hints, are indicated as part of the ENCRYPT keyword
for value-level encryption.

Recommendation: Use host variables instead of literal values for all
passwords and password hints. If statements contain literal values for
passwords and password hints, the security of the encrypted data can be
compromised in the DB2 catalog and in a trace report.

DECRYPT_BIT, DECRYPT_CHAR, DECRYPT_DB
Checks for the correct password and decrypts data when the data is
selected.

Example: Suppose that a Web application collects user information about a
customer. This information includes the customer name, which is stored in host
variable custname; the credit card number, which is stored in a host variable
cardnum; and the password for the card number value, which is stored in a host
variable userpswd. The application uses the following statement to insert the
customer information:
INSERT INTO CUSTOMER (CCN, NAME)

VALUES(ENCRYPT(:cardnum, :userpswd), :custname);

Before the application displays the credit card number for a customer, the customer
must enter the password. The application retrieves the credit card number by
using the following statement:
SELECT DECRYPT_CHAR(CCN, :userpswd) FROM CUSTOMER WHERE NAME = :custname;

Using password hints with value-level encryption
DB2 can store encryption password hints to help with forgotten encryption
passwords. Each password hint uses 32 bytes in the encrypted column.

For value-level encryption, the password hint is set with the ENCRYPT keyword.
The GETHINT function returns the password hint.

Recommendation: Use host variables instead of literal values for all passwords
and password hints. If the statements contain literal values for passwords and
password hints, the security of the encrypted data can be compromised in the DB2
catalog and in a trace report.

Example: Suppose that you want the application from the previous example to use
a hint to help customers remember their passwords. The application stores the hint
in the host variable pswdhint. For this example, assume the values ’Tahoe’ for
userpswd and ’Ski Holiday’ for pswdhint. The application uses the following
statement to insert the customer information:
INSERT INTO CUSTOMER (CCN, NAME)

VALUES(ENCRYPT(:cardnum, :userpswd, :pswdhint), :custname);

If the customer requests a hint about the password, the following query is used:
SELECT GETHINT(CCN) INTO :pswdhint FROM CUSTOMER WHERE NAME = :custname;

The value for pswdhint is set to ’Ski Holiday’ and returned to the customer.
Hopefully the customer can remember the password ’Tahoe’ from this hint.

338 Administration Guide



Encrypting non-character values
DB2 supports encryption for numeric and datetime data types indirectly through
casting. If non-character data is cast as VARCHAR or CHAR, the data can be
encrypted.

Example: Suppose that you need to encrypt timestamp data and retrieve it in
decrypted format. Perform the following steps:
1. Create a table to store the encrypted values and set the column-level encryption

password by using the following statements:
CREATE TABLE ETEMP (C1 VARCHAR(124) FOR BIT DATA);
SET ENCRYPTION PASSWORD :hv_pass;

2. Cast, encrypt, and insert the timestamp data by using the following statement:
INSERT INTO ETEMP VALUES ENCRYPT(CHAR(CURRENT TIMESTAMP));

3. Recast, decrypt, and select the timestamp data by using the following
statement:
SELECT TIMESTAMP(DECRYPT_CHAR(C1)) FROM ETEMP;

Using predicates for encrypted data
When data is encrypted, only = and <> predicates provide accurate results.
Predicates such as >, <, and LIKE will return inaccurate results for encrypted data.

Example: Suppose that the value 1234 is encrypted as H71G. Also suppose that the
value 5678 is encrypted as BF62. If you use a <> predicate to compare these two
values in encrypted format, you receive the same result as you will if you compare
these two values in decrypted format:
Decrypted: 1234 <> 5678 True
Encrypted: H71G <> BF62 True

In both case, they are not equal. However, if you use a < predicate to compare
these values in encrypted format, you receive a different result than you will if you
compare these two values in decrypted format:
Decrypted: 1234 < 5678 True
Encrypted: H71G < BF62 False

To ensure that predicates such as >, <, and LIKE return accurate results, you must
first decrypt the data.

Optimizing performance of encrypted data
Encryption, by its nature, degrades the performance of most SQL statements.
Decryption requires extra processing, and encrypted data requires more space in
DB2.

If a predicate requires decryption, the predicate is a stage 2 predicate, which can
degrade performance. Encrypted data can also impact your database design, which
can indirectly impact performance. To minimize performance degradation, use
encryption only in cases that require encryption.

Recommendation: Encrypt only a few highly sensitive data elements, such credit
card numbers and medical record numbers.

Some data values are poor candidates for encryption. For example, boolean values
and other small value sets, such as the integers 1 through 10, are poor candidates

Chapter 9. Protecting data through encryption and RACF 339



for encryption. Because few values are possible, these types of data can be easy to
guess even when they are encrypted. In most cases, encryption is not a good
security option for this type of data.

Data encryption and indexes: Creating indexes on encrypted data can improve
performance in some cases. Exact matches and joins of encrypted data (if both
tables use the same encryption key to encrypt the same data) can use the indexes
that you create. Because encrypted data is binary data, range checking of
encrypted data requires table space scans. Range checking requires all the row
values for a column to be decrypted. Therefore, range checking should be avoided,
or at least tuned appropriately.

Encryption performance scenario: The following scenario contains a series of
examples that demonstrate how to improve performance while working with
encrypted data.

Example: Suppose that you must store EMPNO in encrypted form in the EMP
table and in the EMPPROJ table. To define tables and indexes for the encrypted
data, use the following statements:
CREATE TABLE EMP (EMPNO VARCHAR(48) FOR BIT DATA, NAME VARCHAR(48));
CREATE TABLE EMPPROJ(EMPNO VARCHAR(48) FOR BIT DATA, PROJECTNAME VARCHAR(48));
CREATE INDEX IXEMPPRJ ON EMPPROJ(EMPNO);

Example: Next, suppose that one employee can work on multiple projects, and that
you want to insert employee and project data into the table. To set the encryption
password and insert data into the tables, use the following statements:
SET ENCRYPTION PASSWORD = :hv_pass;
SELECT INTO :hv_enc_val FROM FINAL TABLE

(INSERT INTO EMP VALUES (ENCRYPT('A7513'),'Super Prog'));
INSERT INTO EMPPROJ VALUES (:hv_enc_val,'UDDI Project');
INSERT INTO EMPPROJ VALUES (:hv_enc_val,'DB2 UDB Version 10');
SELECT INTO :hv_enc_val FROM FINAL TABLE

(INSERT INTO EMP VALUES (ENCRYPT('4NF18'),'Novice Prog'));
INSERT INTO EMPPROJ VALUES (:hv_enc_val,'UDDI Project');

You can improve the performance of INSERT statements by avoiding unnecessary
repetition of encryption processing. Note how the host variable hv_enc_val is
defined in the SELECT INTO statement and then used in subsequent INSERT
statements. If you need to insert a large number of rows that contain the same
encrypted value, you might find that the repetitive encryption processing degrades
performance. However, you can dramatically improve performance by encrypting
the data, storing the encrypted data in a host variable, and inserting the host
variable.

Example: Next, suppose that you want to find the programmers who are working
on the UDDI Project. Consider the following pair of SELECT statements:
v Poor performance: The following query shows how not to write the query for

good performance:
SELECT A.NAME, DECRYPT_CHAR(A.EMPNO) FROM EMP A, EMPPROJECT B

WHERE DECRYPT_CHAR(A.EMPNO) = DECRYPT_CHAR(B.EMPNO) AND
B.PROJECT ='UDDI Project';

Although the preceding query returns the correct results, it decrypts every
EMPNO value in the EMP table and every EMPNO value in the EMPPROJ table
where PROJECT = ’UDDI Project’ to perform the join. For large tables, this
unnecessary decryption is a significant performance problem.

340 Administration Guide



v Good performance: The following query produces the same result as the
preceding query, but with significantly better performance. To find the
programmers who are working on the UDDI Project, use the following
statement:
SELECT A.NAME, DECRYPT_CHAR(A.EMPNO) FROM EMP A, EMPPROJ B

WHERE A.EMPNO = B.EMPNO AND B.PROJECT ='UDDI Project';

Example: Next, suppose that you want to find the projects that the programmer
with employee ID A7513 is working on. Consider the following pair of SELECT
statements:
v Poor performance: The following query requires DB2 to decrypt every EMPNO

value in the EMPPROJ table to perform the join:
SELECT PROJECTNAME FROM EMPPROJ WHERE DECRYPT_CHAR(EMPNO) = 'A7513';

v Good performance: The following query encrypts the literal value in the
predicate so that DB2 can compare it to encrypted values that are stored in the
EMPNO column without decrypting the whole column. To find the projects that
the programmer with employee ID A7513 is working on, use the following
statement :
SELECT PROJECTNAME FROM EMPPROJ WHERE EMPNO = ENCRYPT('A7513');

Encrypting your data with Secure Socket Layer support
DB2 supports Secure Socket Layer (SSL) protocol because it uses the z/OS
Communications Server IP Application Transparent Transport Layer service
(AT-TLS).

The z/OS Communications Server for TCP/IP (beginning in V1R7 of z/OS)
supports the AT-TLS function in the TCP/IP stack for applications that require
secure TCP/IP connections. AT-TLS performs TLS on behalf of the application,
such as DB2, by invoking the z/OS system SSL in the TCP layer of the TCP/IP
stack. The z/OS system SSL supports TLS V1.0, SSL V3.0, and SSL V2.0 protocols.

AT-TLS also uses policies that provide system SSL configurations for connections
that use AT-TLS. An application continues to send and receive clear text data over
the socket while the transmission is protected by the system SSL.

AT-TLS support is policy-driven and can be deployed transparently underneath
many existing sockets applications.

Related information

z/OS Communications Server: IP Configuration Guide

AT-TLS configuration
You need to complete a set of configurations that are required for DB2 to take
advantage of AT-TLS support.

You must complete the following configurations of your DB2 to utilize the AT-TLS
support:
v PROFILE.TCPIP configuration

You can specify the TTLS or NOTTLS parameter on the TCPCONFIG statement
in PROFILE.TCPIP to control whether you want to use the AT-TLS support.

v TCP/IP stack access control configuration

Chapter 9. Protecting data through encryption and RACF 341

|

|
|
|

|
|
|
|
|

|
|
|

|
|

|

|

|

|
|

|
|

|

|
|

|

http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/


To protect TCP/IP connections, you can configure the RACF
EZB.INITSTACK.sysname.tcpname resource in the SERVAUTH class to block all
stack access except for the user IDs that are permitted to use the resource.

v Policy configuration
The policy agent provides AT-TLS policy rules to the TCP/IP stack. Each rule
defines a set of security conditions that the policy agent compares to the
conditions at the connection that it is checking. When the policy agent finds a
match, it assigns the connection to the actions that are associated with the rule.

Configuring the DB2 server for SSL
To implement SSL support for a DB2 server, the TCP/IP SQL Listener service task
of DDF must be capable of listening to a secondary secure port for inbound SSL
connections.

The TCP/IP Listener accepts regular (non-SSL) connections on the DRDA port,
whereas the secure port accepts only SSL connections to provide secure
communications with a partner. Clients are assured of getting the SSL protocol
connections that they require.

The secure port is used only for accepting secure connections that use the SSL
protocol. When the TCP/IP Listener accepts an inbound connection on the secure
port, DDF invokes SIOCTTLSCTL IOCTL with
TTLSi_Req_Type=TTLS_QUERY_ONLY; in this way, DDF retrieves policy status on
the connection. If the IOCTL returns a policy status of TTLS_POL_NO_POLICY, a
matching policy rule is not found for the connection.

If the IOCTL returns a policy status of TTLS_POL_NOT_ENABLED, a matching
rule policy is found for the connection but a policy is not configured to allow a
secure connection for that client.

If a secure port is not properly configured, DDF rejects the inbound connection
requests on the secure port. You must change the client system to use the
non-secure port, or you can configure the secure port. If the IOCTL returns a
policy status of TTLS_POL_ENABLED, a matching policy rule is found, and SSL is
enabled for the connection.

You can specify a secure port to DB2 in one of the following two ways:
v Specify the TCP/IP port number in the DRDA SECURE PORT field of the

Distributed Data Facility Panel 2 (DSNTIP5) during DB2 installation.
The DRDA SECURE PORT field specifies the port number that is to be used for
accepting TCP/IP connection requests from remote DRDA clients that want to
establish a secure connection using the SSL protocol. The value of the port
number is a decimal number between 1 and 65534, and it cannot have the same
value as the values of the DRDA PORT and RESYNC PORT fields. Any non-zero
port numbers are verified to ensure that they are all unique port numbers. If an
error is detected, installation is not allowed to proceed until you resolve the
error condition. If the DRDA SECURE PORT field is blank, SSL verification
support is disabled, and the DB2 TCP/IP SQL Listener does not accept any
inbound SSL connections on the secure port.

v Update the SECPORT parameter of the DDF statement in the BSDS with the
change log inventory (DSNJU003) stand-alone utility.
The SECPORT parameter specifies the port number for the DB2 TCP/IP SQL
Listener to accept inbound SSL connections. The value of the port number is a
decimal number between 0 to 65535, and it cannot have the same value as the

342 Administration Guide

|
|
|

|

|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|



values of the PORT and RESPORT parameters. If the value of SECPORT secure
port is the same as the value of PORT or RESPORT, DB2 issues an error
message. If you specify a value of 0 for the SECPORT parameter, SSL verification
support is disabled, and the DB2 TCP/IP SQL Listener does not accept any
inbound SSL connections on the secure port.
If the value of SECPORT is disabled, the client can still use the DRDA PORT and
use SSL on it, but DB2 does not validate whether the connection uses SSL
protocol.

Data sharing considerations: For a data sharing environment, each DB2 member
with SSL support must specify a secure port. The secure port for each DB2 member
of the group should be the same, just as the DRDA PORT for each member should
also be the same. If each DB2 member specifies a unique secure port, unpredictable
behaviors might occur. For example, Sysplex member workload balancing might
not work correctly.

Similarly, for DB2 members that are defined as a subset of the data sharing group,
each DB2 member that belongs to the subset needs to configure the secure port.
You do not need to define a separate unique secure port for the location alias.

Configuring the DB2 requester for SSL
A DB2 requester must be able to insist on an SSL-protected connection to certain
servers. To ensure SSL-protected connections, you can make communications
database (CDB) changes that indicate that SSL-protected connections are required
to certain remote locations.

If a secure connection is required, DDF must determine whether an AT-TLS policy
rule is defined and whether AT-TLS is enabled for the connection. To obtain this
AT-TLS information, DDF invokes SIOCTTLSCTL IOCTLwith TTLSi_Req_Type =
TTLS_QUERY_ONLY. If the IOCTL returns a policy status of
TTLS_POL_NO_POLICY, a matching policy rule is not found for the connection.

If the IOCTL returns a policy status of TTLS_POL_NOT_ENABLED, a policy rule
is defined for the connection, but AT-TLS is not enabled, and a secure connection is
not established with the remote server. DDF issues a message, and the connection
is closed.

If the IOCTL returns a policy status of TTLS_POL_ENABLED, a matching policy
rule is found, and SSL is enabled for the connection.

You can specify a secure connection to DB2 in either of the following ways:
v Specify ’Y’ for the SECURE column in the SYSIBM.LOCATIONS table.
v Specify a desired value for the PORT column in the SYSIBM.LOCATIONS table

for SSL connections.
For SSL support, the PORT column must contain the value of the configured
secure DRDA port at the remote server. However, if the value of the PORT
column is blank and the value of the SECURE column is ’Y’, DB2 uses the
reserved secure DRDA port (448) as the default.

Some DB2 applications might require SSL protection and accept the performance
cost for this level of security. However, some applications might be satisfied with
unprotected connections. This flexibility can be accomplished by the use of the
LOCATION ALIAS name feature.

Chapter 9. Protecting data through encryption and RACF 343

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

|

|
|

|
|
|
|

|
|
|
|



Consider a DB2 server that is configured to support both non-secure and secure
connections. At the DB2 requester, you can define two rows in the
SYSIBM.LOCATIONS table: one row that specifies the location name and the
non-secure DRDA port of the server and another row that specifies a different
location name and the secure DRDA port of the server and SECURE=’Y’. At the
DB2 server, you can define a LOCATION ALIAS name to provide alternative
names for any DB2 requesters that need to access the server by using the SSL
protocol.

Protecting data sets through RACF
To fully protect the data in DB2, you must take steps to ensure that no other
process has access to the data sets in which DB2 data resides.

Use RACF, or a similar external security system, to control access to the data sets
just as RACF controls access to the DB2 subsystem. This section explains how to
create RACF profiles for data sets and allow their use through DB2.

Assume that the RACF groups DB2 and DB2USER, and the RACF user ID
DB2OWNER, have been set up for DB2 IDs. Given that setting, the examples that
follow show you how to:
v Add RACF groups to control data sets that use the default DB2 qualifiers.
v Create generic profiles for different types of DB2 data sets and permit their use

by DB2 started tasks.
v Permit use of the profiles by specific IDs.
v Allow certain IDs to create data sets.

Adding groups to control DB2 data sets
The default high-level qualifier for data sets that contain DB2 databases and
recovery logs is DSNC910. The default high-level qualifier for distribution, target,
SMP, and other installation data sets is DSN910.

The DB2OWNER user ID can create groups that control those data sets by issuing
the following commands:
ADDGROUP DSNC910 SUPGROUP(DB2) OWNER(DB2OWNER)
ADDGROUP DSN910 SUPGROUP(DB2) OWNER(DB2OWNER)

Creating generic profiles for data sets
DB2 uses specific names to identify data sets for special purposes.

Suppose that SYSDSP is the RACF user ID for DB2 started tasks in the following
examples. DB2OWNER can issue the following commands to create generic
profiles for the data sets and give complete control over the data sets to DB2
started tasks:
v For active logs, issue the following commands:

ADDSD 'DSNC910.LOGCOPY*' UACC(NONE)
PERMIT 'DSNC910.LOGCOPY*' ID(SYSDSP) ACCESS(ALTER)

v For archive logs, issue the following commands:
ADDSD 'DSNC910.ARCHLOG*' UACC(NONE)
PERMIT 'DSNC910.ARCHLOG*' ID(SYSDSP) ACCESS(ALTER)

v For bootstrap data sets, issue the following commands:
ADDSD 'DSNC910.BSDS*' UACC(NONE)
PERMIT 'DSNC910.BSDS*' ID(SYSDSP) ACCESS(ALTER)

344 Administration Guide

|
|
|
|
|
|
|
|



v For table spaces and index spaces, issue the following commands:
ADDSD 'DSNC910.DSNDBC.*' UACC(NONE)
PERMIT 'DSNC910.DSNDBC.*' ID(SYSDSP) ACCESS(ALTER)

v For installation libraries, issue the following command:
ADDSD 'DSN910.*' UACC(READ)

Started tasks do not need control.
v For other general data sets, issue the following commands:

ADDSD 'DSNC910.*' UACC(NONE)
PERMIT 'DSNC910.*' ID(SYSDSP) ACCESS(ALTER)

Although all of those commands are not absolutely necessary, the sample shows
how you can create generic profiles for different types of data sets. Some
parameters, such as universal access, could vary among the types. In the example,
installation data sets (DSN910.*) are universally available for read access.

If you use generic profiles, specify NO on installation panel DSNTIPP for
ARCHIVE LOG RACF, or you might get a z/OS error when DB2 tries to create the
archive log data set. If you specify YES, DB2 asks RACF to create a separate profile
for each archive log that is created, which means that you cannot use generic
profiles for these data sets.

To protect VSAM data sets, use the cluster name. You do not need to protect the
data component names, because the cluster name is used for RACF checking.

The VSAM resource that is used to store the administrative scheduler task list
must be protected in RACF against unauthorized access. Only the administrative
scheduler started task user has the UPDATE authority on VSAM resources.

Access by stand-alone DB2 utilities: The following DB2 utilities access objects that
are outside of DB2 control:
v DSN1COPY and DSN1PRNT: table space and index space data sets
v DSN1LOGP: active logs, archive logs, and bootstrap data sets
v DSN1CHKR: DB2 directory and catalog table spaces
v Change Log Inventory (DSNJU003) and Print Log Map (DSNJU004): bootstrap

data sets

The Change Log Inventory and Print Log Map utilities run as batch jobs that are
protected by the USER and PASSWORD options on the JOB statement. To provide
a value for the USER option, for example SVCAID, issue the following commands:
v For DSN1COPY:

PERMIT 'DSNC910.*' ID(SVCAID) ACCESS(CONTROL)

v For DSN1PRNT:
PERMIT 'DSNC910.*' ID(SVCAID) ACCESS(READ)

v For DSN1LOGP:
PERMIT 'DSNC910.LOGCOPY*' ID(SVCAID) ACCESS(READ)
PERMIT 'DSNC910.ARCHLOG*' ID(SVCAID) ACCESS(READ)
PERMIT 'DSNC910.BSDS*' ID(SVCAID) ACCESS(READ)

v For DSN1CHKR:
PERMIT 'DSNC910.DSNDBDC.*' ID(SVCAID) ACCESS(READ)

v For Change Log Inventory:
PERMIT 'DSNC910.BSDS*' ID(SVCAID) ACCESS(CONTROL)

v For Print Log Map:

Chapter 9. Protecting data through encryption and RACF 345

|
|
|



PERMIT 'DSNC910.BSDS*' ID(SVCAID) ACCESS(READ)

The level of access depends on the intended use, not on the type of data set
(VSAM KSDS, VSAM linear, or sequential). For update operations,
ACCESS(CONTROL) is required; for read-only operations, ACCESS(READ) is
sufficient.

You can use RACF to permit programs, rather than user IDs, to access objects.
When you use RACF in this manner, IDs that are not authorized to access the log
data sets might be able to do so by running the DSN1LOGP utility. Permit access
to database data sets through DSN1PRNT or DSN1COPY.

Authorizing DB2 IDs to use data set profiles
Authorization IDs with the installation SYSADM or installation SYSOPR authority
need access to most DB2 data sets.

The following command adds the two default IDs that have the SYSADM and
SYSOPR authorities if no other IDs are named when DB2 is installed:
ADDUSER (SYSADM SYSOPR)

The next two commands connect those IDs to the groups that control data sets,
with the authority to create new RACF database profiles. The ID that has the
installation SYSOPR authority (SYSOPR) does not need that authority for the
installation data sets.
CONNECT (SYSADM SYSOPR) GROUP(DSNC910) AUTHORITY(CREATE) UACC(NONE)
CONNECT (SYSADM) GROUP(DSN910) AUTHORITY(CREATE) UACC(NONE)

The following set of commands gives the IDs complete control over DSNC910 data
sets. The system administrator IDs also have complete control over the installation
libraries. Additionally, you can give the system programmer IDs the same control.
PERMIT 'DSNC910.LOGCOPY*' ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT 'DSNC910.ARCHLOG*' ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT 'DSNC910.BSDS*' ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT 'DSNC910.DSNDBC.*' ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT 'DSNC910.*' ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT 'DSN910.*' ID(SYSADM) ACCESS(ALTER)

Enabling DB2 IDs to create data sets
You can issue the following command to connect several IDs to the DSNC910
group that has the CREATE authority:
CONNECT (USER1 USER2 USER3 USER4 USER5)

GROUP(DSNC910) AUTHORITY(CREATE) UACC(NONE)

Those IDs can now explicitly create data sets whose names have DSNC910 as the
high-level qualifier. Any such data sets that are created by DB2 or by these RACF
user IDs are protected by RACF. Other RACF user IDs are prevented by RACF
from creating such data sets.

If no option is supplied for PASSWORD on the ADDUSER command that adds
those IDs, the first password for the new IDs is the name of the default group,
DB2USER. The first time that the IDs sign on, they all use that password, but they
must change the password during their first session.

346 Administration Guide



Chapter 10. Auditing access to DB2

Security auditing allows you to inspect and examine the adequacy and effectiveness
of the policies and procedures that you put in place to secure your data.

DB2 provides the ability for you to monitor if your security plan is adequately
designed based on your security objectives and determine if your implementation
techniques and procedures are effectively carried out to protect your data access
and consistency. It enables you to address the following fundamental questions
about your data security.
v What sensitive data requires authorized access?
v Who is privileged to access the data?
v Who has actually accessed the data?
v What attempts are made to gain unauthorized access?

The DB2 catalog contains critical authorization and authentication information.
This information provides the primary audit trail for the DB2 subsystem. You can
retrieve the information from the catalog tables by issuing SQL queries.

Most of the catalog tables describe the DB2 objects, such as tables, views, table
spaces, packages, and plans. Other tables, particularly those with the “AUTH”
character string in their names, hold records of every granted privilege and
authority. Each catalog record of a grant contains the following information:
v Name of the object
v Type of privilege
v IDs that receive the privilege
v IDs that grant the privilege
v Time of the grant

The DB2 audit trace can help you monitor and track all the accesses to your
protected data. The audit trace records provide another important trail for the DB2
subsystem. You can use the the audit trace to record the following access
information:
v Changes in authorization IDs
v Changes to the structure of data, such as dropping a table
v Changes to data values, such as updating or inserting records
v Access attempts by unauthorized IDs
v Results of GRANT statements and REVOKE statements
v Mapping of Kerberos security tickets to IDs
v Other activities that are of interest to auditors

Determining active security measures
If you are a security auditor, you must know the security measures that are
enabled on the DB2 subsystem.

You can determine whether DB2 authorization checking, the audit trace, and data
definition control are enabled in the following ways:

Audit trace
To see whether the trace is running, display the status of the trace by the
command DISPLAY TRACE(AUDIT).

© Copyright IBM Corp. 1982, 2009 347



DB2 authorization checking
Without changing anything, look at panel DSNTIPP. If the value of the
USE PROTECTION field is YES, DB2 checks privileges and authorities
before permitting any activity.

Data definition control
Data definition control is a security measure that provides additional
constraints to existing authorization checks. With it, you control how
specific plans or collections of packages can use data definition statements.
To determine whether data definition control is active, look at option 1 on
the DSNTIPZ installation panel.

DB2 audit trace
The DB2 trace facility lets you collect monitoring, auditing, and performance
information about your data and environment.

The audit trace enables you to trace different events or categories of events by
authorization IDs, object ownerships, and so on. When started, the audit trace
records certain types of actions and sends the report to a named destination. The
trace reports can indicate who has accessed data.

As with other types of DB2 traces, you can choose the following options for the
audit trace:
v Categories of events
v Particular authorization IDs or plan IDs
v Methods to start and stop the audit trace
v Destinations for audit records

You can choose whether to audit the activity on a table by specifying an option of
the CREATE and ALTER statements.

Authorization IDs traced by auditing
An audit traces generally identifies a process by its primary authorization ID. It
records the primary ID before and after the invocation of an authorization exit
routine. Therefore, you can identify the primary ID that is associated with a data
change.

Exception: If a primary ID has been translated many times, you might not
be able to identify the primary ID that is associated with a change. Suppose that
the server does not recognize the translated ID from the requesting site. In this
case, you cannot use the primary ID to gather all audit records for a user that
accesses remote data.

The AUTHCHG record shows the values of all secondary authorization IDs that
are established by an exit routine.

With the audit trace, you can also determine which primary ID is responsible for
the action of a secondary ID or a current SQL ID. Suppose that the user with
primary ID SMITHJ sets the current SQL ID to TESTGRP to grant privileges over
the table TESTGRP.TABLE01 to another user. The DB2 catalog records the grantor
of the privileges as TESTGRP. However, the audit trace shows that SMITHJ issued
the grant statement.

348 Administration Guide



Recommendation: Consider carefully the consequences of altering that ID by using
an exit routine because the trace identifies a process by its primary ID. If the
primary ID identifies a unique user, individual accountability is possible. However,
if several users share the same primary ID, you cannot tell which user issues a

particular GRANT statement or runs a particular application plan.

Audit classes
When you start the trace, you choose the events to audit by specifying one or more
audit classes.

The trace records are limited to 5000 bytes; the descriptions that contain long SQL
statements might be truncated. The following table describes the available classes
and the events that they include.

Table 91. Audit classes and the events that they trace

Audit class Events that are traced

1 Access attempts that DB2 denies because of inadequate authorization. This
class is the default.

2 Explicit GRANT and REVOKE statements and their results. This class does
not trace implicit grants and revokes.

3 Traces CREATE, DROP, and ALTER operations against an audited table or
a table that is enabled with multilevel security with row-level granularity.
For example, it traces the updates to a table created with the AUDIT
CHANGES or AUDIT ALL clause. It also traces the deletion of a table as
the result of a DROP TABLESPACE or DROP DATABASE statement.

4 Changes to audited tables. Only the first attempt to change a table, within
a unit of recovery, is recorded. (If the agent or the transaction issues more
than one COMMIT statement, the number of audit records increases
accordingly.) The changed data is not recorded; only the attempt to make a
change is recorded. If the change is not successful and is rolled back, the
audit record remains; it is not deleted. This class includes access by the
LOAD utility. Accesses to a dependent table that are caused by attempted
deletions from a parent table are also audited. The audit record is written
even if the delete rule is RESTRICT, which prevents the deletion from the
parent table. The audit record is also written when the rule is CASCADE or
SET NULL, which can result in deletions that cascade to the dependent
table.

5 All read accesses to tables that are identified with the AUDIT ALL clause.
As in class 4, only the first access within a DB2 unit of recovery is
recorded. References to a parent table are also audited.

6 The bind of static and dynamic SQL statements of the following types:

v INSERT, UPDATE, DELETE, CREATE VIEW, and LOCK TABLE
statements for audited tables. Except for the values of host variables, the
audit record contains the entire SQL statement.

v SELECT statements on tables that are identified with the AUDIT ALL
clause. Except for the values of host variables, the audit record contains
the entire SQL statement.

Chapter 10. Auditing access to DB2 349

|
|
|
|
|



Table 91. Audit classes and the events that they trace (continued)

Audit class Events that are traced

7 Assignment or change of an authorization ID because of the following
reasons:

v Changes through an exit routine (default or user-written)

v Changes through a SET CURRENT SQLID statement

v An outbound or inbound authorization ID translation

v An ID that is being mapped to a RACF ID from a Kerberos security
ticket

8 The start of a utility job, and the end of each phase of the utility

9 Various types of records that are written to IFCID 0146 by the IFI WRITE
function

10 CREATE and ALTER TRUSTED CONTEXT statements, establish trusted
connection information and switch user information

Audit trace reports
If you regularly start the audit trace for all classes, you can generate audit reports
based on the data that you accumulate.

Consider producing audit trace reports that focus on the following
important security events:

Use of sensitive data
You should define tables that contain sensitive data, such as employee
salary records, with the AUDIT ALL option. You can report use by table
and by authorization ID to look for access by unusual IDs, at unusual
times, or of unexpected types. You should also record any ALTER or DROP
operations that affect the data. Use audit classes 3, 4, and 5.

Grants of critical privileges
Carefully monitor IDs with special authorities, such as SYSADM and
DBADM. Also carefully monitor IDs with privileges over sensitive data,
such as an update privilege on records of accounts payable. You can query
the DB2 catalog to determine which IDs hold privileges and authorities at
a particular time. To determine which IDs received privileges and then had
them revoked, use audit class 2 and consult the audit records.

Unsuccessful access attempts
Investigate all unsuccessful access attempts. Although some access failures
are only user errors, others can be attempts to violate security. If you have
sensitive data, always use trace audit class 1. You can report by table or by

authorization ID.

Audit trace records
An audit trace record contains the information about the authorization ID that
initiated the activity that is traced.

In addition, it contains the following information:

350 Administration Guide

||
|



v The LOCATION of the ID that initiated the activity (if the access was
initiated from a remote location)

v The type of activity and the time that the activity occurred
v The DB2 objects that were affected
v Whether access was denied
v The owner of a particular plan and package
v The database alias (DBALIAS) that was used to access a remote location or a

location alias that was accepted from a remote application.

Limitations of the audit trace
The audit trace has certain limitations, including that it does not automatically
record everything.

The audit trace has the following additional limitations:

v The audit trace must be turned on; it is not on by default.
v The trace does not record old data after it is changed.
v If an agent or transaction accesses a table more than once in a single unit of

recovery, the audit trace records only the first access.
v The audit trace does not record accesses if you do not start the audit trace for

the appropriate class of events.
v Except class 8, the audit trace does not audit certain utilities. For example, the

trace audits the first access of a table with the LOAD utility, but it does not
audit access by the COPY, RECOVER, and REPAIR utilities. The audit trace does
not audit access by stand-alone utilities, such as DSN1CHKR and DSN1PRNT.

v The trace audits only the tables that you specifically choose to audit.
v You cannot audit access to auxiliary tables.
v You cannot audit the catalog tables because you cannot create or alter catalog

tables.

This auditing coverage is consistent with the goal of providing a moderate volume
of audit data with a low impact on performance. However, when you choose
classes of events to audit, consider that you might ask for more data than you are

willing to process.

Starting the audit trace
You can automatically start an audit trace whenever DB2 is started.

You can do so by setting the AUDIT TRACE field on the DSNTIPN installation
panel to one of the following options:
v * (an asterisk) to provide a complete audit trace.
v NO, the default, if you do not want an audit trace to start automatically.
v YES to start a trace automatically for the default class (class 1: access denials)

and the default destination (the SMF data set).
v A list of audit trace classes (for example, 1,3,5) to start a trace automatically for

those classes. This option uses the default destination.

Chapter 10. Auditing access to DB2 351

|



As with other types of DB2 traces, you can start an audit trace at any time by
issuing the START TRACE command. You can choose the audit classes to trace and
the destination for trace records. You can also include an identifying comment.

Example: The following command starts an audit trace for classes 4 and 6 with
distributed activity:
-START TRACE (AUDIT) CLASS (4,6) DEST (GTF) LOCATION (*)

COMMENT ('Trace data changes; include text of dynamic DML statements.')

Stopping the audit trace
You can have multiple traces that run at the same time, including more than one
audit trace. You can stop a particular trace by issuing the STOP TRACE command
with the same options for START TRACE.

You must include enough options to uniquely identify a particular trace when you
issue the command.

Example: The following command stops the trace that you started:
-STOP TRACE (AUDIT) CLASS (4,6) DEST (GTF)

If you did not save the START command, you can determine the trace number and
stop the trace by its number. Use DISPLAY TRACE to find the number.

Example: DISPLAY TRACE (AUDIT) might return a message like the following
output:
TNO TYPE CLASS DEST QUAL
01 AUDIT 01 SMF NO
02 AUDIT 04,06 GTF YES

The message indicates that two audit traces are active. Trace 1 traces events in class
1 and sends records to the SMF data set. Trace 1 can be a trace that starts
automatically whenever DB2 starts. Trace 2 traces events in classes 4 and 6 and
sends records to GTF.

You can stop either trace by using its identifying number (TNO).

Example: To stop trace 1, use the following command:
-STOP TRACE AUDIT TNO(1)

Collecting audit trace records
You can prepare the System Management Facility (SMF) or Generalized Trace
Facility (GTF) to accept audit trace records in the same way that you prepare
performance or accounting trace records. The records are of SMF type 102, as are
performance trace records.

If you send trace records to SMF (the default), data might be lost in the
following circumstances:

352 Administration Guide



v SMF fails while DB2 continues to run.
v An unexpected abend (such as a TSO interrupt) occurs while DB2 is transferring

records to SMF.

In those circumstances, SMF records the number of records that are lost. z/OS

provides an option to stop the system rather than to lose SMF data.

Formatting audit trace records
You can use any of the following methods to extract, format, and print the trace
records:

v Use the DB2 Performance Expert.
v Write your own application program to access the SMF data.
v Use the instrumentation facility interface (IFI) as an online resource to retrieve

audit records.

Auditing in a distributed data environment
The DB2 audit trace records any access to your data, whether the request is from a
remote location or from your local DB2 subsystem.

The trace record for a remote request reports the authorization ID as the
final result of one of the following conditions:
v An outbound translation
v An inbound translation
v Activity of an authorization exit routine

Essentially, the ID on a trace record for a remote request is the same as the ID to
which you grant access privileges for your data. Requests from your location to a
remote DB2 are audited only if an audit trace is active at the remote location. The

output from the trace appears only in the records at that location.

Additional sources of audit information
In addition to the audit trace, DB2 offers the following sources of audit information
for you to use:

Additional DB2 traces
DB2 accounting, statistics, and performance traces are also available. You
can also use DB2 Performance Expert to print reports of these traces.

Recovery log
Although the recovery log is not an all-purpose log, it can be useful for
auditing. You can print information from the log by using the DSN1LOGP
utility. For example, the summary report can show which table spaces have
been updated within the range of the log that you scan. The REPORT
utility can indicate what log information is available and where it is
located.

Image copies of table spaces
Typical recovery procedures generate image copies of table spaces. You can
inspect these copies, or use them with the RECOVER utility to recover a

Chapter 10. Auditing access to DB2 353



table space to a particular point in time. If you recover to a point in time,
you narrow the time period during which a particular change could have
been made.

z/OS console log
The z/OS console log contains messages about exceptional conditions that
are encountered during DB2 operation. Inspect this log for symptoms of
problems.

Determining ID privileges and authorities
As an auditor, you must be aware of the privileges and authorities that are
associated with the IDs or roles in the DB2 subsystem.

You can use the following methods to determine the privileges and authorities that
a specific ID or role holds:
v Query the DB2 catalog to determine which IDs or roles hold particular

privileges.
v Check on individual IDs that are associated with group IDs or roles. Some

authorization IDs that you encounter are probably group IDs, to which many
individual IDs can be connected. To see which IDs are connected to a group,
obtain a report from RACF or from whatever external security system you are
using. These reports can tell you which IDs have the required privileges to use
DB2 data sets and other resources.

Auditing specific IDs or roles
As with other types of DB2 traces, you can start an audit trace for a particular plan
name, a primary authorization ID, a role, or all of the above.

You might consider having audit traces on at all times for IDs with the
SYSADM authority because they have complete access to every table. If you have a
network of DB2 subsystems, you might need to trace multiple authorization IDs if
the primary authorization IDs are translated several times. For embedded SQL, the
audited ID is the primary authorization ID of the plan or package owner. For
dynamic SQL, the audited ID is the primary authorization ID.

You can also start an audit trace for a particular role in a trusted context by using
the ROLE and XROLE filters. For example, you can issue the following command
to write accounting records for threads with a ROLE = abc:
-start trace(acctg) dest(smf) role(abc)

You can also issue the following command to write accounting records for threads
with a ROLE= abc:
-start trace(acctg) dest(smf) xrole(abc)

In addition, you can use the asterisk (*) wildcard character (as in ″abc*″) or the
underscore (_) wildcard character (as in ″a_c″) for more flexibility in audit tracing.

354 Administration Guide

|

|
|

|
|
|
|
|
|

|
|
|

|

|
|

|

|
|

|



Auditing specific tables
To audit a specific table, you can use the AUDIT clause in the CREATE TABLE or
ALTER TABLE statement.

Example: DB2 audits the department table whenever the audit trace is on
if you create the table with the following statement:
CREATE TABLE DSN8910.DEPT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16) ,
PRIMARY KEY (DEPTNO) )

IN DSN8D91A.DSN8S91D
AUDIT CHANGES;

Because this statement includes the AUDIT CHANGES option, DB2 audits the
table for each access that inserts, updates, or deletes data (trace class 4).

Example: To also audit the table for read accesses (class 5), issue the following
statement:
ALTER TABLE DSN8910.DEPT

AUDIT ALL;

The statement is effective regardless of whether the table was previously chosen
for auditing.

Example: To prevent all auditing of the table, issue the following statement:
ALTER TABLE DSN8910.DEPT

AUDIT NONE;

For the CREATE TABLE statement, the default audit option is NONE. For the
ALTER TABLE statement, no default option exists. If you do not use the AUDIT
clause in an ALTER TABLE statement, the audit option for the table is unchanged.

When CREATE TABLE statements or ALTER TABLE statements affect the audit of
a table, you can audit those statements. However, the results of those audits are in
audit class 3, not in class 4 or class 5. Use audit class 3 to determine whether
auditing was turned off for a table for an interval of time.

If an ALTER TABLE statement turns auditing on or off for a specific table, any
plans and packages that use the table are invalidated and must be rebound. If you
change the auditing status, the change does not affect plans, packages, or dynamic
SQL statements that are currently running. The change is effective only for plans,
packages, or dynamic SQL statements that begin running after the ALTER TABLE

statement has completed.

Ensuring data accuracy and integrity
DB2 provides many controls that you can apply to data entry and update.

Some of the controls are automatic; some are optional. All of the controls prohibit
certain operations and provide error or warning messages if those operations are
attempted. You can use these controls as a set auditing techniques to ensure data
accuracy and integrity.

Chapter 10. Auditing access to DB2 355



The set of techniques is not intended to be exhaustive. Other combinations of
techniques are possible. For example, you can use table check constraints or a view
with the check option to ensure that data values are members of a certain set. Or
you can set up a master table and define referential constraints. You can also
enforce the controls through application programs, and restrict the INSERT and
UPDATE privileges only to those programs.

Ensuring data presence and uniqueness
You can define columns with the NOT NULL clause to ensure that the required
data is present. You can also control the type of data by assigning column data
types and lengths.

For example, you can specify that alphabetic data cannot be entered into a column
with one of the numeric data types. You can also specify that the data for a DATE
or TIME column must use a specific format.

You must ensure that the data in a column or a set of columns is unique. You can
do so by creating a unique index on a column or set of columns.

Protecting data integrity
Triggers and table check constraints enhance the ability to control data integrity.
Triggers are very useful for defining and enforcing rules that involve different
states of DB2 data.

For example, a rule can prevent a salary column from more than a ten percent
increase. A trigger can enforce this rule and provide the value of the salary before
and after the increase for comparison.

Table check constraints designate the values that specific columns of a base table
can contain. A check constraint can express simple constraints, such as a required
pattern or a specific range, and rules that refer to other columns of the same table.

As an auditor, you can verify that the table definitions express the required
constraints on column values as table check constraints. You can also create a view
with the check option and insert or update values only through that view.

Example: Suppose that, in table T, data in column C1 must be a number
between 10 and 20. Suppose also that data in column C2 is an alphanumeric code
that must begin with A or B. Create view V1 with the following statement:
CREATE VIEW V1 AS

SELECT * FROM T
WHERE C1 BETWEEN 10 AND 20
AND (C2 LIKE 'A%' OR C2 LIKE 'B%')

WITH CHECK OPTION;

Because of the CHECK OPTION, view V1 allows only data that satisfies the

WHERE clause.

You cannot use the LOAD utility with a view, but that restriction does not apply to
user-written exit routines; you can consider using the following types of
user-written routines:

Validation routines
You can use validation routines to validate data values. Validation routines

356 Administration Guide



access an entire row of data, check the current plan name, and return a
nonzero code to DB2 to indicate an invalid row.

Edit routines
Edit routines have the same access as validation routines, and can also
change the row that is to be inserted. Auditors typically use edit routines
to encrypt data and to substitute codes for lengthy fields. However, edit
routines can also validate data and return nonzero codes.

Field procedures
Field procedures access data that is intended for a single column; they
apply only to short-string columns. However, they accept input
parameters, so generalized procedures are possible. A column that is
defined with a field procedure can be compared only to another column
that uses the same procedure.

Tracking data changes
Triggers offer an efficient means of maintaining an audit trail. You can define a
trigger to activate in response to certain DELETE, INSERT, or UPDATE statements
that change data.

You can qualify a trigger by providing a list of column names when you define the
trigger. The qualified trigger is activated only when one of the named columns is
changed. A trigger that performs validation for changes that are made in an
UPDATE operation must access column values both before and after the update.
Transition variables (available only to row triggers) contain the column values of
the row change that activated the trigger. The old column values and the column
values from after the triggering operation are both available.

Checking for lost and incomplete transactions
You can use the database balancing technique to alert you about lost and
incomplete transactions. Database balancing determines, for each set of data,
whether the opening balance, the control totals, and the processed transactions
equal the closing balance and control totals.

DB2 has no automatic mechanism to calculate control totals and column balances
and compare them with transaction counts and field totals. Therefore, to use
database balancing, you must design these mechanisms into the application
program.

Example: Use your application program to maintain a control table. The control
table contains information to balance the control totals and field balances for
update transactions against a user’s view. The control table might contain these
columns:
v View name
v Authorization ID
v Number of logical rows in the view (not the same as the number of physical

rows in the table)
v Number of insert transactions and update transactions
v Opening balances
v Totals of insert transaction amounts and update transaction amounts
v Relevant audit trail information such as date, time, workstation ID, and job

name

Chapter 10. Auditing access to DB2 357



The program updates the transaction counts and amounts in the control table each
time it completes an insert or update to the view. To maintain coordination during
recovery, the program commits the work only after it updates the control table.
After the application processes all transactions, the application writes a report that
verifies the control total and balancing information.

Ensuring data consistency
When you control data entry, you perform only part of a complete security and
auditing policy. You must also verify the results when data is accessed and
changed and to make sure that your data is consistent.

Using referential integrity for data consistency
Referential integrity ensures that data is consistent across tables. When you define
primary and foreign keys, DB2 automatically enforces referential integrity.

As a result, every value of a foreign key in a dependent table must be a value of a
primary key in the appropriate parent table. However, DB2 does not enforce
informational referential constraints across subsystems.

Recommendation: Use referential integrity to ensure that a column allows only
specific values. Set up a master table of allowable values, and define its primary
key. Define foreign keys in other tables that must have matching values in their
columns. In most cases, you should use the SET NULL delete rule.

Using locks for data consistency
Locks can ensure that data remains consistent even when multiple users try to
access the same data at the same time. From an auditing standpoint, you can use
locks to ensure that only one user is privileged to change data at a given time. You
can also ensure that no user is privileged to access uncommitted data.

If you use repeatable read (RR), read stability (RS), or cursor stability (CS) as your
isolation level, DB2 automatically controls access to data by using locks. However,
if you use uncommitted read (UR) as your isolation level, users can access
uncommitted data and introduce inconsistent data. As an auditor, you must know
the applications that use UR isolation and that can introduce inconsistent data or
create security risks.

For static SQL, you can determine the plans and packages that use UR
isolation by querying the catalog.

Example: For static SQL statements, use the following query to determine which
plans use UR isolation:
SELECT DISTINCT Y.PLNAME

FROM SYSIBM.SYSPLAN X, SYSIBM.SYSSTMT Y
WHERE (X.NAME = Y.PLNAME AND X.ISOLATION = 'U')

OR Y.ISOLATION = 'U'
ORDER BY Y.PLNAME;

Example: For static SQL statements, use the following query to determine which
packages use UR isolation:
SELECT DISTINCT Y.COLLID, Y.NAME, Y.VERSION

FROM SYSIBM.SYSPACKAGE X, SYSIBM.SYSPACKSTMT Y
WHERE (X.LOCATION = Y.LOCATION AND

X.LOCATION = ' ' AND

358 Administration Guide



X.COLLID = Y.COLLID AND
X.NAME = Y.NAME AND
X.VERSION = Y.VERSION AND
X.ISOLATION = 'U')

OR Y.ISOLATION = 'U'
ORDER BY Y.COLLID, Y.NAME, Y.VERSION;

For dynamic SQL statements, turn on performance trace class 3 to determine which

plans and packages use UR isolation.

Consistency between systems: When an application program writes data to both
DB2 and IMS, or to both DB2 and CICS, the subsystems prevent concurrent use of
data until the program declares a point of consistency.

Checking data consistency
Whenever an operation changes the contents of a data page or an index page, DB2
verifies that the modifications do not produce inconsistent data.

Additionally, you can run the DSN1CHKR utility to verify the integrity of the DB2
catalog and the directory table spaces. You can also run this utility to scan the
specified table space for broken links, damaged hash chains, or orphan entries.

Checking data consistency with SQL queries
If you suspect that a table contains inconsistent data, you can submit an SQL query
to search for a specific type of error.

Example: Consider the view that is created by the following statement as an
example:
CREATE VIEW V1 AS

SELECT * FROM T
WHERE C1 BETWEEN 10 AND 20
AND (C2 LIKE 'A%' OR C2 LIKE 'B%')

WITH CHECK OPTION;

The view allows an insert or update to table T1 only if the value in column C1 is
between 10 and 20 and if the value in C2 begins with A or B. To check that the
control has not been bypassed, issue the following statement:
SELECT * FROM T1

WHERE NOT (C1 BETWEEN 10 AND 20
AND (C2 LIKE 'A

If the control has not been bypassed, DB2 returns no rows and thereby confirms
that the contents of the view are valid. You can also use SQL statements to get
information from the DB2 catalog about referential constraints that exist.

Checking data consistency with the CHECK utilities
You can use the CHECK DATA, CHECK INDEX, and CHECK LOB online utilities
to ensure data consistency.

CHECK DATA
The CHECK DATA utility checks referential constraints (but not
informational referential constraints). It determines whether each foreign
key value in each row is a value of the primary key in the appropriate
parent table.

The CHECK DATA utility also checks table check constraints and checks
the consistency between a base table space and any associated LOB or

Chapter 10. Auditing access to DB2 359

|
|



XML table spaces. It determines whether each value in a row is within the
range that was specified for that column when the table was created.

CHECK INDEX
The CHECK INDEX utility checks the consistency of indexes with the data
to which the indexes point. It determines whether each index pointer
points to a data row with the same value as the index key. If an index key
points to a LOB, the CHECK INDEX utility determines whether the index
key points to the correct LOB. If an index key points to an XML, the
CHECK INDEX utility determines whether the index key points to the
correct XML.

CHECK LOB
The CHECK LOB utility checks the consistency of a LOB table space. It
determines whether any LOBs in the LOB table space are invalid.

Checking data consistency with the DISPLAY DATABASE
command
If you allow a table to be loaded without enforcing referential constraints on its
foreign key columns, the table might contain data that violates the constraints. DB2
places the table space that contains the table in the CHECK-pending status.

You can determine the table spaces with the CHECK-pending status by using the
DISPLAY DATABASE command with the RESTRICT option. You can also use the
DISPLAY DATABASE command to display table spaces with invalid LOBs.

Checking data consistency with the REPORT utility
You can use the REPORT utility with the TABLESPACESET keyword to determine
and retrieve the following information:
v Table spaces that contain a set of tables interconnected by referential constraints
v LOB or XML table spaces that are associated with base tables
v Base table column and partition numbers that are associated with each LOB or

XML table space.

Checking data consistency with the operation log
You can use the operation log to verify that DB2 is operated reliably and to reveal
unauthorized operations and overrides. The operation log consists of an automated
log of DB2 operator commands, such as those for starting and stopping the
subsystem, and DB2 abends.

The operation log records the following information:
v Command or condition type
v Date and time when the command was issued
v Authorization ID that issued the command
v Database connection code

You can obtain this information from the system log (SYSLOG), the SMF data set,
or the automated job scheduling system. To obtain the information, use SMF
reporting, job-scheduler reporting, or a user-developed program. As a good
practice, review the log report daily and keep a history file for comparison.
Because abnormal DB2 termination can indicate integrity problems, implement an
immediate notification procedure to alert the appropriate personnel (DBA, systems
supervisor, and so on) of abnormal DB2 terminations.

Checking data consistency with internal integrity reports
You can generate internal integrity reports for application programs and utilities.

360 Administration Guide

|
|

|
|
|

|

|
|



For application programs, you can record any DB2 return codes that indicate
possible data integrity problems, such as inconsistency between index and table
information, physical errors on database disk, and so on. All programs must check
the SQLCODE or the SQLSTATE for the return code that is issued after an SQL
statement is run. DB2 records, on SMF, the occurrence (but not the cause) of
physical disk errors and application program abends. The program can retrieve
and report this information; the system log (SYSLOG) and the DB2 job output also
have this information. However, in some cases, only the program can provide
enough detail to identify the exact nature of problem.

You can incorporate these integrity reports into application programs, or you can
use them separately as part of an interface. The integrity report records the
incident in a history file and writes a message to the operator’s console, a database
administrator’s TSO terminal, or a dedicated printer for certain codes. The
recorded information includes the following:
v Date
v Time
v Authorization ID
v Terminal ID or job name
v Application
v Affected view or affected table
v Error code
v Error description

When a DB2 utility reorganizes or reconstructs data in the database, it produces
statistics to verify record counts and to report errors. The LOAD and REORG
utilities produce data record counts and index counts to verify that no records
were lost. In addition to that, keep a history log of any DB2 utility that updates
data, particularly REPAIR. Regularly produce and review these reports, which you
can obtain through SMF customized reporting or a user-developed program.

Chapter 10. Auditing access to DB2 361



362 Administration Guide



Part 3. Operation and recovery

© Copyright IBM Corp. 1982, 2009 363



364 Administration Guide



Chapter 11. DB2 basic operational concepts

To operate and recover DB2 successfully, you need to know basic concepts about
entering commands and understanding DB2 message identifiers.

Recommendations for entering commands
You can control most aspects of the operational environment by using DB2
commands.

You might need to use other types of commands, including:
v IMS commands that control IMS connections
v CICS commands that control CICS connections
v IMS and CICS commands that allow you to start and stop connections to DB2

and display activity on the connections
v z/OS commands that allow you to start, stop, and change the internal resource

lock manager (IRLM)

Related tasks

Chapter 15, “Monitoring and controlling DB2 and its connections,” on page 427
Related information

Types of commands (DB2 Command Reference)

DB2 operator commands
Commands are available to help you with all aspects of operating a DB2 for z/OS
subsystem.

The DB2 commands, and their functions, are:

ALTER BUFFERPOOL
Sets or alters buffer pool size while DB2 is online.

ALTER GROUPBUFFERPOOL
Alters attributes of group buffer pools, which are used in a data sharing
environment.

ALTER UTILITY
Alters the parameter values of an active REORG or REBUILD utility job.

ARCHIVE LOG
Archives (offloads) the current active log.

CANCEL THREAD
Cancels processing for specific local or distributed threads. This command
can be used for parallel task threads.

DISPLAY ARCHIVE
Displays information about the specifications for archive parameters, status
of allocated dedicated tape units, volume and data set names that are
associated with all active tape units, and correlation ID of the requester.

© Copyright IBM Corp. 1982, 2009 365

|

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_commandtypes.htm#db2z_commandtypes


DISPLAY BUFFERPOOL
Displays buffer pool information while DB2 is online.

DISPLAY DATABASE
Displays the status of a database.

DISPLAY DDF
Displays information about the status and configuration of the distributed
data facility (DDF) and about the connections or threads that DDF controls.

DISPLAY FUNCTION SPECIFIC
Displays the statistics about external user-defined functions that are
accessed by DB2 applications.

DISPLAY GROUP
Displays information about the data sharing group to which a DB2
subsystem belongs.

DISPLAY GROUPBUFFERPOOL
Displays status and statistical information about DB2 group buffer pools,
which are used in a data sharing environment.

DISPLAY LOCATION
Displays statistics about threads and conversations between the remote
DB2 subsystem and the local subsystem.

DISPLAY LOG
Displays the current checkpoint frequency (CHKFREQ) value, information
about the current active log data sets, and the status of the offload task.

DISPLAY PROCEDURE
Displays statistics about stored procedures that are accessed by DB2
applications.

DISPLAY RLIMIT
Displays the status of the resource limit facility (governor).

DISPLAY THREAD
Displays information about DB2, distributed subsystem connections, and
parallel tasks.

DISPLAY TRACE
Displays the status of DB2 traces.

DISPLAY UTILITY
Displays the status of a utility.

MODIFY TRACE
Changes the trace events (IFCIDs) that are being traced for a specified
active trace.

RECOVER BSDS
Re-establishes dual bootstrap data sets.

RECOVER INDOUBT
Recovers threads that are indoubt after DB2 is restarted.

RECOVER POSTPONED
Completes backout processing for units of recovery (URs) whose backout
was postponed during an earlier restart, or cancels backout processing of
the postponed URs if the CANCEL option is used.

RESET INDOUBT
Purges DB2 information about indoubt threads.

366 Administration Guide



SET ARCHIVE
Controls or sets the limits for the allocation and the deallocation time of
the tape units for archive log processing.

SET LOG
Modifies the checkpoint frequency (CHKFREQ) value dynamically without
changing the value in the subsystem parameter load module.

SET SYSPARM
Loads the subsystem parameter module that is specified in the command.

START DATABASE
Starts a list of databases or table spaces and index spaces.

START DB2
Initializes the DB2 subsystem.

START DDF
Starts the distributed data facility.

START FUNCTION SPECIFIC
Activates an external function that is stopped.

START PROCEDURE
Starts a stored procedure that is stopped.

START RLIMIT
Starts the resource limit facility (governor).

START TRACE
Starts DB2 traces.

STOP DATABASE
Stops a list of databases or table spaces and index spaces.

STOP DB2
Stops the DB2 subsystem.

STOP DDF
Stops or suspends the distributed data facility.

STOP FUNCTION SPECIFIC
Prevents DB2 from accepting SQL statements with invocations of the
specified functions.

STOP PROCEDURE
Prevents DB2 from accepting SQL CALL statements for a stored procedure.

STOP RLIMIT
Stops the resource limit facility (governor).

STOP TRACE
Stops traces.

TERM UTILITY
Terminates execution of a utility.

Chapter 11. DB2 basic operational concepts 367



Where DB2 commands are entered
You can enter DB2 commands from different sources.
v “z/OS console or z/OS application program”
v “IMS terminal or program”
v “CICS terminal” on page 369
v “TSO terminal” on page 369
v “APF-authorized program” on page 370
v “IFI application program” on page 370

z/OS console or z/OS application program

You can enter all DB2 commands from a z/OS console or a z/OS application
program. The START DB2 command must be issued from a z/OS console (or from
an APF-authorized program, such as SDSF, that passes the START DB2 to the z/OS
console). The command group authorization level must be SYS.

More than one DB2 subsystem can run under z/OS. You add a prefix to a DB2
command with special characters that identify which subsystem to direct the
command to. The one- to eight-character prefix is called the command prefix. Specify
the command prefix on installation panel DSNTIPM. The default character for the
command prefix is -DSN1. Examples in this information use the hyphen (-) for the
command prefix. For example, -START DB2.

IMS terminal or program

You can enter all DB2 commands except START DB2 from either an IMS terminal
or program. The terminal or program must be authorized to enter the IMS /SSR
command.

An IMS subsystem can attach to more than one DB2 subsystem, so you need to
add a prefix. Commands that are directed from IMS to DB2 with a special
character that identifies which subsystem to direct the command to. That character
is called the command recognition character (CRC); specify it when you define DB2 to
IMS, in the subsystem member entry in IMS.PROCLIB. (For details, see DB2
Installation Guide.)

Recommendation: Use the same character for the CRC and the command prefix
for a single DB2 subsystem. You need to use a command prefix of one character;
otherwise you cannot match these identifiers.

The examples in this information assume that both the command prefix and the
CRC are the hyphen (-) . However, if you can attach to more than one DB2
subsystem, you must issue your commands using the appropriate CRC. In the
following example, the CRC is a question mark character:

You enter:
/SSR ?DISPLAY THREAD

DB2 returns the following messages:

368 Administration Guide



DFS058 SSR COMMAND COMPLETED
DSNV401I ? DISPLAY THREAD REPORT FOLLOWS -
DSNV402I ? ACTIVE THREADS -...

CICS terminal

You can enter all DB2 commands except START DB2 from a CICS terminal that is
authorized to enter the DSNC transaction code.

For example, you enter:
DSNC -DISPLAY THREAD

DB2 returns the following messages:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -...

CICS can attach to only one DB2 subsystem at a time; therefore CICS does not use
the DB2 command prefix. Instead, each command that is entered through the CICS
attachment facility must be preceded by a hyphen (-), as in the previous example.
The CICS attachment facility routes the commands to the connected DB2
subsystem and obtains the command responses.

TSO terminal

You can enter all DB2 commands except START DB2 from a DSN session.

Example: The TSO terminal displays:
READY

You enter:
DSN SYSTEM (subsystem-name)

The TSO terminal displays:
DSN

You enter:
-DISPLAY THREAD

DB2 returns the following messages:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -...

A TSO session can attach to only one DB2 subsystem at a time; therefore TSO does
not use the DB2 command prefix. Instead, each command that is entered through
the TSO attachment facility must be preceded by a hyphen (-), as the preceding
example demonstrates. The TSO attachment facility routes the command to DB2
and obtains the command response.

You also can enter all DB2 commands, except START DB2, from a DB2I panel
using option 7, DB2 Commands.

Chapter 11. DB2 basic operational concepts 369



APF-authorized program

As with IMS, DB2 commands (including START DB2) can be passed from an
APF-authorized program to multiple DB2 subsystems by the MGCRE (SVC 34)
z/OS service. Thus, the value of the command prefix identifies the particular
subsystem to which the command is directed. The subsystem command prefix is
specified, as in IMS, when DB2 is installed (in the SYS1.PARMLIB member
IEFSSNxx). DB2 supports the z/OS WTO command and response token (CART) to
route individual DB2 command response messages to the invoking application
program. Use of the CART is necessary if multiple DB2 commands are issued from
a single application program.

For example, to issue DISPLAY THREAD to the default DB2 subsystem
from an APF-authorized program that runs as a batch job, use the following code:
MODESUPV DS 0H

MODESET MODE=SUP,KEY=ZERO
SVC34 SR 0,0

MGCRE CMDPARM
EJECT

CMDPARM DS 0F
CMDFLG1 DC X'00'
CMDLENG DC AL1(CMDEND-CMDPARM)
CMDFLG2 DC X'0000'
CMDDATA DC C'-DISPLAY THREAD'
CMDEND DS 0C

DB2 returns the following messages:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -...
DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

IFI application program

An application program can issue DB2 commands using the
instrumentation facility interface (IFI). The IFI application program protocols are
available through the IMS, CICS, TSO attachment facilities, the call attachment
facility (CAF), and the Resource Recovery Services attachment facility (RRSAF). For
an example in which the DB2 START TRACE command for monitor class 1 is

issued, see DB2 Performance Monitoring and Tuning Guide.
Related tasks

Chapter 13, “Submitting work to DB2,” on page 379

Where command responses go
In most cases, DB2 command responses are sent to the entering terminal or, for
batch jobs, to the printed listing. In CICS, you can direct command responses to
another terminal.

Name the other terminal as the destination (dest) in this command:
DSNC dest -START DATABASE

370 Administration Guide

|
|
|
|
|
|
|
|
|



If a DB2 command is entered from an IMS or CICS terminal, the response
messages can be directed to different terminals. If the response includes more than
one message, the following cases are possible:
v If the messages are issued in a set, the entire set of messages is sent to the IMS

or CICS terminal that entered the command. For example, DISPLAY THREAD
issues a set of messages.

v If the messages are issued one after another, and not in a set, only the first
message is sent to the terminal that entered the command. Subsequent messages
are routed to one or more z/OS consoles using the WTO function. For example,
START DATABASE issues several messages one after another.
You can choose alternative consoles to receive the subsequent messages by
assigning them the routing codes that are placed in the DSNZPxxx module when
DB2 is installed. If you want to have all of the messages available to the person
who sent the command, route the output to a console near the IMS or CICS
master terminal.

For APF-authorized programs that run in batch jobs, command responses are
returned to the master console and to the system log if hardcopy logging is
available. Hardcopy logging is controlled by the z/OS system command VARY. See

z/OS MVS System Commands for more information.

Authorities for DB2 commands
The ability to issue DB2 commands and to use most other DB2 functions requires
the appropriate privilege or authority. Privileges and authorities can be granted to
authorization IDs in many combinations and can be revoked.

The individual authorities are listed in “Administrative authorities.” Each
administrative authority has the individual authorities shown in its box, and the
individual authorities for all the levels beneath it. For example, DBADM has
ALTER, DELETE, INDEX, INSERT, SELECT, and UPDATE authorities, as well as
those that are listed for DBCTRL and DBMAINT.

Any user with the STOPALL privilege can issue the STOP DB2 command. Besides
those who have been granted STOPALL explicitly, the privilege belongs implicitly
to anyone with SYSOPR authority or higher. When installing DB2 you can choose:
v One or two authorization IDs with installation SYSADM authority
v Zero, one, or two authorization IDs with installation SYSOPR authority

The IDs with those authorizations are contained in the load module for subsystem
parameters (DSNZPxxx).

The START DB2 command can be entered only at a z/OS console that is
authorized to enter z/OS system commands. The command group authorization
level must be SYS.

DB2 commands that are entered from a logged-on z/OS console can be authorized
by using secondary authorization IDs. The authorization ID that is associated with
a z/OS console is SYSOPR, which carries the authority to issue all DB2 commands
except:
v RECOVER BSDS
v START DATABASE
v STOP DATABASE
v ARCHIVE LOG

Chapter 11. DB2 basic operational concepts 371

|
|



APF-authorized programs that issue commands through MGCRE (SVC 34) have
SYSOPR authority unless DB2 can determine the RACF user ID of the program. In
that case, DB2 uses that user ID for authorization. To avoid errors, the user should
obtain SYSOPR authority for those DB2 subsystems.

The authority to start or stop any particular database must be specifically granted
to an ID with SYSOPR authority. Likewise, an ID with SYSOPR authority must be
granted specific authority to issue the RECOVER BSDS and ARCHIVE LOG
commands.

The SQL GRANT statement can be used to grant SYSOPR authority to other user
IDs such as the /SIGN user ID or the LTERM of the IMS master terminal.

For information about other DB2 authorization levels, see “Establishing RACF
protection for DB2.” DB2 Command Reference also has authorization level

information for specific commands.

DB2 message identifiers
DB2 message identifiers have the form DSNcxxxt.

In a DB2 message identifier:

DSN Is the unique DB2 message prefix.

c Is a one-character code that identifies the DB2 subcomponent that issued
the message. For example:
2 CICS attachment facility
M IMS attachment facility
U Utilities

xxx Is the message number.

t Is the message type, with these values and meanings:
A Immediate action
D Immediate decision
E Eventual action
I Information only

See DB2 Messages for an expanded description of message types.

A command prefix that identifies the DB2 subsystem precedes the message
identifier, except in messages from the CICS and IMS attachment facilities. (The
CICS attachment facility issues messages in the form DSN2xxxt, and the IMS
attachment facility issues messages in the form DSNMxxxt.) CICS and IMS
attachment facility messages identify the z/OS subsystem that generated the
message.

The IMS attachment facility issues messages that are identified as SSNMxxxx and
as DFS™xxxx. The DFSxxxx messages are produced by IMS, under which the IMS

attachment facility operates.

Unsolicited DB2 messages
Unsolicited subsystem messages can be sent to the z/OS console that issues the
START DB2 command. They also can be sent to consoles that have been assigned
the routing codes that you listed in the DSNZPxxx module during DB2 installation.

372 Administration Guide

|
|
|
|



However, the following messages from the IMS and the CICS attachment
facilities are exceptions:
v Specific IMS attachment facility messages are sent to the IMS master terminal.
v Unsolicited CICS messages are sent to the transient data entries that are

specified for the MSGQUEUEn(name) attribute in the RDO (resource definition
online).

v CICS statistics messages that are issued because of shutdown are sent to the
transient data entry that is specified in the RDO (STATSQUEUE).

Some DB2 messages that are sent to the z/OS console are marked as critical with
the WTO descriptor code (11). This code signifies “critical eventual action
requested” by DB2. Preceded by an at sign (@) or an asterisk (*), critical DB2
messages remain on the screen until they are specifically deleted. This prevents the
messages from being missed by the operator, who is required to take a specific

action.

Operational control options
At an operator console or terminal, you can perform a variety of operational
control activities, including issuing commands and receiving output.

The following table summarizes the operational control that is available at
the operator console or terminal.

Table 92. Operational control summary

Type of
operation z/OS console TSO terminal

IMS master
terminal

Authorized
CICS terminal

Issue DB2
commands and
receive replies

Yes Yes1 Yes1 Yes1

Receive DB2
unsolicited
output

Yes No No No

Issue IMS
commands

Yes2 No Yes No

Receive IMS
attachment
facility
unsolicited
output

No3 No Yes No

Issue CICS
commands

Yes4 No No Yes

Receive CICS
attachment
facility
unsolicited
output

No3 No No Yes5

Chapter 11. DB2 basic operational concepts 373



Table 92. Operational control summary (continued)

Type of
operation z/OS console TSO terminal

IMS master
terminal

Authorized
CICS terminal

Notes:

1. This does not apply to START DB2. Commands that are issued from IMS must have the
prefix /SSR. Commands that are issued from CICS must have the prefix DSNC.

2. This applies when using outstanding WTOR.

3. The “Attachment facility unsolicited output” does not include “DB2 unsolicited output.”

4. Use the z/OS command MODIFY jobname CICS command. The z/OS console must
already be defined as a CICS terminal.

5. Specify the output destination for the unsolicited output of the CICS attachment facility
in the RDO.

374 Administration Guide

|
|

|

|

|
|

|
|



Chapter 12. Starting and stopping DB2

You start and stop DB2 by using the START DB2 and STOP DB2 commands.

Before DB2 is stopped, the system takes a shutdown checkpoint. This
checkpoint and the recovery log give DB2 the information it needs to restart.

You can limit access to data at startup and startup after an abend.

Starting DB2
When it is installed, DB2 is defined as a formal z/OS subsystem.

Afterward, the following message appears during any IPL of z/OS:
DSN3100I - DSN3UR00 - SUBSYSTEM ssnm READY FOR -START COMMAND

where ssnm is the DB2 subsystem name. At that point, you can start DB2 from a
z/OS console that is authorized to issue system control commands (z/OS
command group SYS), by entering the command START DB2. The command must
be entered from the authorized console and cannot be submitted through JES or
TSO.

Starting DB2 by a JES batch job or a z/OS START command is impossible. The
attempt is likely to start an address space for DB2 that then abends, probably with
reason code X’00E8000F’.

You can also start DB2 from an APF-authorized program by passing a START DB2

command to the MGCRE (SVC 34) z/OS service.

Messages at start
DB2 issues a variety of messages when you start DB2. The specific messages vary
based on the parameters that you specify.

At start time, DB2 issues some or all of the following messages.
$HASP373 xxxxMSTR STARTED
DSNZ002I - SUBSYS ssnm SYSTEM PARAMETERS

LOAD MODULE NAME IS dsnzparm-name
DSNY001I - SUBSYSTEM STARTING
DSNJ127I - SYSTEM TIMESTAMP FOR BSDS=87.267 14:24:30.6
DSNJ001I - csect CURRENT COPY n ACTIVE LOG DATA

SET IS DSNAME=...,
STARTRBA=...,ENDRBA=...

DSNJ099I - LOG RECORDING TO COMMENCE WITH
STARTRBA = xxxxxxxxxxxx

$HASP373 xxxxDBM1 STARTED
DSNR001I - RESTART INITIATED
DSNR003I - RESTART...PRIOR CHECKPOINT RBA=xxxxxxxxxxxx
DSNR004I - RESTART...UR STATUS COUNTS...

IN COMMIT=nnnn, INDOUBT=nnnn, INFLIGHT=nnnn,
IN ABORT=nnnn, POSTPONED ABORT=nnnn

DSNR005I - RESTART...COUNTS AFTER FORWARD RECOVERY
IN COMMIT=nnnn, INDOUBT=nnnn

© Copyright IBM Corp. 1982, 2009 375

|

|



DSNR006I - RESTART...COUNTS AFTER BACKWARD RECOVERY
INFLIGHT=nnnn, IN ABORT=nnnn, POSTPONED ABORT=nnnn

DSNR002I - RESTART COMPLETED
DSN9002I - DSNYASCP 'START DB2' NORMAL COMPLETION
DSNV434I - DSNVRP NO POSTPONED ABORT THREADS FOUND
DSN9022I - DSNVRP 'RECOVER POSTPONED' NORMAL COMPLETION

If any of the nnnn values in message DSNR004I are not zero, message DSNR007I is

issued to provide the restart status table.

Options at start
Starting DB2 invokes the load module for subsystem parameters. This load module
contains information that was specified when DB2 was installed.

For example, the module contains the name of the IRLM to connect to. In
addition, it indicates whether the distributed data facility (DDF) is available and, if
it is, whether it should be automatically started when DB2 is started. You can
specify PARM (module-name) on the START DB2 command to provide a parameter
module other than the one that is specified at installation.

The START DB2 command starts the system services address space, the database
services address space, and, depending on specifications in the load module for
subsystem parameters (DSNZPARM by default), the distributed data facility
address space. Optionally, another address space, for the internal resource lock
manager (IRLM), can be started automatically.

A conditional restart operation is available, but no parameters indicate normal or

conditional restart on the START DB2 command.
Related concepts

“Conditional restart” on page 530
Related tasks

“Starting DDF” on page 475

Restricting access to data
You can restrict access to data with an option of the START DB2 command.

To restrict access to data, on the START DB2 command, specify one of
these options:

ACCESS(MAINT)
To limit access to users who have installation SYSADM or installation
SYSOPR authority.

Users with those authorities can do maintenance operations such as
recovering a database or taking image copies. To restore access to all users,
stop DB2 and then restart it, either omitting the ACCESS keyword or
specifying ACCESS(*).

ACCESS(*)
To allow all authorized users to connect to DB2.

376 Administration Guide

|
|
|
|
|



Ending the wait state at startup
JCL errors sometimes occur (for example, a device allocation error or an incorrect
region size). When JCL errors occur during startup of the database services address
space, DB2 goes into wait status.

To end the wait, cancel the system services address space and the
distributed data facility address space from the console. After DB2 stops, check the
start procedures of all three DB2 address spaces for correct JCL syntax. See Data
Sharing: Planning and Administration for more information.

To accomplish the check, compare the expanded JCL in the SYSOUT output with
the correct JCL provided in z/OS MVS JCL User’s Guide or z/OS MVS JCL Reference.
Then, take the member name of the erroneous JCL procedure, which is also
provided in the SYSOUT data set, to the system programmer who maintains your
procedure libraries. After finding out which PROCLIB contains the JCL in question,

locate the procedure and correct it.

Restart options after an abend
Starting DB2 after it abends is different from starting it after the STOP DB2
command is issued.

After the STOP DB2 command, DB2 finishes its work in an orderly way
and takes a shutdown checkpoint before stopping. When DB2 is restarted, it uses
information from the system checkpoint and recovery log to determine the system
status at shutdown.

When a power failure occurs, DB2 abends without being able to finish its work or
take a shutdown checkpoint. When DB2 is restarted after an abend, it refreshes its
knowledge of its status at termination by using information on the recovery log,
DB2 then notifies the operator of the status of various units of recovery.

You can indicate that you want DB2 to postpone some of the backout work that is
traditionally performed during system restart. You can delay the backout of
long-running units of recovery by using installation options LIMIT BACKOUT and
BACKOUT DURATION on panel DSNTIPL.

Normally, the restart process resolves all inconsistent states. In some cases, you
have to take specific steps to resolve inconsistencies. There are steps you can take
to prepare for those actions. For example, you can limit the list of table spaces that

are recovered automatically when DB2 is started.

Chapter 12. Starting and stopping DB2 377



Related tasks

Chapter 17, “Restarting DB2 after termination,” on page 523
Related reference

Active log data set parameters: DSNTIPL (DB2 Installation and Migration)

Stopping DB2
Before DB2 stops, all DB2-related write to operator with reply (WTOR) messages
must receive replies.

Then one of the following commands terminates the subsystem:
-STOP DB2 MODE(QUIESCE)

-STOP DB2 MODE(FORCE)

The following messages are returned:
DSNY002I - SUBSYSTEM STOPPING
DSN9022I - DSNYASCP '-STOP DB2' NORMAL COMPLETION
DSN3104I - DSN3EC00 - TERMINATION COMPLETE

Before restarting DB2, the following message must also be returned to the z/OS
console that is authorized to enter the START DB2 command:
DSN3100I - DSN3EC00 - SUBSYSTEM ssnm READY FOR -START COMMAND

If the STOP DB2 command is not issued from a z/OS console, messages DSNY002I
and DSN9022I are not sent to the IMS or CICS master terminal operator. They are
routed only to the z/OS console that issued the START DB2 command.

For data sharing environment, see Data Sharing: Planning and Administration.

Related concepts

“Normal termination” on page 523

378 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipl.htm#db2z_dsntipl


Chapter 13. Submitting work to DB2

Application programs that run under TSO, IMS, or CICS can use DB2 resources by
executing embedded SQL statements.

Application programs must meet certain conditions to embed SQL
statements and to authorize the use of DB2 resources and data. These conditions
vary based on the environment of the application program.

All application programming default values, including the subsystem name that
the programming attachment facilities use, are in the DSNHDECP load module.

Make sure that your JCL specifies the proper set of program libraries.

Submitting work by using DB2I
Using the interactive program DB2I (DB2 Interactive), you can run application
programs and perform many DB2 operations by entering values on panels. DB2I
runs under TSO using ISPF (Interactive System Productivity Facility) services.

To submit work by using DB2I:
1. Log on to TSO by following your local procedures.
2. Enter ISPF.
3. Enter parameters to control operations. DB2 provides help panels to:
v Explain how to use each operation.
v Provide the syntax for and examples of DSN subcommands, DB2 operator

commands, and DB2 utility control statements.
To access the help panels, press the HELP PF key. (The key can be set locally,

but is typically PF1.)

Running TSO application programs
You use the DSN command and a variety of DSN subcommands to run TSO
applications.

Requirement: A TSO application program that you run in a DSN session must be
link-edited with the TSO language interface program (DSNELI). The program
cannot include IMS DL/I calls because that requires the IMS language interface
module (DFSLI000).

To run TSO application programs:
1. Log on to TSO.
2. Enter the DSN command.
3. Respond to the prompt by entering the RUN subcommand.

The terminal monitor program (TMP) attaches the DB2-supplied DSN command
processor, which in turn attaches the application program.

© Copyright IBM Corp. 1982, 2009 379

|

|
|
|

|

|

|

|

|

|
|

|

|



The following example runs application program DSN8BC3. The program is in
library prefix.RUNLIB.LOAD, which is the name that is assigned to the load
module library.
DSN SYSTEM (subsystem-name)
RUN PROGRAM (DSN8BC3) PLAN(DSN8BH91) LIB ('prefix.RUNLIB.LOAD')
END

DSN subcommands for TSO environments
The DSN command starts a DSN session, which makes a variety of subcommands
and other functions available to users.

The DSN subcommands are:

ABEND
Causes the DSN session to terminate with a DB2 X’04E’ abend completion
code and with a DB2 abend reason code of X’00C50101’.

BIND PACKAGE
Generates an application package.

BIND PLAN
Generates an application plan.

DCLGEN
Produces SQL and host language declarations.

END Ends the DB2 connection and returns to TSO.

FREE PACKAGE
Deletes a specific version of a package.

FREE PLAN
Deletes an application plan.

REBIND PACKAGE
Regenerates an existing package.

REBIND PLAN
Regenerates an existing plan.

RUN Executes a user application program.

SPUFI Invokes a DB2I facility that executes SQL statements that are not
embedded in an application program.

You can also issue the following DB2 and TSO commands from a DSN session:
v Any TSO command except TIME, TEST, FREE, or RUN.
v Any DB2 command except START DB2.

380 Administration Guide

|

|
|

|

|
|
|

|
|

|
|

|
|

||

|
|

|
|

|
|

|
|

||

||
|

|
|
|

|



Related reference

“DB2 operator commands” on page 365

Sources that DB2 checks to find authorization access for an
application program

DB2 checks multiple sources to find authorization access for an application
program.

DB2 checks the sources in the order that they are listed. If the first source
is unavailable, DB2 checks the second source, and so on.
1. RACF USER parameter supplied at logon
2. TSO logon user ID
3. Site-chosen default authorization ID
4. IBM-supplied default authorization ID

You can modify either the RACF USER parameter or the TSO user ID by a locally

defined authorization exit routine.

Running IMS application programs

To run IMS application programs, you can enter transactions from an IMS terminal.
You also can invoke IMS transactions and commands by using the DB2-supplied
stored procedures DSNAIMS or DSNAIMS2.

Use the DSNAIMS stored procedure to send commands and single-segment
transactions. Use the DSNAIMS2 stored procedure to send commands and
multi-segment transactions.

Application programs that contain SQL statements run in the message processing
program (MPP), the batch message processing (BMP), the Fast Path region, or the
IMS batch region.

The program must be link-edited with the IMS language interface module
(DFSLI000). It can write to and read from other database management systems
using the distributed data facility, in addition to accessing DL/I and Fast Path
resources.

DB2 checks whether the authorization ID that IMS provides is valid. For
message-driven regions, IMS uses the SIGNON-ID or LTERM as the authorization
ID. For non-message-driven regions and batch regions, IMS uses the ASXBUSER
field (if RACF or another security package is active). The ASXBUSER field is
defined by z/OS as seven characters. If the ASXBUSER field contains binary zeros
or blanks (which indicates that RACF or another security package is not active),
IMS uses the PSB name instead.

An IMS terminal operator probably notices few differences between application
programs that access DB2 data and programs that access DL/I data because IMS
sends no DB2-related messages to a terminal operator. However, your program can
signal DB2 error conditions with a message of your choice. For example, at its first
SQL statement, a program receives an SQL error code if the resources that are to

Chapter 13. Submitting work to DB2 381

|

|

|

|

|
|

|
|

|

|

|

|

|

|

|
|
|



run the program are not available or if the operator is not authorized to use the
resources. The program can interpret the code and issue an appropriate message to
the operator.

You can run batch DL/I jobs to access DB2 resources; DB2-DL/I batch support
uses the IMS attachment facility.
Related tasks

Loading and running a batch program (Application Programming and SQL
Guide)
Related reference

“DSNAIMS stored procedure” on page 864
Related information

IMS Application Programming: Design at ibm.com

Running CICS application programs
To run CICS applications, enter transactions from CICS terminals. You can also
invoke CICS transactions by using the CICS transaction-invocation stored
procedure.

For information about this stored procedure, see “DB2-supplied stored
procedures.”

CICS transactions that issue SQL statements must be link-edited with the CICS
attachment facility language interface module, DSNCLI, and the CICS command
language interface module. CICS application programs can issue SQL, DL/I, or
CICS commands. After CICS connects to DB2, any authorized CICS transaction can
issue SQL requests that can write to and read from multiple DB2 instances using
the distributed data facility. The application programs run as CICS applications.

DB2 checks an authorization ID that is related to the transaction against a plan that
is assigned to it. The authorization ID for the transaction can be the operator ID,
terminal ID, transaction ID, RACF-authenticated user ID, or another identifier that
is explicitly provided by the RDO (resource definition online). See “Controlling
access to a DB2 subsystem” for more information about DB2 authorization IDs.

Running batch application programs
Batch DB2 work can run in the TSO background under the TSO terminal monitor
program (TMP) or in an IMS batch message processing (BMP) region. IMS batch
regions can issue SQL statements.

For batch work that runs in the TSO background, the input stream can invoke TSO
command processors, particularly the DSN command processor for DB2. This input
stream can include DSN subcommands, such as RUN. An example of a TMP job
follows:
//jobname JOB USER=SYSOPR ...
//GO EXEC PGM=IKJEFT01,DYNAMNBR=20
.
user DD statements
.
//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD *
DSN SYSTEM (ssid)
.

382 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_loadrunbatch.htm#db2z_loadrunbatch
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_loadrunbatch.htm#db2z_loadrunbatch
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims9.doc.apdg/apdg.htm


subcommand (for example, RUN)
.
END
/*

In the example:
v IKJEFT01 identifies an entry point for TSO TMP invocation. Alternative entry

points that are defined by TSO are also available to provide additional return
code and abend termination processing options. These options permit the user to
select the actions to be taken by the TMP on completion of command or
program execution.
Because invocation of the TSO TMP using the IKJEFT01 entry point might not be
suitable for all user environments, refer to the TSO publications to determine
which TMP entry point provides the termination processing options that are best
suited to your batch execution environment.

v USER=SYSOPR identifies the user ID (SYSOPR in this case) for authorization
checks.

v DYNAMNBR=20 indicates the maximum number of data sets (20 in this case)
that can be dynamically allocated concurrently.

v z/OS checkpoint and restart facilities do not support the execution of SQL
statements in batch programs that are invoked by the RUN subcommand. If
batch programs stop because of errors, DB2 backs out any changes that were
made since the last commit point.

v (ssid) is the subsystem name or group attachment name.
Related tasks

Chapter 19, “Backing up and recovering your data,” on page 553

Running application programs using CAF
The call attachment facility (CAF) allows you to customize and control execution
environments more extensively than the TSO, z/OS, or IMS attachment facilities.
Programs that run in TSO foreground or TSO background can use either the DSN
session or CAF. z/OS batch and started task programs can use only CAF.

IMS batch applications can also access DB2 databases through CAF,
however, this method does not coordinate the commitment of work between the
IMS and DB2 subsystems. Using the DB2 DL/I batch support for IMS batch
applications is highly recommended.

To use CAF, you must first make available a load module known as the call
attachment language interface, or DSNALI. When the language interface is
available, your program can use CAF to connect to DB2 in two ways:
v Implicitly, by including SQL statements or IFI calls in your program just as you

would any program.

v Explicitly, by writing CALL DSNALI statements.

Chapter 13. Submitting work to DB2 383



Related concepts

Call attachment facility (Application Programming and SQL Guide)

Running application programs using RRSAF
The Resource Recovery Services attachment facility (RRSAF) is a DB2 attachment
facility that relies on a z/OS component called Resource Recovery Services (z/OS
RRS). z/OS RRS provides system-wide services for coordinating two-phase commit
operations across z/OS subsystems.

Before you can run an RRSAF application, z/OS RRS must be started. RRS
runs in its own address space and can be started and stopped independently of
DB2.

To use RRSAF, you must first make available a load module known as the RRSAF
language interface or DSNRLI. When the language interface is available, your
program can use RRSAF to connect to DB2 in two ways:
v Implicitly, by including SQL statements or IFI calls in your program just as you

would any program.
v Explicitly, by using CALL DSNRLI statements to invoke RRSAF functions. Those

functions establish a connection between DB2 and RRS and allocate DB2

resources.
Related concepts

Resource Recovery Services attachment facility (Application Programming and
SQL Guide)
Related tasks

“Controlling RRS connections” on page 471

384 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_caf.htm#db2z_caf
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_rrsaf.htm#db2z_rrsaf
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_rrsaf.htm#db2z_rrsaf


Chapter 14. Scheduling administrative tasks

The administrative task scheduler runs tasks that are defined in a task list
according to a requested schedule. Tasks can be stored procedures or JCL jobs.

You manage the task list of the administrative task scheduler through DB2 stored
procedures that add and remove tasks. You can monitor the task list and the status
of executed tasks through user-defined functions that are provided as part of DB2.

Tasks run according to a defined schedule, which can be based on an interval, a
point in time, or an event. Activity can be further restricted by a limit on the
number of invocations or by earliest and latest invocation dates.

Interacting with the administrative task scheduler
The administrative task scheduler is based on scheduled tasks. DB2 users can add,
remove, and list scheduled tasks that are executed at planned points in time by the
administrative task scheduler.

At each point in time when the administrative task scheduler detects that a task
should be executed, it drives the task execution according to the work described in
the task definition. There is no user interaction. The administrative task scheduler
delegates the execution of the task to one of its execution threads, which executes
the stored procedure or the JCL job described in the work definition of the task.
The execution thread waits for the end of the execution and notifies the
administrative task scheduler. The administrative task scheduler stores the
execution status of the task in its redundant task lists, in relation with the task
itself.

Adding a task
You can use the stored procedure ADMIN_TASK_ADD to define new scheduled
tasks. The parameters that you use when you call the stored procedure define the
schedule and the work for each task.

The request and the parameters are transmitted to the administrative task
scheduler associated with the DB2 subsystem where the stored procedure has been
called. The parameters are checked and if they are valid, the task is added into the
scheduler task lists with a unique task name. The task name and the return code
are returned to the stored procedure for output.

At the same time, the scheduler analyzes the task to schedule its next execution.

Scheduling capabilities of the administrative task scheduler
The administrative task scheduler can execute a task once or many times, at fixed
points in time, or in response to events.

Five parameters define the scheduling behavior of the task, in one of four ways:
v interval: elapsed time between regular executions
v point-in-time: specific times for execution
v trigger-task-name alone: specific task to trigger execution

© Copyright IBM Corp. 1982, 2009 385

|

|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|

|

|
|
|

|

|

|

|



v trigger-task-name with trigger-task-cond and trigger-task-code: specific task with
required result to trigger execution

Only one of these definitions can be specified for any single task. The other
parameters must be null.

Table 93. Relationship of null and non-null values for scheduling parameters

Parameter specified Required null parameters

interval point-in-time
trigger-task-name
trigger-task-cond
trigger-task-code

point-in-time interval
trigger-task-name
trigger-task-cond
trigger-task-code

trigger-task-name alone interval
point-in-time
trigger-task-cond
trigger-task-code

trigger-task-name with trigger-task-cond and
trigger-task-code

interval
point-in-time

If interval, point-in-time, trigger-task-name, trigger-task-cond, and trigger-task-code are
all null, max-invocations must be set to 1.

You can restrict scheduled executions either by defining a window of time during
which execution is permitted or by specifying how many times a task can execute.
Three parameters control restrictions:
v begin-timestamp: earliest permitted execution time
v end-timestamp: latest permitted execution time
v max-invocations: maximum number of executions

The begin-timestamp and end-timestamp parameters are timestamps that define a
window of time during which tasks can start. Before and after this window, the
task will not start even if the schedule parameters are met. If begin-timestamp is
null, the window begins at the time when the task is added, and executions can
start immediately. If end-timestamp is null, the window extends infinitely into the
future, so that repetitive or triggered executions are not limited by time.
Timestamps must either be null values or future times, and end-timestamp cannot
be earlier than begin-timestamp.

For repetitive or triggered tasks, the number of executions can be limited using the
max-invocations parameter. In this case, the task executes no more than the number
of times indicated by the parameter, even if the schedule and the window of time
would require the task to be executed. Executions that are skipped because they
overlap with previous executions that are still running are not counted toward
max-invocations.

The max-invocations parameter defines a limit but no requirement. If the task is
executed fewer times than indicated during its execution window, the maximum
number of executions will never be reached.

386 Administration Guide

|
|

|
|

||

||

||
|
|
|

||
|
|
|

||
|
|
|

|
|
|
|
|

|
|

|
|
|

|

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|



Defining task schedules
You can use different combinations of parameters to define schedules for task
executions.

The following ADMIN_TASK_ADD parameters provide control over when
scheduled tasks execute:
v interval

v point-in-time

v trigger-task-name

v trigger-task-cond

v trigger-task-code

v begin-timestamp

v end-timestamp

v max-invocations

To define a new scheduled task:

Connect to the DB2 subsystem with sufficient authorization to call the
ADMIN_TASK_ADD stored procedure. The following task definitions show some
common scheduling options.

To define Do this

A task that executes only one time: Set max-invocations to 1.

Optionally, provide a value for the
begin-timestamp parameter to control when
execution happens. Leave other parameters
null.

For example, if max-invocations is set to 1 and
begin-timestamp is set to 2008-05-27-06.30.0,
the task executes at 6:30 AM on May 27,
2008.

With this definition, the task executes one
time. If begin-timestamp has been provided,
execution happens as soon as permitted.

Chapter 14. Scheduling administrative tasks 387

|
|
|

|
|

|

|

|

|

|

|

|

|

|

|
|
|

|||

||

|
|
|
|

|
|
|
|

|
|
|



To define Do this

A regular repetitive execution: Set interval to the number of minutes that
you want to pass between the start of one
execution and the start of the next execution.

Optionally, provide values for the
max-invocations, begin-timestamp, and
end-timestamp parameters to limit execution.
Leave other parameters null.

For example, if interval is set to 5 and
begin-timestamp is set to 2008-05-27-06.30.0,
the task executes at 6:30 AM on May 27,
2008, then again at 6:35, 6:40, and so forth.

With this definition, the task executes every
interval minutes, so long as the previous
execution has finished. If the previous
execution is still in progress, the new
execution is postponed interval minutes.
Execution continues to be postponed until
the running task completes.

An irregular repetitive execution: Set point-in-time to a valid UNIX cron format
string. The string specifies a set of times.

Optionally, provide values for the
max-invocations, begin-timestamp and
end-timestamp parameters to limit execution.
Leave other parameters null.

For example, if point-in-time is set to 0 22 * *
1,5, the task executes at 10:00 PM each
Monday and Friday.

With this definition, the task executes at each
time specified, so long as the previous
execution has finished. If the previous
execution is still in progress, the new
execution is skipped. Subsequent executions
continue to be skipped until the running task
completes.

388 Administration Guide

||

||
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

||
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|



To define Do this

An execution that is triggered when another
task completes:

Set trigger-task-name to the name of the
triggering task. Optionally set
trigger-task-cond and trigger-task-code to limit
execution based on the result of the
triggering task. The trigger-task-cond and
trigger-task-code parameters must either both
be null or both be non-null.

Optionally, provide values for the
max-invocations, begin-timestamp and
end-timestamp parameters to limit execution.
Leave other parameters null.

For example, assume that a scheduled
INSERT job has a task name of test_task. If
trigger-task-name is test_task, trigger-task-cond
is EQ, and trigger-task-code is 0, then this task
executes when the INSERT job completes
with a return code of 0.

With this definition, the task executes at each
time specified, so long as the previous
execution has finished. If the previous
execution is still in progress, the new
execution is skipped. Subsequent executions
continue to be skipped until the running task
completes.

An execution that is triggered when DB2
starts:

Set trigger-task-name to DB2START.

Optionally, provide values for the
max-invocations, begin-timestamp and
end-timestamp parameters to limit execution.
Leave other parameters null.

For example, if trigger-task-name is
DB2START, begin-timestamp is
2008-01-01-00.00.0, and end-timestamp is
2009-01-01-00.00.0, the task executes each
time that DB2 starts during 2008.

With this definition, the task executes at each
DB2 start, so long as the previous execution
has finished. If the previous execution is still
in progress, the new execution is skipped.
Subsequent executions continue to be
skipped until the running task completes.

An execution that is triggered when DB2
stops:

Set trigger-task-name to DB2STOP.

Optionally, provide values for the
max-invocations, begin-timestamp and
end-timestamp parameters to limit execution.
Leave other parameters null.

With this definition, the task executes at each
DB2 stop, so long as the previous execution
has finished. If the previous execution is still
in progress, the new execution is skipped.
Subsequent executions continue to be
skipped until the running task completes.

Chapter 14. Scheduling administrative tasks 389

||

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|



Choosing an administrative task scheduler in a data sharing
environment
In a data sharing group, tasks can be added, removed, or executed in any of the
administrative task schedulers with the same result. Tasks are not localized to one
administrative task scheduler. A task can be added by one administrative task
scheduler, and then executed by any of the administrative task schedulers in the
data sharing group.

However, to force a task to be executed on a particular administrative task
scheduler:

Specify the associated DB2 subsystem ID in the DB2-SSID parameter when you
schedule the task.

ADMIN_TASK_ADD
The SYSPROC.ADMIN_TASK_ADD stored procedure adds a task to the scheduler
task list.

Environment

ADMIN_TASK_ADD runs in a WLM-established stored procedure address space
and uses the Resource Recovery Services attachment facility to connect to DB2.

Authorization

Anyone who can execute this DB2 stored procedure is allowed to add a task.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_TASK_ADD ( user-ID , password ,
NULL , NULL

begin-timestamp ,
NULL

�

� end-timestamp ,
NULL

max-invocations ,
NULL

�

� interval , NULL , NULL , NULL , NULL ,
NULL , point-in-time , NULL , NULL , NULL ,
NULL , NULL , trigger-task-name , trigger-task-cond , trigger-task-code ,

NULL , NULL ,

�

� DB2-SSID ,
NULL

�

� procedure-schema , procedure-name , procedure-input , NULL , NULL , NULL ,
NULL NULL

NULL , NULL , NULL , JCL-library , JCL-member , job-wait ,
NULL

�

� task-name ,
NULL

description ,
NULL

return-code , message ) ��

390 Administration Guide

|
|
|
|
|
|
|

|
|

|
|

|
|
|

|

|

|
|

|

|

|

|
|
|

|||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||

|
||



Option descriptions

user-ID
Specifies the user ID under which the task execution is performed.

If this parameter is set to NULL, task execution is performed with the default
authorization ID associated with the administrative task scheduler instead.

This is an input parameter of type VARCHAR(128).

password
Specifies the password associated with the input parameter user-ID.

The value of password is passed to the stored procedure as part of payload, and
is not encrypted. It is not stored in dynamic cache when parameter markers
are used.

Recommendation: Have the application that invokes this stored procedure
pass an encrypted single-use password called a passticket.

This is an input parameter of type VARCHAR(24). This parameter is NULL
only when user-ID is set to NULL, and must be NULL when user-ID is NULL.

begin-timestamp
Specifies when a task can first begin execution. When task execution begins
depends on how this and other parameters are set:

Non-null value for begin-timestamp

At begin-timestamp
The task execution begins at begin-timestamp if point-in-time and
trigger-task-name are NULL.

Next point in time defined at or after begin-timestamp
The task execution begins at the next point in time defined at
or after begin-timestamp if point-in-time is non-null.

When trigger-task-name completes at or after begin-timestamp
The task execution begins the next time that trigger-task-name
completes at or after begin-timestamp.

Null value for begin-timestamp

Immediately
The task execution begins immediately if point-in-time and
trigger-task-name are NULL.

Next point in time defined
The task execution begins at the next point in time defined if
point-in-time is non-null.

When trigger-task-name completes
The task execution begins the next time that trigger-task-name
completes.

The value of this parameter cannot be in the past, and it cannot be later than
end-timestamp.

This is an input parameter of type TIMESTAMP.

end-timestamp
Specifies when a task can last begin execution. If this parameter is set to
NULL, then the task can continue to execute as scheduled indefinitely.

Chapter 14. Scheduling administrative tasks 391

|

|
|

|
|

|

|
|

|
|
|

|
|

|
|

|
|
|

|

|
|
|

|
|
|

|
|
|

|

|
|
|

|
|
|

|
|
|

|
|

|

|
|
|



The value of this parameter cannot be in the past, and it cannot be earlier than
begin-timestamp.

This is an input parameter of type TIMESTAMP.

max-invocations
Specifies the maximum number of executions allowed for a task. This value
applies to all schedules: triggered by events, recurring by time interval, and
recurring by points in time. If this parameter is set to NULL, then there is no
limit to the number of times this task can execute.

For tasks that execute only one time, max-invocations must be set to 1 and
interval, point-in-time and trigger-task-name must be NULL.

If both end-timestamp and max-invocations are specified, the first limit reached
takes precedence. That is, if end-timestamp is reached, even though the number
of task executions so far has not reached max-invocations, the task will not be
executed again. If max-invocations have occurred, the task will not be executed
again even if end-timestamp is not reached.

This is an input parameter of type INTEGER.

interval
Defines a duration in minutes between two executions of a repetitive regular
task. The first execution occurs at begin-timestamp. If this parameter is set to
NULL, the task is not regularly executed. If this parameter contains a non-null
value, the parameters point-in-time and trigger-task-name must be set to NULL.

This is an input parameter of type INTEGER.

point-in-time
Defines one or more points in time when a task is executed. If this parameter
is set to NULL, the task is not scheduled at fixed points in time. If this
parameter contains a non-null value, the parameters interval and
trigger-task-name must be set to NULL.

The point-in-time string uses the UNIX cron format. The format contains the
following pieces of information separated by blanks: given minute or minutes,
given hour or hours, given day or days of the month, given month or months
of the year, and given day or days of the week. For each part, you can specify
one or several values, ranges, and so forth.

This is an input parameter of type VARCHAR(400).

trigger-task-name
Specifies the name of the task which, when its execution is complete, will
trigger the execution of this task.

Task names of DB2START and DB2STOP are reserved for DB2 stop and start
events respectively. Those events are handled by the scheduler associated with
the DB2 subsystem that is starting or stopping.

If this parameter is set to NULL, the execution of this task will not be triggered
by another task. If this parameter contains a non-null value, the parameters
interval and point-in-time must be set to NULL.

This is an input parameter of type VARCHAR(128).

trigger-task-cond
Specifies the type of comparison to be made to the return code after the
execution of task trigger-task-name. Possible values are:

GT Greater than

392 Administration Guide

|
|

|

|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|

|
|
|

||



GE Greater than or equal to

EQ Equal to

LT Less than

LE Less than or equal to

NE Not equal to

If this parameter is set to NULL, the task execution is triggered without
considering the return code of task trigger-task-name. This parameter must be
set to NULL if trigger-task-name is set to NULL or is either DB2START or
DB2STOP.

This is an input parameter of type CHAR(2).

trigger-task-code
Specifies the return code from executing trigger-task-name.

If the execution of this task is triggered by a stored procedure, trigger-task-code
contains the SQLCODE that must be returned by the triggering stored
procedure in order for this task to execute.

If the execution of this task is triggered by a JCL job, trigger-task-code contains
the MAXRC that must be returned by the triggering job in order for this task
to execute.

To find out what the MAXRC or SQLCODE of a task is after execution, invoke
the user-defined function DSNADM. ADMIN_TASK_STATUS returns these
information in the columns MAXRC and SQLCODE.

The following restrictions apply to the value of trigger-task-code:
v If trigger-task-cond is null, then trigger-task-code must also be null.
v If trigger-task-cond is non-null, then trigger-task-code must also be non-null.

If trigger-task-cond and trigger-task-code are not null, they are used to test the
return code from executing trigger-task-name to determine whether to execute
this task or not.

For example, if trigger-task-cond is set to ″GE″ and trigger-task-code is set to ″8″,
then this task will execute if and only if the previous execution of
trigger-task-name returned a MAXRC (for a JCL job) or an SQLCODE (for a
stored procedure) greater than or equal to 8.

This is an input parameter of type INTEGER.

DB2-SSID
Specifies the DB2 subsystem ID whose associated scheduler should execute the
task.

This parameter is used in a data sharing environment where, for example
different DB2 members have different configurations and executing the task
relies on a certain environment. However, specifying a value in DB2-SSID will
prevent schedulers of other members to execute the task, so that the task can
only be executed as long as the scheduler of DB2-SSID is running.

For a task being triggered by a DB2 start or DB2 stop event in trigger-task-name,
specifying a value in DB2-SSID will let the task be executed only when the
named subsystem is starting and stopping. If no value is given, each member
that starts or stops will trigger a local execution of the task, provided that the
executions are serialized.

If this parameter is set to NULL, any scheduler can execute the task.

Chapter 14. Scheduling administrative tasks 393

||

||

||

||

||

|
|
|
|

|

|
|

|
|
|

|
|
|

|
|
|

|

|

|

|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|



This is an input parameter of type VARCHAR(4).

procedure-schema
Specifies the schema of the DB2 stored procedure this task will execute. If this
parameter is set to NULL, DB2 uses a default schema. This parameter must be
set to NULL if procedure-name is set to NULL.

This is an input parameter of type VARCHAR(128).

procedure-name
Specifies the name of the DB2 stored procedure this task will execute. If this
parameter is set to NULL, no stored procedure will be called. In this case, a
JCL job must be specified.

This is an input parameter of type VARCHAR(128).

procedure-input
Specifies the input parameters of the DB2 stored procedure this task will
execute. This parameter must contain a DB2 SELECT statement that returns
one row of data. The returned values will be passed as parameter to the stored
procedure.

If this parameter is set to NULL, no parameters are passed to the stored
procedure. This parameter must be set to NULL when procedure-name is set to
NULL.

This is an input parameter of type VARCHAR(4096).

JCL-library
Specifies the name of the data set where the JCL job to be executed is saved.

If this parameter is set to NULL, no JCL job will be executed. In this case, a
stored procedure must be specified.

This is an input parameter of type VARCHAR(44).

JCL-member
Specifies the name of the library member where JCL job to be executed is
saved.

If this parameter is set to NULL, the data set specified in JCL-library must be
sequential and contain the JCL job to be executed. This parameter must be set
to NULL if JCL-library is set to NULL.

This is an input parameter of type VARCHAR(8).

job-wait
Specifies whether the job can be executed synchronously or not. This
parameter can only be set to NULL if JCL-library is set to NULL. Otherwise, it
must be one of the following values:

NO Asynchronous execution

YES Synchronous execution

PURGE
Synchronous execution after which the job status in z/OS is purged

This is an input parameter of type VARCHAR(8).

task-name
Specifies a unique name assigned to the task.

A unique task name is returned when the task is created with a NULL
task-name value. This name is of the format “TASK_ID_xxxx” where xxxx is
0001 for the first task named, 0002 for the second task, and so forth.

394 Administration Guide

|

|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

|
|
|

|

|
|

|
|

|

|
|
|

|
|
|

|

|
|
|
|

||

||

|
|

|

|
|

|
|
|



The following task names are reserved and cannot be given as the value of
task-name:
v Names starting with “TASK_ID_”
v DB2START
v DB2STOP

This is an input-output parameter of type VARCHAR(128).

description
Specifies a description assigned to the task.

This is an input parameter of type VARCHAR(128).

return-code
Provides the return code from the stored procedure. Possible values are:

0 The call completed successfully.

12 The call did not complete successfully. The message output parameter
contains messages describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure.
The first messages in this area, if any, are generated by the stored procedure.
Messages that are generated by DB2 might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following Java sample shows how to invoke ADMIN_TASK_ADD:
import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Statement;
import java.sql.Timestamp;
import java.sql.Types;

Connection con = DriverManager.getConnection
("jdbc:db2://myserver:myport/mydatabase", "myuser", "mypassword");

CallableStatement callStmt = con.prepareCall
("CALL SYSPROC.ADMIN_TASK_ADD("
+ "?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)");

// provide the authid
callStmt.setString(1, "myexecuser");
// provide the password
callStmt.setString(2, "myexecpwd");
// set the start time to now
callStmt.setNull(3, Types.TIMESTAMP);
// no end time
callStmt.setNull(4, Types.TIMESTAMP);
// set the max invocation
callStmt.setInt(5, 1);
// This is a non recurrent task
callStmt.setNull(6, Types.INTEGER);
callStmt.setNull(7, Types.VARCHAR);
callStmt.setNull(8, Types.VARCHAR);
callStmt.setNull(9, Types.CHAR);
callStmt.setNull(10, Types.INTEGER);
callStmt.setNull(11, Types.VARCHAR);
// provide the stored procedure schema
callStmt.setString(12, "MYSCHEMA");
// provide the name of the stored procedure to be executed

Chapter 14. Scheduling administrative tasks 395

|
|

|

|

|

|

|
|

|

|
|

||

||
|

|

|
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



callStmt.setString(13, "MYPROC");
// provide the stored procedure input parameter
callStmt.setString(14, "SELECT 1 FROM SYSIBM.SYSDUMMY1");
// This is not a JCL job
callStmt.setNull(15, Types.VARCHAR);
callStmt.setNull(16, Types.VARCHAR);
callStmt.setNull(17, Types.VARCHAR);
// add a new task with task name mytask
callStmt.setString(18, "mytask");
callStmt.registerOutParameter(18, Types.VARCHAR);
// provide the task description
callStmt.setString(19, "MY DESCRIPTION");
// register output parameters for error management
callStmt.registerOutParameter(20, Types.INTEGER);
callStmt.registerOutParameter(21, Types.VARCHAR);
// execute the statement
callStmt.execute();
// manage the return code
if ( callStmt.getInt(20) == 0 )
{

System.out.print("\nSuccessfully added task " + callStmt.getString(18));
}
else
{

System.out.print("\nError code and message are: "
+ callStmt.getInt(20) + "/" + callStmt.getString(21));

}

Output

The output of this stored procedure is the task name, task-name and the following
output parameters, which are described in “Option descriptions” on page 391:
v return-code

v message

UNIX cron format
The UNIX cron format is a way of specifying time for the point-in-time parameter
of the ADMIN_TASK_ADD stored procedure.

The cron format has five time and date fields separated by at least one blank.
There can be no blank within a field value. Scheduled tasks are executed when the
minute, hour, and month of year fields match the current time and date, and at
least one of the two day fields (day of month, or day of week) match the current
date.

The allowed values for the time and date fields are:

Field Allowed values

minute
0-59

hour 0-23

day of month
1-31

month

v 1-12, where 1 is January

396 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

|

|
|
|

|
|
|
|
|

|

||

|
|

||

|
|

|

|



v Upper-, lower-, or mixed-case three-character strings, based on the
English name of the month: jan, feb, mar, apr, may, jun, jul, aug, sep, oct,
nov, or dec.

day of week

v 0-7, where 0 or 7 is Sunday
v Upper-, lower-, or mixed-case three-character strings, based on the

English name of the day: mon, tue, wed, thu, fri, sat, or sun.

Ranges and lists

Ranges of numbers are allowed. Ranges are two numbers separated with a
hyphen. The specified range is inclusive.

Example: The range 8-11 for an hour entry specifies execution at hours 8, 9, 10 and
11.

Lists are allowed. A list is a set of numbers or ranges separated by commas.

Examples:
1,2,5,9

0-4,8-12

Unrestricted range

A field can contain an asterisk (*), which represents all possible values in the field.

The day of a command’s execution can be specified by two fields: day of month
and day of week. If both fields are restricted by the use of a value other than the
asterisk, the command will run when either field matches the current time.

Example: The value 30 4 1,15 * 5 causes a command to run at 4:30 AM on the 1st
and 15th of each month, plus every Friday.

Step values

Step values can be used in conjunction with ranges. The syntax range/step defines
the range and an execution interval.

If you specify first-last/step, execution takes place at first, then at all successive
values that are distant from first by step, until last.

Example: To specify command execution every other hour, use 0-23/2. This
expression is equivalent to the value 0,2,4,6,8,10,12,14,16,18,20,22.

If you specify */step, execution takes place at every interval of step through the
unrestricted range.

Example: As an alternative to 0-23/2 for execution every other hour, use */2.

Listing scheduled tasks
You can use the ADMIN_TASK_LIST function to list tasks that are scheduled for
execution by the administrative task scheduler.

Chapter 14. Scheduling administrative tasks 397

|
|
|

|

|

|
|

|

|
|

|
|

|

|

|

|

|

|

|
|
|

|
|

|

|
|

|
|

|
|

|
|

|

|

|
|



To list scheduled tasks, connect to the DB2 subsystem with sufficient authorization
to call the function ADMIN_TASK_LIST.

The function contacts the scheduler in order to update the DB2 task list in the table
SYSIBM.ADMIN_TASKS if necessary, and then reads the tasks from the DB2 task
list directly. The parameters that were used to create the task are column values of
the returned table. The table also includes the authorization ID of the task creator,
in the CREATOR column, and the time that the task was created, in the
LAST_MODIFIED column.
Related reference

ADMIN_TASK_LIST (SQL Reference)

ADMIN_TASK_LIST
The ADMIN_TASK_LIST function returns a table with one row for each of the
tasks that are defined in the administrative scheduler task list.

�� ADMIN_TASK_LIST() ��

The schema is DSNADM.

The result of the function is a table with the format shown in the following table.
All the columns are nullable except TASK_NAME.

398 Administration Guide

|
|

|
|
|
|
|
|

|

|

|
|
|

|

|||||||
|
||

|

|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_bif_admintasklist.htm#db2z_bif_admintasklist


Table 94. Format of the resulting table for ADMIN_TASK_LIST

Column name Data type Contains

BEGIN_
TIMESTAMP

TIMESTAMP Contains the timestamp of when the task can first
run. When the task begins to run depends on what
values this and other columns contain:

v If BEGIN_TIMESTAMP contains a non-null value:
– If POINT_IN_TIME and

TRIGGER_TASK_NAME contain null values,
the task begins to run at the timestamp in
BEGIN_TIMESTAMP

– If POINT_IN_TIME contains a non-null value,
the task begins to run at the next point in time
that is defined at or after the timestamp in
BEGIN_TIMESTAMP

– If TRIGGER_TASK_NAME is a non-null value,
the task begins to run at the next time that the
task identified in TRIGGER_TASK_NAME
completes or after the timestamp in BEGIN_
TIMESTAMP

v If BEGIN_TIMESTAMP contains a null value:
– If POINT_IN_TIME and

TRIGGER_TASK_NAME contain null values,
the task begins to run immediately

– If POINT_IN_TIME contains a non-null value,
the task begins to run at the next point in time
that is defined

– If TRIGGER_TASK_NAME is a non-null value,
the task begins to run at the next time that the
task identified in TRIGGER_TASK_NAME
completes

END_
TIMESTAMP

TIMESTAMP Contains the timestamp of when the task is last able
to run. If this column is NULL, there are no
restrictions as to when the task must not run.

MAX_
INVOCATIONS

INTEGER Contains the maximum number of times the task
can run. The maximum number applies to all types
of schedules: triggered by events, scheduled by time
interval, or by point in time. If this column is null,
the task has no limit on the number of times it can
be run.

If both END_TIMESTAMP and
MAX_INVOCATIONS contain values, the value in
END_TIMESTAMP takes precedence over the value
for MAX_INVOCATIONS. That is, if the value in
END_TIMESTAMP is reached, even though the
number of times the task has run has not reached
the value for MAX_INVOCATIONS, the task will
not run again

INTERVAL INTEGER Contains an integer that indicates the duration
between the start of one instance of a task and the
start of the next instance of the same task. If the
value of this column is NULL, the task is not
scheduled to run at a regular interval.

Chapter 14. Scheduling administrative tasks 399

||

|||

|
|

||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

||
|
|

|
|

||
|
|
|
|
|

|
|
|
|
|
|
|
|

|||
|
|
|
|



Table 94. Format of the resulting table for ADMIN_TASK_LIST (continued)

Column name Data type Contains

POINT_IN_
TIME

VARCHAR(400) Contains one or more points in time (in UNIX cron
format) for which the task is scheduled to run. If
the value of this column is NULL, the task is not
scheduled to run at a specific point in time.

The format contains the following pieces of
information separated by blanks: given hour, given
minute, given day of the week, given day of the
month, given month of the year.

TRIGGER_
TASK_NAME

VARCHAR(128) Contains the task name of the task that, when its
execution is complete, will trigger the running of
the task that is described in the row.

Task name DB2STOP is reserved for DB2 stop
events and task name DB2START is reserved for
DB2 start events. Those events are handled by the
administrative scheduler that is associated with the
DB2 subsystem that is starting or stopping.

If the value of this column is NULL, the task that is
described in this row will not be triggered to run by
another task.

TRIGGER_
TASK_COND

CHAR(2) Contains the type of comparison that is to be made
to the return code after the running of task that is
indicated in TRIGGER_TASK_NAME. The following
values are possible:

GT Greater than

GE Greater than or equal to

EQ Equal to

LT Less than

LE Less tan or equal to

NE Not equal to

If this column contains NULL, the task is triggered
to run without consideration of the return code of
the task that is indicated in
TRIGGER_TASK_NAME.

400 Administration Guide

|

|||

|
|

||
|
|
|

|
|
|
|

|
|

||
|
|

|
|
|
|
|

|
|
|

|
|

||
|
|
|

||

||

||

||

||

||

|
|
|
|



Table 94. Format of the resulting table for ADMIN_TASK_LIST (continued)

Column name Data type Contains

TRIGGER_
TASK_CODE

INTEGER Contains the return code from running the task
indicated in TRIGGER_TASK_NAME.

If the running of this task is triggered by a stored
procedure, TRIGGER_TASK_CODE contains the
SQLCODE that must be returned by the stored
procedure in order for this task to run.

If the running of this task is triggered by a JCL job,
TRIGGER_TASK_CODE contains the MAXRC that
must be returned by the job in order for this task to
run.

“ADMIN_TASK_STATUS” on page 403 returns the
SQLCODE or MAXRC value in the SQLCODE or
MAXRC column.

If TRIGGER_TASK_COND is NULL, this column
will also be NULL.

DB2_SSID VARCHAR(4) Contains the DB2 subsystem ID of the DB2
subsystem that is associated with the administrative
scheduler that should run this task.

The value in this column is used in a data sharing
environment where, for example different DB2
members have different configurations and running
the task relies on a certain environment. A value in
DB2_SSID will prevent an administrative scheduler
of other members to run this task, so that the task
can only be run as long as the administrative
scheduler of the subsystem indicated in DB2_SSID
is running.

For a task that is being triggered by a DB2 start or
DB2 stop event as indicated in the
TRIGGER_TASK_NAME column, a value in
DB2_SSID will allow the task to be run only when
the indicated subsystem is starting or stopping. If
no value is indicated in DB2_SSID, each subsystem
that starts or stops will trigger a the task to be run
locally, provided that the triggered task is run
serially.

If this column is NULL, any administrative
scheduler can run this task.

PROCEDURE_
SCHEMA

VARCHAR(128) Contains the schema of the DB2 stored procedure
that this task will run. If the value of this column is
null, DB2 uses a default schema.

PROCEDURE_
NAME

VARCHAR(128) Contains the name of the DB2 stored procedure that
this task will run. If the value of this column is
NULL, no stored procedure will be called when this
task is run.

Chapter 14. Scheduling administrative tasks 401

|

|||

|
|

||
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|||
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|

||
|
|

|
|

||
|
|
|



Table 94. Format of the resulting table for ADMIN_TASK_LIST (continued)

Column name Data type Contains

PROCEDURE_
INPUT

VARCHAR(4096) Contains a statement that returns one row of data.
The returned value will be used as the input
parameter of the stored procedure that this task will
run. If this column contains the null value, no
parameters are passed to the stored procedure when
this task is run.

JCL_LIBRARY VARCHAR(44) Contains the name of the data set that contains the
JCL job that is run when this task is run. If the
value of this column is the null value, no JCL job
will be run when this task is run.

JCL_MEMBER VARCHAR(8) Contains the name of the library member that
contains the JCL job that is run when this task is
run. If the value of this column is the null value, the
data set that is specified in JCL_LIBRARY is
sequential and contains the JCL job that is run when
this task is run.

JOB_WAIT VARCHAR(8) Contains one of the following values, which
indicates whether the JCL job can be run
synchronously. If the value in the column is not
null, this column contains one of the following
values:

NO Runs asynchronously

YES Runs synchronously

PURGE
Runs synchronously and then the job status
in z/OS is purged

TASK_NAME VARCHAR(128) Contains the unique name that is assigned to this
task.

DESCRIPTION VARCHAR(128) Contains a description of the task if one exists.

USERID VARCHAR(128) Contains the authorization ID of the user under
which the task will be invoked. If this column is
NULL, the task is invoked by the default
authorization ID that is associated with the
administrative scheduler.

CREATOR VARCHAR(128) Contains the authorization ID that added the task to
the administrative scheduler task list.

LAST_MODIFIED TIMESTAMP Timestamp of when the task was added or last
modified.

Example 1: Retrieve information about all of the tasks that are defined in the
administrative scheduler task list:

SELECT *
FROM TABLE (DSNADM.ADMIN_TASK_LIST()) AS T;

Listing the last execution status of scheduled tasks
You can use the ADMIN_TASK_STATUS function to view the last execution status
of scheduled tasks.

Before a task is first scheduled, all columns of its execution status contain null
values, as returned by the table function ADMIN_TASK_STATUS. Afterwards, at

402 Administration Guide

|

|||

|
|

||
|
|
|
|
|

|||
|
|
|

|||
|
|
|
|
|

|||
|
|
|
|

||

||

|
|
|

|||
|

|||

|||
|
|
|
|

|||
|

|||
|
|

|
|

|
|

|

|
|

|
|



least the TASK_NAME, USERID, DB2_SSID, STATUS, NUM_INVOCATIONS and
START_TIMESTAMP columns contain a non-null value. This information indicates
when and under which user ID the task status last changed, as well as the number
of times this task was already executed. The rest of the execution status can be
interpreted according to the different values of the STATUS column.

The table function ADMIN_TASK_STATUS contacts the administrative task
scheduler in order to update the DB2 task list in table SYSIBM.ADMIN_TASKS, if
necessary, and then reads the tasks from this task list directly.

To determine the last execution status of a scheduled task:
1. Execute the table function ADMIN_TASK_STATUS to generate the status table.
2. Select the rows in the table that correspond to the task name.

Tip: You can relate the task execution status to the task definition by joining
the output tables from ADMIN_TASK_LIST and ADMIN_TASK_STATUS on the
TASK_NAME column.

The table created by ADMIN_TASK_STATUS indicates the last execution of
scheduled tasks. Each row is indexed by the task name and contains the last
execution status of the corresponding task.

If task execution has never been attempted, because the execution criteria have not
been met, the STATUS column contains a null value.

If the scheduler was not able to start executing the task, the STATUS column
contains NOTRUN. The START_TIMESTAMP and END_TIMESTAMP columns are
the same, and the MSG column indicates why the task execution could not be
started. All JCL job execution status columns are NULL, but the DB2 execution
status columns contain values if the reason for the failure is related to DB2. (For
example, a DB2 connection could not be established.)

If the scheduler started executing the task but the task has not yet completed, the
STATUS column contains RUNNING. All other execution status columns contain
null values.

If the task execution has completed, the STATUS column contains COMPLETED.
The START_TIMESTAMP and END_TIMESTAMP columns contain the actual start
and end times. The MSG column might contain informational or error messages.
The DB2 and JCL columns are filled with values when they apply.

If the scheduler was stopped during the execution of a task, the status remains
RUNNING until the scheduler is restarted. When the scheduler starts again, the
status is changed to UNKNOWN, because the scheduler cannot determine if the
task was completed.
Related reference

ADMIN_TASK_STATUS (SQL Reference)

ADMIN_TASK_STATUS
The ADMIN_TASK_STATUS function returns a table with one row for each task
that is defined in the administrative scheduler task list that indicates the status of
the task for the last time it was run.

Chapter 14. Scheduling administrative tasks 403

|
|
|
|
|

|
|
|

|

|

|

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|

|

|
|
|
|

|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_bif_admintaskstatus.htm#db2z_bif_admintaskstatus


�� ADMIN_TASK_STATUS() ��

The schema is DSNADM.

The result of the function is a table with the format shown in the following table.

Table 95. Format of the resulting table for ADMIN_TASK_STATUS

Column name Data type Contains

TASK_NAME VARCHAR(128) Contains the name of the task that has run, is
running, or has been bypassed.

STATUS VARCHAR(10) Contains one of the following values that indicates
task status:

RUNNING
The task is currently running

COMPLETED
The task has finished running.

For asynchronous tasks (JCL jobs), this
column contains COMPLETED whenever
the job is submitted to be run. Otherwise,
this column contains COMPLETED only
after the task has finished running.

NOTRUN
The task was not run at the scheduled
invocation time. The MSG column contains
the error or warning message that indicates
why the task was not run.

UNKNOWN
The scheduler shut down while the task
was running. The scheduler is started again
but cannot know the execution status of
this interrupted task.

NUM_
INVOCATIONS

INTEGER Contains the number of times the administrative
scheduler attempted to run the task, including the
current time if the task is currently running. The
values in this column does not indicate if the task
was successfully run.

START_
TIMESTAMP

TIMESTAMP Contains the time when the task started running if
the STATUS column contains COMPLETED,
RUNNING, or UNKNOWN. Otherwise, this column
contains the time that the task should have started
to run but could not.

END_
TIMESTAMP

TIMESTAMP Contains the time when the task finished running.

JOB_ID CHAR(8) Contains the job ID that is assigned to the JCL job
submitted by the administrative scheduler. This
column contains NULL if the task is a stored
procedure or if the STATUS column does not
contain COMPLETED.

404 Administration Guide

|||||||
|
||

|

|

||

|||

|||
|

|||
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

||
|
|
|
|

|
|

||
|
|
|
|

|
|

||

|||
|
|
|
|



Table 95. Format of the resulting table for ADMIN_TASK_STATUS (continued)

Column name Data type Contains

MAXRC INTEGER Contains the highest return code from submitting a
JCL job. If the task is synchronous, the value in this
column is changed to the return code that is
returned when the job finishes running.

This column is set to NULL if the task is a stored
procedure, if the STATUS column does not contain
COMPLETED, or if a synchronous task is finished
and has run with JES3 in a z/OS 1.7 or earlier
system.

COMPLETION_
TYPE

INTEGER Contains one of the following values that indicates
the completion type of the JCL job submitted by the
administrative scheduler:

0 No completion information

1 Job ended normally

2 Job ended by completion code

3 Job had a JCL error

4 Job was canceled

5 Job abended

6 Converter abended while processing the
job

7 Job failed security checks

8 Job failed in end-of-memory

This column contains NULL if the task is a stored
procedure, if the STATUS column does not contain
COMPLETED, or if the JCL job is run with JES3 in a
z/OS 1.7 or earlier system.

SYSTEM_
ABENDCD

INTEGER Contains the system abend code returned by a
failed JCL job that was submitted by the
administrative scheduler.

This column contains NULL if the task is a stored
procedure, if the STATUS column does not contain
COMPLETED, or if the JCL job is run with JES3 in a
z/OS 1.7 or earlier system.

USER_ABENDCD INTEGER Contains the user abend code returned by a failed
JCL job that was submitted by the administrative
scheduler.

This column contains NULL if the task is a stored
procedure, if the STATUS column does not contain
COMPLETED, or if the JCL job is run with JES3 in a
z/OS 1.7 or earlier system.

MSG VARCHAR(128) Contains the error or warning message from the last
time the task was run.

SQLCODE INTEGER Contains the SQLCODE set by DB2 when a stored
procedure was called by the administrative
scheduler. This column contains NULL if the task is
a JCL job or if the STATUS column does not contain
COMPLETED.

Chapter 14. Scheduling administrative tasks 405

|

|||

|||
|
|
|

|
|
|
|
|

|
|

||
|
|

||

||

||

||

||

||

||
|

||

||

|
|
|
|

|
|

||
|
|

|
|
|
|

|||
|
|

|
|
|
|

|||
|

|||
|
|
|
|



Table 95. Format of the resulting table for ADMIN_TASK_STATUS (continued)

Column name Data type Contains

SQLSTATE CHAR(5) Contains the SQLSTATE set by DB2 when a stored
procedure was called by the administrative
scheduler. This column contains NULL if the task is
a JCL job or if the STATUS column does not contain
COMPLETED.

SQLERRP VARCHAR(8) Contains the SQLERRP set by DB2 when a stored
procedure was called by the administrative
scheduler. This column contains NULL if the task is
a JCL job or if the STATUS column does not contain
COMPLETED.

SQLERRMC VARCHAR(70) Contains the SQLERRMC set by DB2 when a stored
procedure was called by the administrative
scheduler. This column contains NULL if the task is
a JCL job or if the STATUS column does not contain
COMPLETED.

DB2_SSID VARCHAR(4) Contains the DB2 subsystem ID that is associated
with the administrative scheduler that ran the task
or should have run the task.

USERID VARCHAR(128) Contain the user ID that the task ran under.

Example 1: Retrieve status information about all of the tasks that have run in the
administrative scheduler task list:

SELECT *
FROM TABLE (DSNADM.ADMIN_TASK_STATUS()) AS T;

Removing a scheduled task
You can remove a scheduled task from the task list by using the
ADMIN_TASK_REMOVE stored procedure.

Even if a task has finished all of its executions and will never be executed again, it
remains in the task list until it is explicitly removed through a call to the
ADMIN_TASK_REMOVE stored procedure .

Restrictions:

v Only the user who scheduled a task or a user with SYSOPR, SYSADM, or
SYSCTRL authority can delete a task.

v A task cannot be removed while it is executing.
v A task that is the trigger for another task cannot be removed.

To remove a scheduled task:
1. Optional: Issue the following SQL statement to identify tasks that will never

execute again:
SELECT T.TASK_NAME
FROM TABLE (DSNADM.ADMIN_TASK_LIST()) T,

TABLE (DSNADM.ADMIN_TASK_STATUS()) S
WHERE T.TASK_NAME = S.TASK_NAME AND

(S.NUM_INVOCATIONS = T.MAX_INVOCATIONS OR
T.END_TIMESTAMP < CURRENT TIMESTAMP) AND
STATUS <> 'RUNNING'

2. Confirm the name of the task that you want to remove.

406 Administration Guide

|

|||

|||
|
|
|
|

|||
|
|
|
|

|||
|
|
|
|

|||
|
|

|||
|

|
|

|
|

|

|
|

|
|
|

|

|
|

|

|

|

|
|

|
|
|
|
|
|
|

|



3. Call the ADMIN_TASK_REMOVE stored procedure. You must provide the task
name as a parameter to the stored procedure. The scheduled task is removed
from the task list and its last execution status is deleted. Listing the scheduled
tasks and execution statuses no longer returns a row for this task. The task
name is freed up for future reuse.

ADMIN_TASK_REMOVE
The SYSPROC.ADMIN_TASK_REMOVE stored procedure removes a task from the
task list of the administrative task scheduler.

If the task is currently running, it continues to execute until completion, and the
task is not removed from the task list. If other tasks depend on the execution of the
task that is to be removed, this task is not removed from the task list of the
administrative task scheduler.

Environment

See the recommended environment in the installation job DSNTIJRA.

Authorization

Users with SYSOPR, SYSCTRL, or SYSADM authority can remove any task. Other
users who have EXECUTE authority on this stored procedure can remove tasks
that they added. Attempting to remove a task that was added by a different user
returns an error in the output.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_TASK_REMOVE ( task-name, return-code, message ) ��

Option descriptions

task-name
Specifies the task name of the task to be removed from the task list of the
administrative task scheduler.

This is an input parameter of type VARCHAR(128) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:

0 The call completed successfully.

12 The call did not complete successfully. The message output parameter
contains messages describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure.

Chapter 14. Scheduling administrative tasks 407

|
|
|
|
|

|
|
|

|
|
|
|

|

|

|

|

|
|
|
|

|

|
|
|

|||||||||||||||||||
|
||

|

|
|
|

|

|
|

||

||
|

|

|
|



The first messages in this area, if any, are generated by the stored procedure.
Messages that are generated by DB2 might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following Java sample shows how to invoke ADMIN_TASK_REMOVE:
import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Statement;
import java.sql.Timestamp;
import java.sql.Types;

Connection con =
DriverManager.getConnection("jdbc:db2://myserver:myport/mydatabase",
"myuser", "mypassword");

CallableStatement callStmt =
con.prepareCall("CALL SYSPROC.ADMIN_TASK_REMOVE(?, ?, ?)");

// provide the id of the task to be removed
callStmt.setString(1, "mytask");
// register output parameters for error management
callStmt.registerOutParameter(2, Types.INTEGER);
callStmt.registerOutParameter(3, Types.VARCHAR);
// execute the statement callStmt.execute();
// manage the return code
if ( callStmt.getInt(2) == 0 )

{
System.out.print("\nSuccessfully removed task "

+ callStmt.getString(1));
}

else
{
System.out.print("\nError code and message are: "

+ callStmt.getInt(2) + "/"
+ callStmt.getString(3));

}

Output

The output of this stored procedure includes the following output parameters,
which are described in “Option descriptions” on page 407:
v return-code

v message

Related reference

ADMIN_TASK_LIST (SQL Reference)

ADMIN_TASK_STATUS (SQL Reference)

Manually starting the administrative task scheduler
The administrative task scheduler normally starts when DB2 starts, but you can
start it manually if necessary.

Use one of the following commands to start the scheduler:
v To start a scheduler named admtproc from the operator’s console using the

default tracing option, issue the MVS system command:

408 Administration Guide

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|
|

|

|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_bif_admintasklist.htm#db2z_bif_admintasklist
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_bif_admintaskstatus.htm#db2z_bif_admintaskstatus


start admtproc

v To start a scheduler named admtproc from the operator’s console with tracing
enabled, issue the MVS system command:
start admtproc,trace=on

v To start a scheduler named admtproc from the operator’s console with tracing
disabled, issue the MVS system command:
start admtproc,trace=off

When the administrative task scheduler starts, message DSNA671I displays on the
console.

Manually stopping the administrative task scheduler
You can manually stop the administrative task scheduler. You might want to do
this when you are doing problem determination or in preparation for maintenance.

To stop the administrative task scheduler:
v Recommended method: To stop a scheduler named admtproc from the operator’s

console, issue the following MVS system command:
modify admtproc,appl=shutdown

You can expect the following results:
– The scheduler stops accepting requests and will not start new task executions.

It waits until the execution of all currently running tasks completes and then
terminates.

– Message DSNA670I displays on the console.
v Alternate method: If the MODIFY command does not shut down the scheduler,

issue the following MVS system command:
stop admtproc

You can expect the following results:
– Any task that was invoked by the scheduler and is currently executing is

interrupted.
– Message DSNA670I displays on the console.
Interrupted tasks keep their status as RUNNING and are not rescheduled until
the scheduler is started again. At startup, the status of the interrupted tasks is
set to UNKNOWN, and message DSNA690I is written into the status. Look for
UNKNOWN in the results of the ADMIN_TASK_STATUS user-defined function.
If UNKNOWN is present in the STATUS column of the output table, check to
see if the task has completed. If an interrupted task has not completed, you must
terminate the work.

Synchronization between administrative task schedulers in a
data sharing environment

The administrative task schedulers of a data sharing group synchronize themselves
through their task lists.

When a task is added, the stored procedure ADMIN_TASK_ADD is called by a
DB2 member. The scheduler associated with this DB2 member adds the task to the
common task list. The task list is shared among all schedulers associated with the
data sharing group members. The next time a scheduler accesses the list, it will
detect the new task.

Chapter 14. Scheduling administrative tasks 409

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|

|
|
|

|

|
|

|

|

|
|

|

|
|
|
|
|
|
|

|

|

|
|

|
|
|
|
|



All schedulers of the data sharing group access this task list once per minute, to
check for new tasks. The scheduler that adds a task does not have to check the list,
and can execute the task immediately. Any other scheduler can execute a task only
after to finding it in the updated task list. Any scheduler can remove a task
without waiting.

In order to remove a task, the stored procedure ADMIN_TASK_REMOVE is called
by a DB2 member. The scheduler associated with this DB2 member removes the
task from the common task list. The next time a scheduler checks the list, within
one minute after the task has been removed, it detects that the task has been
deleted.

No scheduler can execute a task without first locking it in the task list. This
locking prevents deleted tasks from being executed: the task is no longer present in
the list, so it cannot be locked. Because it cannot be locked, it cannot be executed.
The locking also prevents double executions: a task that one scheduler has in
progress is already locked, so no other scheduler can lock the task.

Troubleshooting the administrative task scheduler
Error and informational messages from the administrative task scheduler are
displayed on the console.

Error messages typically indicate a problem with the configuration of the
scheduler, or an error accessing its resources. Informational messages identify
important steps in the life cycle of the scheduler, such as starting, stopping,
automatically recovering one of the task lists, and so forth.
Related information

DB2 messages (DB2 Messages)

DB2 codes (DB2 Codes)

Enabling tracing for administrative task scheduler problem
determination
If you need to perform problem determination on the administrative task scheduler
in response to a message, you can use a trace.

Use the MVS system command MODIFY to enable or disable tracing.
v To start a trace for a scheduler named admtproc, issue the following MVS system

command:
modify admtproc,appl=trace=on

Substitute the name of your scheduler for admtproc.
v To stop a trace for a scheduler named admtproc, issue the following MVS system

command:
modify admtproc,appl=trace=off

v To configure the system so that tracing starts automatically when the scheduler
starts, modify the procedure parameter TRACE in the JCL job that starts the
scheduler. This job has the name that was assigned when the scheduler was
installed. The job was copied into one of the PROCLIB library during the
installation. Specify TRACE=ON.
To disable tracing, change the parameter to TRACE=OFF.

410 Administration Guide

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|

|
|
|
|

|

|

|

|
|
|
|

|

|
|

|

|

|
|

|

|
|
|
|
|

|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.msgs/db2z_msgs.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.codes/db2z_codes.htm


Recovering the administrative task scheduler task list
Two redundant, active copies of the task list exist to protect your system in case
there is a media failure. Console message DSNA679I indicates that one or both of
these copies is not accessible or is corrupted. If this happens, you can recover the
task list.

One copy of the task list is a shared VSAM data set, by default
DSNC910.TASKLIST, where DSNC910 is the DB2 catalog prefix. The other copy is
stored in the table ADMIN_TASKS in the SYSIBM schema. Include these redundant
copies as part of your backup and recovery plan.

Tip: If DB2 is offline, message DSNA679I displays on the console. As soon as DB2
starts, the administrative task scheduler performs an autonomic recovery of the
ADMIN_TASKS table using the contents of the VSAM task list. When the recovery
is complete, message DSNA695I displays on the console to indicate that both task
lists are again available. (By default, message DSNA679I displays on the console
once per minute when DB2 is offline. You can change the frequency of this
message by modifying the ERRFREQ parameter either as part of the started task or
with a console command.)

Use the following procedures to recover the task list if it is lost or damaged:
v To recover if the ADMIN_TASKS task list is corrupted:

1. Create a new and operable version of the table.
2. Grant SELECT, UPDATE, INSERT and DELETE privileges on the table to the

administrative task scheduler started task user.

As soon as the ADMIN_TASKS table is accessible again, the scheduler performs
an autonomic recovery of the table using the content of the VSAM task list.

v To recover if the VSAM file is corrupted, create an empty version of the VSAM
task list. As soon as the VSAM task list is accessible again, the scheduler
performs an autonomic recovery using the content of the ADMIN_TASKS task
list.

v If both task lists (the VSAM data set and the ADMIN_TASKS table) are
corrupted and inaccessible, the scheduler is no longer operable. Messages
DSNA681I and DSNA683I display on the console and the scheduler terminates.
To recover from this situation:
1. Create an empty version of the VSAM task list.
2. Recover the table space DSNADMDB.DSNADMTS, where the

ADMIN_TASKS table is located.
3. Restart the administrative task scheduler.

As soon as both task lists are accessible again, the scheduler performs an
autonomic recovery of the VSAM task list using the content of the recovered
ADMIN_TASKS table.

Problem executing a task
When the administrative task scheduler has problems executing a task, the error
description is written into the last execution status. The problem might be that the
task did not execute successfully, or the administrative task scheduler detected an
error at the end of task execution.

Symptoms

A task was scheduled successfully, but the action did not complete or did not
complete correctly.

Chapter 14. Scheduling administrative tasks 411

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|
|
|
|

|
|
|
|

|

|
|

|

|
|
|

|
|
|
|
|

|

|
|



Diagnosing the problem

Use the function ADMIN_TASK_STATUS to review the last execution status of a
task and identify any messages or return codes that were passed back to the
administrative task scheduler.

Important: The task status is overwritten as soon as the next execution of the task
starts.

Resolving the problem

Correct the underlying problem and review the schedule. The task can now be
executed successfully, but execution occurs only according to the schedule. Failed
executions are not rescheduled. If the task is no longer scheduled, for example
because it had a defined number of executions, you must remove it and add it
again, with adjusted criteria. If the task is still scheduled, you do not need to take
any further action unless the failed execution is required. You cannot adjust a
schedule, so if you do require the failed execution and all future executions, you
must remove the scheduled task and re-create it.

Problem in user-defined table functions
An SQL code and a few characters of an SQL error message are returned in
response to either the ADMIN_TASK_LIST function or the ADMIN_TASK_STATUS
function.

Symptoms

An SQL code is returned. When SQLCODE is -443, the error message cannot be
read directly, because only a few characters are available.

Diagnosing the problem

Problem diagnosis and resolution depends on the SQLCODE returned.

-443 The SQLCODE of -443 indicates that an error occurred in the function. Use
the message number, which is at the beginning of the truncated return
string, to diagnose the problem.

Any other value
Any other SQLCODE indicates that the error is not in the function or in
the administrative task scheduler. Troubleshoot the task itself.

Problems in stored procedures
An SQL code and a few characters of an SQL error message are returned in
response to either the ADMIN_TASK_ADD stored procedure or the
ADMIN_TASK_REMOVE stored procedure.

Symptoms

An SQL code is returned.

Diagnosing the problem

An SQL code other than 0 indicates that DB2 encountered a problem calling the
stored procedure.

412 Administration Guide

|

|
|
|

|
|

|

|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

|

|

||
|
|

|
|
|

|
|
|
|

|

|

|

|
|



An SQL code of 0 is accompanied by a return code and an error message in the
output parameters RETURN_CODE and MSG. The return code is 0 if the
scheduled task could be added or removed successfully. If the return code is 12, an
error occurred adding or removing the task, and the returned error message
describes the cause. The first eight characters of the error message contain the error
message ID.

Resolving the problem

Errors can originate with the stored procedure itself or with the administrative task
scheduler, in which case the error information is transmitted back to the stored
procedure for output. Most error messages are clearly in one category or the other.
For example, DSNA650I csect-name CANNOT CONNECT TO ADMIN SCHEDULER proc-name
indicates an error from the stored procedure. DSNA652I csect-name THE USER
user-name IS NOT ALLOWED TO ACCESS TASK task-name belongs to the
administrative task scheduler, which is checking the parameters and authorization
information passed to it.

Understanding the source of the error should be enough to correct the cause of the
problem. Most problems are incorrect usage of the stored procedure or an invalid
configuration.

Correct the underlying problem and resubmit the call to the stored procedure to
add or remove the task.

Architecture of the administrative task scheduler
The administrative task scheduler is a started task that can be seen as an additional
DB2 address space, even if it is in a separate process. The administrative task
scheduler is accessed through an SQL API and stores the scheduled tasks in two
redundant task lists.

The administrative task scheduler is part of DB2 for z/OS. When properly
configured, it is available and operable with the first DB2 start. The administrative
task scheduler starts as a task on the z/OS system during DB2 startup. The
administrative task scheduler has its own address space, named after the started
task name.

Each DB2 subsystem has its own distinct administrative task scheduler connected
to it. DB2 is aware of the administrative task scheduler whose name is defined in
the subsystem parameter ADMTPROC. The administrative task scheduler is aware
of DB2 by the subsystem name that is defined in the DB2SSID parameter of the
started task.

The administrative task scheduler has an SQL interface consisting of stored
procedures (ADMIN_TASK_ADD and ADMIN_TASK_REMOVE) and user-defined
table functions (ADMIN_TASK_LIST and ADMIN_TASK_STATUS) defined in DB2.
This SQL interface allows you to remotely add or remove administrative tasks, and
to list those tasks and their execution status.

The administrative task scheduler executes the tasks according to their defined
schedules. The status of the last execution is stored in the task lists as well, and
you can access it through the SQL interface.

The following figure shows the architecture of the administrative task scheduler.

Chapter 14. Scheduling administrative tasks 413

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|



Related reference

“ADMIN_TASK_ADD” on page 390
“ADMIN_TASK_REMOVE” on page 407
“ADMIN_TASK_LIST” on page 398
“ADMIN_TASK_STATUS” on page 403

The lifecycle of the administrative task scheduler
The administrative task scheduler starts as a task on the z/OS system during DB2
startup or initialization. The administrative task scheduler remains active unless it
is explicitly stopped, even when DB2 terminates.

Every DB2 subsystem has a coordinated administrative task scheduler address
space that it can start with a z/OS started task procedure.

Two instances of the same administrative task scheduler cannot run
simultaneously. To avoid starting up a duplicate administrative task scheduler, at
startup the administrative task scheduler checks that there is no address space
other than itself with the same name. If another address space with the same name
is active, then the new administrative task scheduler immediately shuts down and
displays a console message (DSNA674I). The administrative task scheduler can
check the address spaces only in the same system, not the entire Sysplex.

DB2 for z/OS Started task

DB2AADMT

Subsystem parameter

ADMTPROC = DB2AADMT

SSID = DB2A

Address space name is
same as started task name

Scheduler

DB2 task list
SYSIBM.ADMIN_TASKS

VSAM task list
..........
..........

consistency

External task list
ADMTDD1 = prefix.TASKLIST

DB2AADMTDB2AMSTR

SQL

START START

SQL

DB2 association
DB2SSID = DB2A

Call

SQL interface
(

)
stored procedures and

user-defined functions

Figure 28. Architecture of the administrative task scheduler

414 Administration Guide

|

|
|
|
|

|

|

|

|

|

|
|
|

|
|

|
|
|
|
|
|
|



When DB2 terminates, the administrative task scheduler remains active so that
scheduled JCL jobs can run. When DB2 starts again, it connects to the
administrative task scheduler automatically. It does not need to be restarted.

If you do not want the administrative task scheduler to run when DB2 is stopped,
you can specify the STOPONDB2STOP parameter in the started task before
restarting the administrative task scheduler. This parameter has no value. You
specify this parameter by entering STOPONDB2STOP without an equal sign (=) or
a value. When you specify this parameter, the administrative task scheduler
terminates after it finishes executing the tasks that are running and after executing
the tasks that are triggered by DB2 stopping. When DB2 starts again, the
administrative task scheduler is restarted.

Important: When you use the STOPONDB2STOP parameter to stop the
administrative task scheduler when DB2 is stopped, JCL tasks will not run. These
JCL tasks will not run, even if they could have run successfully had an
administrative task scheduler remained active.

scheduler

Scheduler executes
JCL jobs &

stored procedures

Start

yes

Stop

RRSAF
start event

RRSAF
stop event

no

Scheduler
with name in

ADMTPROC already
running?

Start

Connect to DB2

Scheduler executes
JCL jobs only

Disconnect from DB2

Figure 29. The lifecycle of the administrative task scheduler

Chapter 14. Scheduling administrative tasks 415

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|



Task lists of the administrative task scheduler
The administrative task scheduler manages tasks that are defined by users and
stores them in two redundant task lists. As a result, the administrative task
scheduler can continue working even if one task list is unavailable.

The two task lists are the DB2 table SYSIBM.ADMIN_TASKS and the VSAM data
set that is indicated in the data definition ADMTDD1 of the started task of the
administrative task scheduler. The administrative task scheduler maintains the
consistency between the two task lists.

The DB2 task list SYSIBM.ADMIN_TASKS is accessed through a connection to the
DB2 subsystem that is identified in the DB2SSID parameter of the started task of
the administrative task scheduler.

The administrative task scheduler works and updates both task lists redundantly,
and remains operable so long as at least one of the task lists is available. Therefore,
the administrative task scheduler continues working when DB2 is offline. If a task
list becomes unavailable, the administrative task scheduler continues to update the
task list. When both task lists are available again, the administrative task scheduler
automatically synchronizes them.

Architecture of the administrative task scheduler in a data
sharing environment

In a data sharing environment, each DB2 for z/OS Version 9.1 or later member of a
data sharing group is associated with its own administrative task scheduler. Each
member is associated with its own administrative task scheduler, even when those
members run in the same z/OS system. The administrative task schedulers share
their resources and interface.

The task list is shared by all administrative task schedulers in a data sharing
group, accessing a shared task file on shared storage (VSAM data set defaulting to
DSNC910.TASKLIST, where DSNC910 is the DB2 catalog prefix) and a redundant
task list in the DB2 system table SYSIBM.ADMIN_TASKS.

The following figure shows a data sharing group with two DB2 members and their
associated administrative task schedulers.

416 Administration Guide

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|

|

|
|
|
|
|

|
|
|
|

|
|
|



Tasks are not localized to a administrative task scheduler. They can be added,
removed, or executed in any of the administrative task schedulers in the data
sharing group with the same result. However, you can force the task to execute on
a given administrative task scheduler by specifying the associated DB2 subsystem
ID in the DB2SSID parameter when you schedule the task. The tasks that have no
affinity to a given DB2 subsystem are executed among all administrative task
schedulers. Their distribution cannot be predicted.

Security guidelines for the administrative task scheduler
The administrative task scheduler uses controls on access and execution to help
maintain a secure environment.

Installation job DSNTIJRA is responsible for establishing the security environment
for the administrative task scheduler. Installation job DSNTIJSG is responsible for
establishing the security environment in DB2 for accessing the scheduler interface.

The following figure shows all of the security checkpoints that are associated with
using the scheduler.

DB2 for z/OS

Started

task

Started

task

DB2AADMT

Subsystem parameter

ADMTPROC = DB2AADMT

SSID = DB2A

External task list
ADMTDD1 = prefix.TASKLIST

Security
DFLTUID = ...

DB2BADMT

ADMTPROC = DB2BADMT

SSID = DB2B

External task list
ADMTDD1 = prefix.TASKLIST

DB2 association
DB2SSID = DB2B

Security
DFLTUID = ...

DB2AMSTR DB2BMSTR

DB2 association
DB2SSID = DB2A

Coupling
facility

consistency

VSAM task list
..........
..........

SQL interface
(

)
stored procedures and
user-defined functions

DB2 task list
SYSIBM.ADMIN_TASKS

Subsystem parameter

Figure 30. Administrative task schedulers in a data sharing group

Chapter 14. Scheduling administrative tasks 417

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|



Related tasks

Installation step 20: Set up the administrative task scheduler (DB2 Installation
and Migration)

Migration step 28: Set up the administrative task scheduler (DB2 Installation
and Migration)

Installation step 16: Define and bind objects: DSNTIJSG (DB2 Installation and
Migration)

23 (DB2 Installation and Migration)
Related information

BPX.DAEMON FACILITY

User roles in the administrative task scheduler
Three user roles are involved in the use of the administrative task scheduler: the
started task user, the interface users and the execution users.

The scheduler started task is associated to the user STARTUID in RACF, so that the
scheduler is running in the security context of this user. This user, the started task
user, should have access to the resources of the scheduler: it is granted UPDATE
access on the DB2 table SYSIBM.ADMIN_TASKS and it is allowed to write into the
VSAM data set containing the redundant task list.

DB2 for z/OS

Interface
RACF

TASK 1
USERID = NULL

PASSWORD = NULL

DB2 task list
SYSIBM.ADMIN_TASKS

VSAM task list
Task 1

USERID = NULL
Task 2

USERID = XXX

consistency

TASK 2
USERID = XXX

PASSWORD = ***

DB2AMSTR

Users

PassTickets

XXX

Stored procedures
ADMIN_TASK_ADD()

DFLTUID

granted users

Add

Add

Passwords

DB2AADMT

JES reader

Execute JCL

Call

Get PassTicket
and log in

XXXDFLTUID

Check
credentials

Execution
thread

Task 1

Execution
thread

Task 2

SQL Call

scheduler

Check
access rights

1
2

3

SQL call
stored procedures

Task lists access

Figure 31. Security checkpoints for the administrative task scheduler

418 Administration Guide

|

|
|
|
|

|
|

|
|

|
|

|

|

|

|

|
|

|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_setupadminsched.htm#db2z_setupadminsched
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_setupadminsched.htm#db2z_setupadminsched
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_setupadminschedmigr.htm#db2z_setupadminschedmigr
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_setupadminschedmigr.htm#db2z_setupadminschedmigr
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntijsg.htm#db2z_dsntijsg
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntijsg.htm#db2z_dsntijsg
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntijsgmigr.htm#db2z_dsntijsgmigr
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/bpxzb270/16.3.2.2


The users or groups of users who have access to the SQL interface of the scheduler
are allowed to add, remove or list scheduled tasks. To specify who is authorized to
add, remove or list a scheduled task, use the GRANT command in DB2. All
interface users are granted EXECUTE access on the scheduler stored procedures
and user-defined table functions. They also are granted READ access on the DB2
table SYSIBM.ADMIN_TASKS.

Each scheduled task in the scheduler is associated with an execution user who will
execute this task. When not explicitly given by the user, a default execution user
DFLTUID defined in the scheduler started task is used. The scheduler execution
threads switch to the security context of this user before executing the task.

Protection of the interface of the administrative task scheduler
The administrative task scheduler interface is protected against unauthorized
access by other users. Credentials of a task are checked but not stored.

Users with EXECUTE rights on one of the stored procedures or user-defined table
functions of the scheduler interface are allowed to execute the corresponding
functionality: adding a scheduled task, removing a scheduled task, or listing the
scheduled tasks or their execution status. The entire interface is configured by
default with PUBLIC access rights during the installation.

Recommendations:

v Grant rights to groups or roles, rather than to individual authorization IDs.
v Restrict access to the ADMIN_TASK_ADD and ADMIN_TASK_REMOVE stored

procedures to users with a business need for their use. Access to the
user-defined table functions that list tasks and execution status can remain
unrestricted.

The authorization ID of the DB2 thread that called the stored procedure
ADMIN_TASK_ADD is passed to the scheduler and stored in the task list with the
the task definition. The ADMIN_TASK_ADD stored procedure gathers the
authorities granted to this authorization ID from the subsystem parameters and
from the catalog table, and passes them over to the scheduler. The same
mechanism is used in ADMIN_TASK_REMOVE to verify that the user is permitted
to remove the task.

A task in the scheduler task list can be removed by the owner of the task, or by
any user that has SYSOPR, SYSCTRL, or SYSADM privileges. The owner of a task
is the CURRENT SQLID of the process at the time the task was added to the task
list.

Protection of the resources of the administrative task
scheduler

The task lists of the administrative task scheduler are protected against
unauthorized use by users other than the started task execution user.

The VSAM resource (by default DSNC910.TASKLIST, where DSNC910 is the DB2
catalog prefix) that stores the task list of the administrative task scheduler must be
protected in RACF against unauthorized access. Only the administrative task
scheduler started task user has UPDATE authority on the VSAM resources. No
other users should have any access.

Chapter 14. Scheduling administrative tasks 419

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|

|
|

|
|
|
|
|



A similar security concept is implemented for the SYSIBM.ADMIN_TASKS table,
which stores a redundant copy of the scheduled tasks. Only the scheduler started
tasks user has SELECT, INSERT, DELETE, or UPDATE authority on this resource.
Users with EXECUTE rights on the user-defined functions ADMIN_TASK_LIST
and ADMIN_TASK_STATUS have only SELECT authority on the table
SYSIBM.ADMIN_TASKS.

Secure execution of tasks in the administrative task scheduler
The execution threads of the administrative task scheduler always switch to the
security context of the execution user before executing a task. The user is
authenticated through the use of PassTickets.

The first action that is taken by the administrative task scheduler when starting
task execution is to switch its security context to the context of the execution user.
The execution user can be explicitly identified by the user-ID parameter of the
ADMIN_TASK_ADD stored procedure, or can be the default user.

If the task must run under a certain authority, including an authority that is
different from the caller of the stored procedure, credentials are passed on to the
administrative task scheduler. These credentials are not stored anywhere. They are
validated by RACF to ensure that the caller of the stored procedure at the task
definition time has the right to assume the desired security context. Therefore, you
can use a PassTicket (encrypted single-use password) in the password parameter of
the ADMIN_TASK_ADD stored procedure. If no credentials are provided, then the
administrative task scheduler executes the tasks under its default execution user.

The administrative task scheduler generates and uses PassTickets for executing the
tasks under the corresponding authority. Each task executes after switching to the
requested security context using the user ID and the generated PassTicket.

No password is stored in the administrative task scheduler, but the administrative
task scheduler is defined as a trusted program in RACF, and is allowed to get
PassTickets for any user. The administrative task scheduler sub-thread requires a
PassTicket from RACF and logs in using this single-use password. The execution of
the task then occurs in the switched security concept, allowing the task to have
access to the resources defined for this execution user. After the execution, the
security context is switched back to the scheduled task user.

The started task module (DSNADMT0) of the administrative task scheduler uses
the pthread_security_np() function to switch users. If the BPX.DAEMON facility
class is active, then DSNADMT0 must be defined to RACF program control. If the
BPX.DAEMON facility class is not active, or if the administrative task scheduler is
not defined to RACF program control, error EDC5139I is returned when trying to
switch to another security level.

The administrative task scheduler resources should be protected from unintended
impact when executing a task. Therefore, the started task user (STARTUID), which
has access to the administrative task scheduler resources, must not be used as the
default execution user (DFLTUID), and it should not be specified in the user-ID
parameter of the ADMIN_TASK_ADD stored procedure. The administrative task
scheduler will not start if the started task user and the default execution user are
identical. The default execution user should have as few rights as possible to avoid
impacting any resources if no user is defined for a task.

420 Administration Guide

|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|



The default execution user has no authority except to attach to DB2 and write to
the JES reader.

Execution of scheduled tasks in the administrative task scheduler
The administrative task scheduler manages the point in time, the security, the
input parameters and the status of the task execution.

The scheduler work is based on scheduled tasks defined by the user. A task is
mainly composed of a schedule definition and a work definition. The scheduler
work is based on scheduled tasks, each scheduled task is a basic user-defined unit
of work. Each task is associated with a unique task name. Up to 9999 tasks are
supported in the scheduler at one time.

A scheduled task consists of a schedule and a work definition. The schedule part
tells the scheduler when to execute the task. A user defines an execution window
of time during which execution is permitted and either a time-based schedule or
an event that triggers the execution of the job in this window. The work definition
specifies what to execute, either a JCL job or a stored procedure, and the authority
(user) under which to execute the task.

Multi-threading in the administrative task scheduler
The administrative task scheduler uses a pool of execution threads that allow it to
execute many tasks simultaneously.

The scheduler is multi-threaded to be able to simultaneously execute different
tasks: it starts the execution of scheduled tasks and then waits for their completion.
The execution of a task is delegated by the scheduler to one of its sub-threads that
starts the execution, waits until the execution completes, and gathers the execution
status. Each sub-thread can be used for any type of tasks.

The maximum number of sub-threads is determined by the parameter MAXTHD
of the scheduler started task, which by default is 99. Therefore, up to 99 tasks can
be executed simultaneously by the scheduler. To reduce the memory usage of the
scheduler, reduce the number of sub-threads by specifying a lower MAXTHD
parameter value.

Chapter 14. Scheduling administrative tasks 421

|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|



The minimum permitted value for MAXTHD is 1, but should not be lower than
the maximum number of tasks that you expect to execute simultaneously. If there
are more tasks to be executed simultaneously than sub-threads available, some
tasks will not start executing immediately. The scheduler will try to find an
available sub-thread within one minute of when the task is scheduled for
execution. As a result, multiple short tasks might be serialized in the same
sub-thread, provided that their total execution time does not go over this minute.

The parameters of the scheduler started task are not positional. Place parameters in
a single string separated by blank spaces.

If a task execution still cannot be started one minute after it should have been, the
execution is skipped and the last execution status of this task is set to the
NOTRUN state. The following message displays on the operator’s console.
DSNA678I csect-name THE NUMBER OF TASKS TO BE CONCURRENTLY
EXECUTED BY THE ADMIN SCHEDULER proc-name EXCEEDS max-threads

If this happens, increase the MAXTHD parameter value and restart the scheduler.

Scheduling execution of a stored procedure
You can schedule a stored procedure to run at a particular time, at an interval, or
when a specified event occurs. The administrative task scheduler manages these
requests.

DB2 for z/OS

Interface

Remove

Stored procedures

ADMIN_TASK_REMOVE()

DB2 task list
SYSIBM.ADMIN_TASKS

VSAM task list
..........
..........

consistency

Refresh task lists

DB2AMSTR

SQL
select from

SQL call

Call

Call

SQL call
stored procedures

Execution
thread

User-defined functions

ADMIN_TASK_LIST()

ADMIN_TASK_STATUS()

Task name scheduler

Execution
thread

Add

-Parameter of the started task.
-Control maximum number
of execution threads.

-Default value is 99.

MAXTHD

Execute JCL

JES reader

Task lists access

Call

ADMIN_TASK_ADD()

Execution
thread

Task

Figure 32. Multi-threading in the administrative task scheduler

422 Administration Guide

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|

|

|
|
|



To schedule execution of a stored procedure:
1. Add a task for the administrative task scheduler by using the

ADMIN_TASK_ADD stored procedure. When you add your task, specify which
stored procedure to run and when to run it. Use one of the following
parameters or groups of parameters of ADMIN_TASK_ADD to control when
the stored procedure is run:

Option Description

interval The stored procedure is to execute at the
specified regular interval.

point-in-time The stored procedure is to execute at the
specified times.

trigger-task-name The stored procedure is to execute when the
specified task occurs.

trigger-task-name trigger-task-cond
trigger-task-code

The stored procedure is to execute when the
specified task and task result occur.

Optionally, you can also use one or more of the following parameters to control
when the stored procedure runs:

begin-timestamp
Earliest permitted execution time

end-timestamp
Latest permitted execution time

max-invocations
Maximum number of executions

When the specified time or event occurs for the stored procedure to run, the
administrative task scheduler calls the stored procedure in DB2.

2. Optional: After the task finishes execution, check the status by using the
ADMIN_TASK_STATUS function. This function returns a table with one row
that indicates the last execution status for each scheduled task. If the scheduled
task is a stored procedure, the JOB_ID, MAXRC, COMPLETION_TYPE,
SYSTEM_ABENDCD, and USER_ABENDCD fields contain null values. In the
case of a DB2 error, the SQLCODE, SQLSTATE, SQLERRMC, and SQLERRP
fields contain the information that DB2 returned from calling the stored
procedure.

Related tasks

“Adding a task” on page 385
Related reference

“ADMIN_TASK_ADD” on page 390

ADMIN_TASK_STATUS (SQL Reference)

Scheduling stored procedures (DB2 9 for z/OS Stored Procedures: Through the
CALL and Beyond)

How the administrative task scheduler executes a stored
procedure
You can use the administrative task scheduler to execute stored procedures at a
specific time. You must first define a task for the stored procedure execution. Then,
when the specified time or event occurs for the stored procedure to run, the
administrative task scheduler calls the stored procedure.

Chapter 14. Scheduling administrative tasks 423

|

|
|
|
|
|

|||

||
|

||
|

||
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|

|

|

|

|

|
|

|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_bif_admintaskstatus.htm#db2z_bif_admintaskstatus
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=24-3-3.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=24-3-3.htm


Specifically, the administrative task scheduler performs the following actions:
1. The administrative task scheduler connects to the DB2 member that is specified

in the task parameter DB2SSID. If the administrative task scheduler cannot
establish a connection, it skips execution of the stored procedure and sets the
last execution status to the NOTRUN state.

2. The administrative task scheduler retrieves parameter values for the stored
procedure from DB2 by using the SELECT statement that is defined in the task
parameter procedure-input. If an error occurs when the administrative task
scheduler retrieves those parameter values, the administrative task scheduler:
v Does not call the stored procedure.
v Sets the last execution status of the task to the error code that is returned by

DB2.
3. The administrative task scheduler issues an SQL CALL statement with the

retrieved parameter values and a stored procedure name. The procedure name
is concatenated from the task parameters procedure-schema and procedure-name.
The SQL CALL statement is synchronous, and the execution thread is blocked
until the stored procedure finishes execution. The administrative task scheduler
sets the last execution status to the values that are returned by DB2.

4. The administrative task scheduler issues a COMMIT statement.
5. The administrative task scheduler closes the connection to DB2.

How the administrative task scheduler works with Unicode
The administrative task scheduler can retrieve and pass Unicode parameters to a
DB2 stored procedure.

If the stored procedure accepts Unicode parameters, or if it does not accept
Unicode parameters but the retrieved parameter values do not contain any special
character that cannot be expressed in EBCDIC or ASCII, no character will be
broken.

However, the Unicode values must be retrieved through a select statement
expressed in EBCDIC, so that special characters cannot be used in the table names
or in the column names where the parameter values are retrieved.

Scheduled execution of a JCL job
The administrative task scheduler sends the JCL job to the JES reader. The
execution sub-thread of the administrative task scheduler can optionally wait for
the job to terminate and purge the job from the JES job list.

One execution sub-thread of the administrative task scheduler is used to execute a
task that locates a data set containing a JCL job. The sub-thread reads the JCL job
from the data set where it is stored, identified by the task parameters JCL-library
and JCL-member. The data set can be sequential or partitioned. For a sequential
data set, JCL-member is NULL.

In the case of an error, the error is written into the last execution status of the task.
Otherwise, the job is submitted to the internal JES reader. According to the job_wait
parameter, the sub-thread waits for the execution completion or not. When the
sub-thread waits for completion, the last execution status includes the complete
returned values provided by the JES reader. Otherwise, it contains the JCL job ID
and a success message.

424 Administration Guide

|

|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|
|

|

|

|

|
|

|
|
|
|

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|



v If job_wait is set to NO, the sub-thread does not wait until the job completes
execution and returns immediately after the job submission. The task execution
status is set to the submission status, the result of the job execution itself will
not be available.

v If job_wait is set to YES, the sub-thread simulates a synchronous execution of the
JCL job. It waits until the job execution completes, get the job status from the JES
reader and fills in the last execution status of the task.

v If job_wait is set toPURGE, the sub-thread purges the job output from the JES
reader after execution. Execution is the same as for job_wait=YES.

JCL job execution status always contains a null value in the SQLCODE, SQLSTATE,
SQLERRMC, and SQLERRP fields. If the job can be submitted successfully to the
JES reader, the field JOB_ID contains the ID of the job in the JES reader. If the job
is executed asynchronously, the MAXRC, COMPLETION_TYPE,
SYSTEM_ABENDCD and USER_ABENDCD fields will also be null values, because
the sub-thread does not wait for job completion before writing the status. If the job
was executed synchronously, those fields contain the values returned by the JES
reader.

Execution of scheduled tasks in a data sharing environment
All administrative task schedulers of the data sharing group cooperate in the
execution of the scheduled tasks.

In a data sharing environment, several schedulers cooperate in the execution of the
scheduled tasks. If a task has a member affinity, that is, if its parameter DB2-SSID
contains the name of a DB2 member, only the scheduler that is associated with this
DB2 member will execute this task. The task is executed as in a non-data sharing
mode. If this scheduler is unavailable, the task will not be executed.

When a task has no member affinity, that is, if DB2-SSID is a null value, the
scheduler that wakes first executes the task. If the task execution can complete on
this scheduler, for example because its associated DB2 member is not running or
because all of its execution threads are busy, other schedulers will not try executing
this task. However, if the scheduler cannot start the execution, the other schedulers
will try successively to start executing the task until one successes or all fail in
executing the task.

The distribution of a task execution on the one or the other scheduler cannot be
predicted. Successive executions of the same task can be done on different
schedulers.

Chapter 14. Scheduling administrative tasks 425

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|



426 Administration Guide



Chapter 15. Monitoring and controlling DB2 and its
connections

You can control and monitor various aspects of a DB2 for z/OS environment.

The following operations, described in this section, require more understanding of
what DB2 is doing:
Related concepts

Chapter 11, “DB2 basic operational concepts,” on page 365

Controlling DB2 databases and buffer pools
To control DB2 databases, you can use the START DATABASE, DISPLAY
DATABASE, and STOP DATABASE commands.

START DATABASE
Makes a database or individual partitions available. Also removes pages
from the logical page list (LPL).

DISPLAY DATABASE
Displays status, user, and locking information for a database.

STOP DATABASE
Makes a database or individual partitions unavailable after existing users
have quiesced. DB2 also closes and deallocates the data sets.

Related tasks

“Starting databases”
“Monitoring databases” on page 429
“Using the STOP DATABASE command to make objects available” on page 436

Starting databases
The START DATABASE (*) command starts all databases for which you have the
STARTDB privilege.

The privilege can be explicitly granted, or it can belong implicitly to a level
of authority (DBMAINT and above). The command starts the database, but not
necessarily all the objects that it contains. Any table spaces or index spaces in a
restricted mode remain in a restricted mode and are not started.

The START DATABASE (*) command does not start the DB2 directory (DSNDB01),
the DB2 catalog (DSNDB06), or the DB2 work file database (called DSNDB07,
except in a data sharing environment). Start these databases explicitly by using the
SPACENAM option. Also, the START DATABASE (*) command does not start table
spaces or index spaces that have been explicitly stopped by the STOP DATABASE
command.

© Copyright IBM Corp. 1982, 2009 427



Use the PART keyword of the START DATABASE command to start the individual
partitions of a table space. It can also be used to start individual partitions of a
partitioning index or logical partitions of a nonpartitioning index. The started or
stopped state of other partitions is unchanged.

The START DATABASE and STOP DATABASE commands can be used with the
SPACENAM and PART options to control table spaces, index spaces, or partitions.
For example, the following command starts two partitions of table space
DSN8S91E in the database DSN8D91A:
-START DATABASE (DSN8D91A) SPACENAM (DSN8S91E) PART (1,2)

Starting an object with a specific status
You can start a database, table space, or an index space with a specific status that
limits access to the object.

Status Provides this access
RW Read-write. This is the default value.
RO Read only. You cannot change the data.
UT Utility only. The object is available only to the DB2 utilities.

Databases, table spaces, and index spaces are started with RW status when they
are created. You can make any of them unavailable by using the STOP DATABASE
command. DB2 can also make them unavailable when it detects an error.

In cases when the object was explicitly stopped, you can make them available
again using the START DATABASE command. For example, the following
command starts all table spaces and index spaces in database DSN8D91A for
read-only access:
-START DATABASE (DSN8D91A) SPACENAM(*) ACCESS(RO)

The system responds with this message:
DSN9022I - DSNTDDIS '-START DATABASE' NORMAL COMPLETION

Starting a table space or index space that has restrictions
DB2 can make an object unavailable for a variety of reasons. Typically, in those
cases, the data is unreliable, and the object needs some attention before it can be
started.

An example of such a restriction is when the table space is placed in
COPY-pending status. That status makes a table space or partition unavailable
until an image copy of the object is taken.

Important: These restrictions are a necessary part of protecting the integrity of the
data. If you start an object that has restrictions, the data in the object might not be
reliable.

428 Administration Guide



However, in certain circumstances, it might be reasonable to force availability. For
example, a table might contain test data whose consistency is not critical. In those
cases, start the objects by using the ACCESS(FORCE) option of the START
DATABASE command. For example:
-START DATABASE (DSN8D91A) SPACENAM (DSN8S91E) ACCESS(FORCE)

The command releases most restrictions for the named objects. These objects must
be explicitly named in a list following the SPACENAM option.

DB2 cannot process the START DATABASE ACCESS(FORCE) request if
postponed-abort or indoubt units of recovery exist. The RESTP (restart-pending)
status and the AREST (advisory restart-pending) status remain in effect until either
automatic backout processing completes or you perform one of the following
actions:
v Issue the RECOVER POSTPONED command to complete backout activity.
v Issue the RECOVER POSTPONED CANCEL command to cancel all of the

postponed-abort units of recovery.
v Conditionally restart or cold start DB2.

DB2 cannot apply the START DATABASE ACCESS(FORCE) command to that
object if a utility from a previous release of DB2 places an object in one of the
following restrictive states:
v UTRO (utility restrictive state, read-only access allowed)
v UTRW (utility restrictive state, read and write access allowed)
v UTUT (utility restrictive state, utility exclusive control)

To reset these restrictive states, you must start the release of DB2 that originally
ran the utility and terminate the utility from that release.

Related tasks

“Resolving postponed units of recovery” on page 534

Monitoring databases
You can use the DISPLAY DATABASE command to obtain information about the
status of databases and the table spaces and index spaces within each database. If
applicable, the output also includes information about physical I/O errors for
those objects.

To monitor databases:
1. Issue the DISPLAY DATABASE command as follows:

-DISPLAY DATABASE (dbname)

This command results in the following messages:
11:44:32 DSNT360I - ****************************************************
11:44:32 DSNT361I - * DISPLAY DATABASE SUMMARY
11:44:32 * report_type_list
11:44:32 DSNT360I - ****************************************************
11:44:32 DSNT362I - DATABASE = dbname STATUS = xx

DBD LENGTH = yyyy
11:44:32 DSNT397I -
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- --------------- --------- -------- -------- -----

Chapter 15. Monitoring and controlling DB2 and its connections 429



D1 TS RW,UTRO
D2 TS RW
D3 TS STOP
D4 IX RO
D5 IX STOP
D6 IX UT
LOB1 LS RW
******* DISPLAY OF DATABASE dbname ENDED **********************
11:45:15 DSN9022I - DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

In the preceding messages:
v report_type_list indicates which options were included when the DISPLAY

DATABASE command was issued.
v dbname is an 8-byte character string that indicates the database name. The

pattern-matching character, *, is allowed at the beginning, middle, and end of
dbname.

v STATUS is a combination of one or more status codes, delimited by commas.
The maximum length of the string is 17 characters. If the status exceeds 17
characters, those characters are wrapped onto the next status line. Anything
that exceeds 17 characters on the second status line is truncated.

2. Optional: Use the pattern-matching character, *, in the DISPLAY DATABASE,
START DATABASE, and STOP DATABASE commands. You can use the
pattern-matching character in the beginning, middle, and end of the database
and table space names.

3. Use additional keywords to tailor the DISPLAY DATABASE command so that
you can monitor what you want:
v The keyword ONLY can be added to the command DISPLAY DATABASE.

When ONLY is specified with the DATABASE keyword but not the
SPACENAM keyword, all other keywords except RESTRICT, LIMIT, and
AFTER are ignored. Use DISPLAY DATABASE ONLY as follows:
-DISPLAY DATABASE(*S*DB*) ONLY

This command results in the following messages:
11:44:32 DSNT360I - ****************************************************
11:44:32 DSNT361I - * DISPLAY DATABASE SUMMARY
11:44:32 * GLOBAL
11:44:32 DSNT360I - ****************************************************
11:44:32 DSNT362I - DATABASE = DSNDB01 STATUS = RW

DBD LENGTH = 8066
11:44:32 DSNT360I - ****************************************************
11:44:32 DSNT362I - DATABASE = DSNDB04 STATUS = RW

DBD LENGTH = 21294
11:44:32 DSNT360I - ****************************************************
11:44:32 DSNT362I - DATABASE = DSNDB06 STATUS = RW

DBD LENGTH = 32985
11:45:15 DSN9022I - DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

In the preceding messages:
– DATABASE (*S*DB*) displays databases that begin with any letter, have

the letter S followed by any letters, and then the letters DB followed by
any letters.

– ONLY restricts the display to databases names that fit the criteria.
v The RESTRICT option of the DISPLAY DATABASE command limits the

display to objects that are currently set to a restrictive status. You can
additionally specify one or more keywords to limit the display further to
include only objects that are set to a particular restrictive status.

430 Administration Guide



v The ADVISORY option on the DISPLAY DATABASE command limits the
display to table spaces or indexes that require some corrective action. Use the
DISPLAY DATABASE ADVISORY command without the RESTRICT option
to determine when:
– An index space is in the informational COPY-pending (ICOPY) advisory

status.
– A base table space is in the auxiliary-warning (AUXW) advisory status.

v The OVERVIEW option of the DISPLAY DATABASE command displays all
objects within a database. This option shows each object in the database on
one line, does not isolate an object by partition, and does not show exception
states. The OVERVIEW option displays only object types and the number of
data set partitions in each object. OVERVIEW is mutually exclusive with all
keywords other than SPACENAM, LIMIT, and AFTER. Use DISPLAY
DATABASE OVERVIEW as follows:
-DISPLAY DATABASE(DB486A) SPACENAM(*) OVERVIEW

This command results in the following messages:
DSNT360I = ****************************************
DSNT361I = * DISPLAY DATABASE SUMMARY 483

* GLOBAL OVERVIEW
DSNT360I = ****************************************
DSNT362I = DATABASE = DB486A STATUS = RW 485

DBD LENGTH = 4028
DSNT397I = 486
NAME TYPE PARTS
-------- ---- -----

TS486A TS 0004
IX486A IX L0004
IX486B IX 0004
TS486C TS
IX486C IX
******* DISPLAY OF DATABASE DB486A ENDED *********************
DSN9022I = DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

The display indicates that five objects are in database DB486A: two table
spaces and three indexes. Table space TS486A has four parts, and table space
TS486C is nonpartitioned. Index IX486A is a nonpartitioning index for table
space TS486A, and index IX486B is a partitioned index with four parts for
table space TS486A. Index IX486C is a nonpartitioned index for table space

TS486C.
Related reference

-DISPLAY DATABASE (DB2) (DB2 Command Reference)

Advisory or restrictive states (DB2 Utilities)

Obtaining information about application programs
You can obtain various kinds of information about application programs that use
particular databases, table spaces, or index spaces by using the DISPLAY
DATABASE command. You can identify who or what is using an object and what
locks are being held on various objects.

Identifying who and what are using an object
You can obtain information about users and applications that are using an object,
and about the units of work that are accessing data.

You can obtain the following information:

Chapter 15. Monitoring and controlling DB2 and its connections 431

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_displaydatabase.htm#db2z_cmd_displaydatabase
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_advisoryrestrictivestates.htm#db2z_advisoryrestrictivestates


v The names of the application programs currently using the database or space
v The authorization IDs of the users of these application programs
v The logical unit of work IDs of the database access threads that access data on

behalf of the specified remote locations

For example, to obtain this information you can issue a command that names
partitions 2, 3, and 4 in table space TPAUGF01 in database DBAUGF01:
-DISPLAY DATABASE (DBAUGF01) SPACENAM (TPAUGF01) PART (2:4) USE

DB2 returns a list similar to this one:
DSNT360I : ***********************************
DSNT361I : * DISPLAY DATABASE SUMMARY

* GLOBAL USE
DSNT360I : ***********************************
DSNT362I : DATABASE = DBAUGF01 STATUS = RW

DBD LENGTH = 8066
DSNT397I :
NAME TYPE PART STATUS CONNID CORRID USERID
-------- ---- ----- ----------------- -------- ------------ --------

TPAUGF01 TS 0002 RW BATCH S3341209 ADMF001
- MEMBER NAME V61A

TPAUGF01 TS 0003 RW BATCH S3341209 ADMF001
- MEMBER NAME V61A

TPAUGF01 TS 0004 RW BATCH S3341209 ADMF001
- MEMBER NAME V61A

******* DISPLAY OF DATABASE DBAUGF01 ENDED **********************
DSN9022I : DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

Determining which programs are holding locks on an object
You can use the DISPLAY DATABASE command to determine which programs are
holding locks on an object.

To determine which application programs currently hold locks on the
database or space, issue a command that names table space TSPART in database
DB01:
-DISPLAY DATABASE(DB01) SPACENAM(TSPART) LOCKS

DB2 returns a list similar to this one:
17:45:42 DSNT360I - ****************************************************
17:45:42 DSNT361I - * DISPLAY DATABASE SUMMARY
17:45:42 * GLOBAL LOCKS
17:45:42 DSNT360I - ****************************************************
17:45:42 DSNT362I - DATABASE = DB01 STATUS = RW
17:45:42 DBD LENGTH = yyyy
17:45:42 DSNT397I -
NAME TYPE PART STATUS CONNID CORRID LOCKINFO
-------- ---- ----- ----------------- -------- ------------ ---------

TSPART TS 0001 RW LSS001 DSN2SQL H-IX,P,C
TSPART TS 0002 RW LSS001 DSN2SQL H-IX,P,C
TSPART TS 0003 RW LSS001 DSN2SQL H-IX,P,C
TSPART TS 0004 RW LSS001 DSN2SQL H-IX,P,C
******* DISPLAY OF DATABASE DB01 ENDED **********************
17:45:44 DSN9022I . DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

432 Administration Guide



Use the LOCKS ONLY keywords on the DISPLAY DATABASE command to
display only spaces that have locks. You can substitute the LOCKS keyword with
USE, CLAIMERS, LPL, or WEPR to display only databases that fit the criteria. Use
DISPLAY DATABASE as follows:
-DISPLAY DATABASE (DSNDB06) SPACENAM(*) LOCKS ONLY

This command results in the following messages:
11:44:32 DSNT360I - ****************************************************
11:44:32 DSNT361I - * DISPLAY DATABASE SUMMARY
11:44:32 * GLOBAL LOCKS
11:44:32 DSNT360I - ****************************************************
11:44:32 DSNT362I - DATABASE = DSNDB06 STATUS = RW

DBD LENGTH = 60560
11:44:32 DSNT397I -
NAME TYPE PART STATUS CONNID CORRID LOCKINFO
-------- ---- ----- ----------------- -------- ------------ ---------

SYSDBASE TS RW DSN 020.DBCMD 06 H-IS,S,C
******* DISPLAY OF DATABASE DSNDB06 ENDED **********************
11:45:15 DSN9022I - DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

Related reference

-DISPLAY DATABASE (DB2) (DB2 Command Reference)
Related information

DSNT396I (DB2 Messages)

Obtaining information about and handling pages in error
You can view information about pages that are in error.

Characteristics of pages that are in error
A page that is in error can be logically or physically in error.

A page is logically in error if its problem can be fixed without redefining
new disk tracks or volumes. For example, if DB2 cannot write a page to disk
because of a connectivity problem, the page is logically in error. DB2 inserts entries
for pages that are logically in error in a logical page list (LPL).

A page is physically in error if physical errors exist, such as device errors. Such
errors appear on the write error page range (WEPR). The range has a low and high
page, which are the same if only one page has errors.

If the cause of the problem is undetermined, the error is first recorded in the LPL.
If recovery from the LPL is unsuccessful, the error is then recorded on the error
page range.

Write errors for large object (LOB) table spaces that are defined with LOG NO
cause the unit of work to be rolled back. Because the pages are written during
normal deferred write processing, they can appear in the LPL and WEPR. The LOB
data pages for a LOB table space with the LOG NO attribute are not written to
LPL or WEPR. The space map pages are written during normal deferred write
processing and can appear in the LPL and WEPR.

Chapter 15. Monitoring and controlling DB2 and its connections 433

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_displaydatabase.htm#db2z_cmd_displaydatabase
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnt396i.htm#dsnt396i


A program that tries to read data from a page that is listed on the LPL or WEPR
receives an SQLCODE for “resource unavailable.” To access the page (or pages in
the error range), you must first recover the data from the existing database copy

and the log.

Displaying the logical page list
You can check the existence of logical page list (LPL) entries by issuing the
DISPLAY DATABASE command with the LPL option.

The ONLY option restricts the output to objects that have LPL pages. For
example:
-DISPLAY DATABASE(DBFW8401) SPACENAM(*) LPL ONLY

The following output is produced:
DSNT360I = ***********************************************************
DSNT361I = * DISPLAY DATABASE SUMMARY

* GLOBAL LPL
DSNT360I = ***********************************************************
DSNT362I = DATABASE = DBFW8401 STATUS = RW,LPL

DBD LENGTH = 8066
DSNT397I =
NAME TYPE PART STATUS LPL PAGES
-------- ---- ----- ----------------- ------------------

TPFW8401 TS 0001 RW,LPL 000000-000004
ICFW8401 IX L0001 RW,LPL 000000,000003
IXFW8402 IX RW,LPL 000000,000003-000005
---- 000007,000008-00000B
---- 000080-000090
******* DISPLAY OF DATABASE DBFW8401 ENDED **********************
DSN9022I = DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

The display indicates that the pages that are listed in the LPL PAGES column are

unavailable for access.
Related reference

-DISPLAY DATABASE (DB2) (DB2 Command Reference)

Removing pages from the logical page list
Although the DB2 subsystem always attempts automated recovery of LPL pages
when the pages are added to the LPL, you can also perform manual recovery.

When an object has pages on the LPL, you can use one of several methods
to manually remove those pages and make them available for access when DB2 is
running:
v Start the object with access (RW) or (RO). That command is valid even if the

table space is already started.
When you issue the START DATABASE command, you see message DSNI006I,
indicating that LPL recovery has begun. Message DSNI022I is issued periodically
to give you the progress of the recovery. When recovery is complete, you see
DSNI021I.
When you issue the START DATABASE command for a LOB table space that is
defined as LOG NO, and DB2 detects that log records that are required for LPL
recovery are missing due to the LOG NO attribute, the LOB table space is placed
in AUXW status, and the LOB is invalidated.

v Run the RECOVER or REBUILD INDEX utility on the object.

434 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_displaydatabase.htm#db2z_cmd_displaydatabase


The only exception to this is when a logical partition of a nonpartitioned index
is in the LPL and has RECP status. If you want to recover the logical partition
by using REBUILD INDEX with the PART keyword, you must first use the
START DATABASE command to clear the LPL pages.

v Run the LOAD utility with the REPLACE option on the object.
v Issue an SQL DROP statement for the object.

Only the following utilities can be run on an object with pages in the LPL:
v LOAD with the REPLACE option
v MERGECOPY
v REBUILD INDEX
v RECOVER, except:

RECOVER...PAGE
RECOVER...ERROR RANGE

v REPAIR with the SET statement

v REPORT

Displaying a write error page range
Use the DISPLAY DATABASE command to display the range of error pages.

For example:
-DISPLAY DATABASE (DBPARTS) SPACENAM (TSPART01) WEPR

The preceding command returns a list that is similar to this one:
11:44:32 DSNT360I - ****************************************************
11:44:32 DSNT361I - * DISPLAY DATABASE SUMMARY
11:44:32 * GLOBAL WEPR
11:44:32 DSNT360I - ****************************************************
11:44:32 DSNT362I - DATABASE = DBPARTS STATUS = RW

DBD LENGTH = yyyy
11:44:32 DSNT397I -
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- --------------- -------- -------- -------- -----

TSPART01 TS 0001 RW,UTRO 00000002 00000004 DSNCAT 000
TSPART01 TS 0002 RW,UTRO 00000009 00000013 DSNCAT 001
TSPART01 TS 0003 RO
TSPART01 TS 0004 STOP
TSPART01 TS 0005 UT
******* DISPLAY OF DATABASE DBPARTS ENDED **********************
11:45:15 DSN9022I - DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

In the previous messages:
v PHYERRLO and PHYERRHI identify the range of pages that were being read

when the I/O errors occurred. PHYERRLO is an 8-digit hexadecimal number
representing the lowest page that is found in error, and PHYERRHI represents
the highest page that is found in error.

v PIECE, a 3-digit integer, is a unique identifier for the data set and supports the

page set that contains physical I/O errors.

Chapter 15. Monitoring and controlling DB2 and its connections 435



Related information

DSNT392I (DB2 Messages)

Using the STOP DATABASE command to make objects
available

You can make databases, table spaces, and index spaces unavailable by using the
STOP DATABASE command.

If an object is in STOPP status, you must first issue the START DATABASE
command to remove the STOPP status, and then issue the STOP DATABASE
command.

When you issue the STOP DATABASE command for a table space, the data sets
that contain that table space are closed and deallocated.

DB2 subsystem databases (catalog, directory, and work file) can also be stopped.
After the directory is stopped, installation SYSADM authority is required to restart
it.

To stop databases, table spaces, or index spaces:

Issue the STOP DATABASE command with the appropriate options.

Type of object that you want to stop
How to issue the STOP DATABASE
command

To stop a physical partition of a table
space:

Use the PART option.

To stop a physical partition of an index
space:

Use the PART option.

To stop a logical partition within a
nonpartitioning index that is associated
with a partitioned table space:

Use the PART option.

To stop any kind of object as quickly as
possible:

Use the AT(COMMIT) option.

To stop user-defined databases: Start database DSNDB01 and table spaces
DSNDB01.DBD01 and DSNDB01.SYSLGRNX
before you stop user-defined databases. If
you do not do this, you will receive message
DSNI003I. Resolve the problem and run the
job again.

To stop the work file database: Start database DSNDB01 and table spaces
DSNDB01.DBD01 and DSNDB01.SYSLGRNX
before you stop the work file database. If
you do not do this, you will receive message
DSNI003I. Resolve the problem and run the
job again.

Commands to stop databases
The STOP DATABASE command has several options that you can use to control
how the database stops.

436 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnt392i.htm#dsnt392i


The following examples illustrate ways to use the STOP DATABASE
command:

-STOP DATABASE (*)
Stops all databases for which you have STOPDB authorization, except the
DB2 directory (DSNDB01), the DB2 catalog (DSNDB06), or the DB2 work
file database (called DSNDB07, except in a data sharing environment), all
of which must be stopped explicitly.

-STOP DATABASE (dbname)
Stops a database and closes all of the data sets of the table spaces and
index spaces in the database.

-STOP DATABASE (dbname, ...)
Stops the named databases and closes all of the table spaces and index
spaces in the databases. If DSNDB01 is named in the database list, it
should be last on the list because stopping the other databases requires
that DSNDB01 be available.

-STOP DATABASE (dbname) SPACENAM (*)
Stops and closes all of the data sets of the table spaces and index spaces in
the database. The status of the named database does not change.

-STOP DATABASE (dbname) SPACENAM (space-name, ...)
Stops and closes the data sets of the named table space or index space. The
status of the named database does not change.

-STOP DATABASE (dbname) SPACENAM (space-name, ...) PART (integer)
Stops and closes the specified partition of the named table space or index
space. The status of the named database does not change. If the named
index space is nonpartitioned, DB2 cannot close the specified logical
partition.

The data sets containing a table space are closed and deallocated by the preceding

commands.

Altering buffer pools
DB2 stores buffer pool attributes in the DB2 bootstrap data set (BSDS). You can use
the ALTER BUFFERPOOL command to change buffer pool attributes.

Buffer pool attributes, including buffer pool sizes, sequential steal
thresholds, deferred write thresholds, and parallel sequential thresholds, are

initially defined during the DB2 installation process.
Related concepts

Buffer pool thresholds (DB2 Performance)
Related reference

-ALTER BUFFERPOOL (DB2) (DB2 Command Reference)

Monitoring buffer pools
To monitor buffer pools, you can use the DISPLAY BUFFERPOOL command,
which displays the current status for one or more active or inactive buffer pools.
You can also request a summary or detail report.

For example:

Chapter 15. Monitoring and controlling DB2 and its connections 437

|
|

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.perf/db2z_bufferpoolthreasholds.htm#db2z_bufferpoolthreasholds
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_alterbufferpool.htm#db2z_cmd_alterbufferpool


-DISPLAY BUFFERPOOL(BP0)

This command might produce a summary report such as this:
!DIS BUFFERPOOL(BP0)
DSNB401I ! BUFFERPOOL NAME BP0, BUFFERPOOL ID 0, USE COUNT 27
DSNB402I ! BUFFER POOL SIZE = 2000 BUFFERS

ALLOCATED = 2000 TO BE DELETED = 0
IN-USE/UPDATED = 0

DSNB406I ! PAGE STEALING METHOD = LRU
DSNB404I ! THRESHOLDS -

VP SEQUENTIAL = 80
DEFERRED WRITE = 85 VERTICAL DEFERRED WRT = 10,15
PARALLEL SEQUENTIAL = 50 ASSISTING PARALLEL SEQT= 0

DSN9022I ! DSNB1CMD '-DISPLAY BUFFERPOOL' NORMAL COMPLETION

Related reference

-DISPLAY BUFFERPOOL (DB2) (DB2 Command Reference)

Controlling user-defined functions
User-defined functions are extensions to the SQL language, which you can invoke in
an SQL statement wherever you can use expressions or built-in functions.

User-defined functions, like stored procedures, run in WLM-established
address spaces. Because you might have an existing user-defined function named
DECFLOAT, QUANTIZE, NORMALIZE_ DECFLOAT, or IS_IDENTICAL_TO, you
should fully qualify that function or use the SET CURRENT PATH special register
to make sure that the function resolution resolves to the correct function.

You control DB2 user-defined functions by using various commands.

START FUNCTION SPECIFIC
Activates an external function that is stopped.

DISPLAY FUNCTION SPECIFIC
Displays statistics about external user-defined functions accessed by DB2
applications.

STOP FUNCTION SPECIFIC
Prevents DB2 from accepting SQL statements with invocations of the
specified functions.

Related concepts

Sample user-defined functions (SQL Reference)
Related tasks

“Monitoring and controlling stored procedures” on page 482

Starting user-defined functions
Activate external functions that are stopped by using the DB2 START FUNCTION
SPECIFIC command.

438 Administration Guide

|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_displaybufferpool.htm#db2z_cmd_displaybufferpool
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sampleuserdefinedfunctionsintro.htm#db2z_sampleuserdefinedfunctionsintro


You cannot start built-in functions or user-defined functions that are
sourced on another function.

To activate all or a specific set of stopped external functions, issue the START
FUNCTION SPECIFIC command.

For example, assume that you want to start functions USERFN1 and USERFN2 in
the PAYROLL schema. Issue this command:
START FUNCTION SPECIFIC(PAYROLL.USERFN1,PAYROLL.USERFN2)

The following output is produced:
DSNX973I START FUNCTION SPECIFIC SUCCESSFUL FOR PAYROLL.USERFN1
DSNX973I START FUNCTION SPECIFIC SUCCESSFUL FOR PAYROLL.USERFN2

Monitoring user-defined functions
You monitor external user-defined functions by using the DISPLAY FUNCTION
SPECIFIC command. This command displays statistics about the functions and lists
the range of functions that are stopped because of a STOP FUNCTION SPECIFIC
command.

The DB2 command DISPLAY FUNCTION SPECIFIC displays statistics
about external user-defined functions accessed by DB2 applications. This command
displays one output line for each function that has been accessed by a DB2
application. Information returned by this command reflect a dynamic status. By the
time DB2 displays the information, the status might have changed. Built-in
functions or user-defined functions that are sourced on another function are not
applicable to this command.

Use the DISPLAY FUNCTION SPECIFIC command to list the range of functions
that are stopped because of a STOP FUNCTION SPECIFIC command. For example,
to display information about functions in the PAYROLL schema and the HRPROD
schema, issue this command:
-DISPLAY FUNCTION SPECIFIC(PAYROLL.*,HRPROD.*)

The following output is produced:
DSNX975I DSNX9DIS - DISPLAY FUNCTION SPECIFIC REPORT FOLLOWS-
------ SCHEMA=PAYROLL
FUNCTION STATUS ACTIVE QUED MAXQ TIMEOUT FAIL WLM_ENV
PAYRFNC1

STARTED 0 0 1 0 0 PAYROLL
PAYRFNC2

STOPQUE 0 5 5 3 0 PAYROLL
PAYRFNC3

STARTED 2 0 6 0 0 PAYROLL
USERFNC4

STOPREJ 0 0 1 0 1 SANDBOX
------ SCHEMA=HRPROD
FUNCTION STATUS ACTIVE QUED MAXQ TIMEOUT FAIL WLM_ENV
HRFNC1

STARTED 0 0 1 0 0 HRFUNCS
HRFNC2

STOPREJ 0 0 1 0 0 HRFUNCS
DSNX9DIS DISPLAY FUNCTION SPECIFIC REPORT COMPLETE
DSN9022I - DSNX9COM '-DISPLAY FUNC' NORMAL COMPLETION

Chapter 15. Monitoring and controlling DB2 and its connections 439

|
|
|
|



Stopping user-defined functions
You can prevent DB2 from accepting SQL statements with invocations of specific
functions by using the STOP FUNCTION SPECIFIC command. This command
does not prevent SQL statements with invocations of the functions from running if
they have already been queued or scheduled by DB2.

You cannot stop built-in functions or user-defined functions that are sourced on
another function.

To stop access to all or a specific set of external functions:

Issue the STOP FUNCTION SPECIFIC command.

For example, issue a command like the following one, which stops functions
USERFN1 and USERFN3 in the PAYROLL schema:
STOP FUNCTION SPECIFIC(PAYROLL.USERFN1,PAYROLL.USERFN3)

The following output is produced:
DSNX974I STOP FUNCTION SPECIFIC SUCCESSFUL FOR PAYROLL.USERFN1
DSNX974I STOP FUNCTION SPECIFIC SUCCESSFUL FOR PAYROLL.USERFN3

While the STOP FUNCTION SPECIFIC command is in effect, attempts to execute

the stopped functions are queued.

Controlling DB2 utilities
DB2 utilities are classified into two groups: online and stand-alone.

The online utilities require DB2 to be running and can be controlled in
several different ways. The stand-alone utilities do not require DB2 to be up, and

they can be controlled only by means of JCL.
Related concepts

DB2 online utilities (DB2 Utilities)

DB2 stand-alone utilities (DB2 Utilities)

Starting online utilities
To start a DB2 utility, prepare an appropriate set of JCL statements for a utility job.
The input stream for that job must include DB2 utility control statements.

DB2 utilities can dynamically create object lists from a pattern-matching
expression and can dynamically allocate the data sets that are required to process

those objects.

Monitoring and changing online utilities
You can monitor the status of online utilities, change parameter values of some
utilities, and terminate a utility job prior to completion.

440 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_onlineutilities.htm#db2z_onlineutilities
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_standaloneutilities.htm#db2z_standaloneutilities


Use the following commands for monitoring and changing DB2 utility jobs:

ALTER UTILITY
Alters parameter values of an active REORG or REBUILD utility.

DISPLAY UTILITY
Displays the status of utility jobs.

TERM UTILITY
Terminates a utility job before its normal completion.

If a utility is not running, you need to determine whether the type of utility access
is allowed on an object of a specific status. The following table shows the
compatibility of utility types and object status.

Table 96. Compatibility of utility types and object status

Utility type Object access

Read-only RO

All RW1

DB2 UT

Note:

1. RW is the default access type for an object.

To change the status of an object, use the ACCESS option of the START
DATABASE command to start the object with a new status. For example:
-START DATABASE (DSN8D61A) ACCESS(RO)

Related concepts

DB2 online utilities (DB2 Utilities)

Controlling DB2 stand-alone utilities
You use JCL to run the DB2 stand-alone utilities, most of which can run while DB2
is running.

To run a DB2 stand-alone utility:
1. Stop the table spaces and index spaces that are the object of the utility job. If

you do not do this, you might receive inconsistent output.
2. If the utility is one that requires that DB2 be stopped during utility execution,

use this command:
-STOP DB2 MODE (FORCE)

3. If the utility is one that requires that DB2 be running during utility execution
and if DB2 is not running, issue this command:
-START DB2

4. Create a JCL job that includes the utility control statement with code specific

data set names and associated parameters for your utility.

Chapter 15. Monitoring and controlling DB2 and its connections 441

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_onlineutilities.htm#db2z_onlineutilities


Stand-alone utilities
Some stand-alone utilities can be run only by means of JCL.

v DSN1CHKR
v DSN1COPY
v DSN1COMP
v DSN1PRNT
v DSN1SDMP
v DSN1LOGP
v DSNJLOGF
v DSNJU003 (change log inventory)
v DSNJU004 (print log map)

Most of the stand-alone utilities can be used while DB2 is running. However, for
consistency of output, the table spaces and index spaces must be stopped first
because these utilities do not have access to the DB2 buffer pools. In some cases,
DB2 must be running or stopped before you invoke the utility.

Stand-alone utility job streams require that you code specific data set names in the
JCL. To determine the fifth qualifier in the data set name, you need to query the
DB2 catalog tables SYSIBM.SYSTABLEPART and SYSIBM.SYSINDEXPART to
determine the IPREFIX column that corresponds to the required data set.

The change log inventory utility (DSNJU003) enables you to change the contents of
the bootstrap data set (BSDS). This utility cannot be run while DB2 is running
because inconsistencies could result. Use the STOP DB2 MODE(QUIESCE)
command to stop the DB2 subsystem, run the utility, and then restart DB2 with the
START DB2 command.

The print log map utility (DSNJU004) enables you to print the bootstrap data set
contents. The utility can be run when DB2 is active or inactive; however, when it is
run with DB2 active, the user’s JCL and the DB2 started task must both specify

DISP=SHR for the BSDS data sets.
Related concepts

DB2 stand-alone utilities (DB2 Utilities)

Controlling the IRLM
The internal resource lock manager (IRLM) subsystem manages DB2 locks.

The particular IRLM to which DB2 is connected is specified in the DB2
load module for subsystem parameters. The particular IRLM is also identified as a
z/OS subsystem in the SYS1.PARMLIB member IEFSSNxx. That name is used as
the IRLM procedure name (irlmproc) in z/OS commands.

Each IMS and DB2 subsystem must use a separate instance of IRLM.

In a data sharing environment, the IRLM handles global locking, and each DB2
member has its own corresponding IRLM.

442 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_standaloneutilities.htm#db2z_standaloneutilities


You can use the following z/OS commands to control the IRLM. In each command
description, irlmproc is the IRLM procedure name and irlmnm is the IRLM
subsystem name.

MODIFY irlmproc,ABEND,DUMP
Abnormally terminates the IRLM and generates a dump.

MODIFY irlmproc,ABEND,NODUMP
Abnormally terminates the IRLM but does not generate a dump.

MODIFY irlmproc,DIAG
Initiates diagnostic dumps for IRLM subsystems in a data sharing group
when a delay occurs.

MODIFY irlmproc,SET
Dynamically sets the maximum amount of private virtual (PVT) storage or
the number of trace buffers that are used for this IRLM.

MODIFY irlmproc,STATUS
Displays the status for the subsystems on this IRLM.

START irlmproc
Starts the IRLM.

STOP irlmproc
Stops the IRLM normally.

TRACE CT,OFF,COMP=irlmnm
Stops IRLM tracing.

TRACE CT,ON,COMP=irlmnm
Starts IRLM tracing for all subtypes (DBM, SLM, XIT, and XCF).

TRACE CT,ON,COMP=irlmnm,SUB=(subname)
Starts IRLM tracing for a single subtype.

Related concepts

IRLM names (DB2 Data Sharing Planning and Administration)
Related reference

z/OS IRLM commands (DB2 Command Reference)

z/OS commands that operate on IRLM
You can use several z/OS commands to modify and monitor the IRLM connection.

MODIFY irlmproc,SET,PVT=nnn
Sets the maximum amount of private virtual (PVT) storage that this IRLM
can use for lock control structures.

MODIFY irlmproc,SET,DEADLOCK=nnnn
Sets the time for the local deadlock detection cycle.

MODIFY irlmproc,SET,LTE=nnnn
Sets the number of LOCK HASH entries that this IRLM can use on the
next connect to the XCF LOCK structure. Use this command only for data
sharing.

Chapter 15. Monitoring and controlling DB2 and its connections 443

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.dshare/db2z_dsirlmnames.htm#db2z_dsirlmnames
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_irlmcommands.htm#db2z_irlmcommands


MODIFY irlmproc,SET,TIMEOUT=nnnn,subsystem-name
Sets the timeout value for the specified DB2 subsystem. Display the
subsystem-name by using MODIFY irlmproc,STATUS.

MODIFY irlmproc,SET,TRACE=nnn
Sets the maximum number of trace buffers that are used for this IRLM.

MODIFY irlmproc,STATUS,irlmnm
Displays the status of a specific IRLM.

MODIFY irlmproc,STATUS,ALLD
Displays the status of all subsystems known to this IRLM in the data
sharing group.

MODIFY irlmproc,STATUS,ALLI
Displays the status of all IRLMs known to this IRLM in the data sharing
group.

MODIFY irlmproc,STATUS,MAINT
Displays the maintenance levels of IRLM load module CSECTs for the
specified IRLM instance.

MODIFY irlmproc,STATUS,STOR
Displays the current and high-water allocation for private virtual (PVT)
storage, as well as storage that is above the 2-GB bar.

MODIFY irlmproc,STATUS,TRACE
Displays information about trace types of IRLM subcomponents.

Each IMS and DB2 subsystem must use a separate instance of IRLM.
Related reference

z/OS IRLM commands (DB2 Command Reference)

Starting the IRLM
The IRLM must be available when you start DB2.

When DB2 is installed, you normally specify that the IRLM be started
automatically. Then, if the IRLM is not available when DB2 is started, DB2 starts it,
and periodically checks whether it is up before attempting to connect. If the
attempt to start the IRLM fails, DB2 terminates.

If an automatic IRLM start has not been specified, start the IRLM before starting
DB2, using the z/OS START irlmproc command.

When started, the IRLM issues this message to the z/OS console:
DXR117I irlmnm INITIALIZATION COMPLETE

Consider starting the IRLM manually if you are having problems starting DB2 for
either of these reasons:
v An IDENTIFY or CONNECT to a data sharing group fails.
v DB2 experiences a failure that involves the IRLM.

When you start the IRLM manually, you can generate a dump to collect diagnostic

information because IRLM does not stop automatically.

444 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_irlmcommands.htm#db2z_irlmcommands


Stopping the IRLM
If the IRLM is started automatically by DB2, it stops automatically when DB2 is
stopped. If the IRLM is not started automatically, you must stop it after DB2 stops.

If you try to stop the IRLM while DB2 or IMS is still using it, you get the
following message:
DXR105E irlmnm STOP COMMAND REJECTED. AN IDENTIFIED SUBSYSTEM
IS STILL ACTIVE

If that happens, issue the STOP irlmproc command again, when the subsystems are
finished with the IRLM.

Alternatively, if you must stop the IRLM immediately, enter the following
command to force the stop:
MODIFY irlmproc,ABEND,NODUMP

The system responds with this message:
DXR165I KRLM TERMINATED VIA IRLM MODIFY COMMAND.
DXR121I KRLM END-OF-TASK CLEANUP SUCCESSFUL - HI-CSA 335K
- HI-ACCT-CSA 0K

DB2 abends. An IMS subsystem that uses the IRLM does not abend and can be
reconnected.

IRLM uses the z/OS Automatic Restart Manager (ARM) services. However, it
de-registers from ARM for normal shutdowns. IRLM registers with ARM during
initialization and provides ARM with an event exit routine. The event exit routine
must be in the link list. It is part of the IRLM DXRRL183 load module. The event
exit routine ensures that the IRLM name is defined to z/OS when ARM restarts
IRLM on a target z/OS system that is different from the failing z/OS system. The
IRLM element name that is used for the ARM registration depends on the IRLM
mode. For local-mode IRLM, the element name is a concatenation of the IRLM
subsystem name and the IRLM ID. For global mode IRLM, the element name is a
concatenation of the IRLM data sharing group name, IRLM subsystem name, and
the IRLM ID.

IRLM de-registers from ARM when one of the following events occurs:
v PURGE irlmproc is issued.
v MODIFY irlmproc,ABEND,NODUMP is issued.
v DB2 automatically stops IRLM.

The command MODIFY irlmproc,ABEND,NODUMP specifies that IRLM de-register
from ARM before terminating, which prevents ARM from restarting IRLM.
However, this command does not prevent ARM from restarting DB2, and, if you
set the automatic restart manager to restart IRLM, DB2 automatically starts IRLM.

Monitoring threads
You monitor threads by using the DB2 DISPLAY THREAD command, which
displays current information about the status of threads.

The DISPLAY THREAD command displays information about:
v Threads that are processing locally

Chapter 15. Monitoring and controlling DB2 and its connections 445



v Threads that are processing distributed requests
v Stored procedures or user-defined functions that the thread is executing
v Parallel tasks

Types of threads
Threads can be active or pooled, and an active thread can be an allied thread or a
database access thread.

Active allied thread
A thread that is connected to DB2 from TSO, batch, IMS, CICS, CAF, or
RRSAF.

Active database access thread
A thread that is connected through a network with another system and
performing work on behalf of that system.

Pooled database access thread
An idle thread that is waiting for a new unit of work from a connection to
another system so that it can begin. Pooled threads hold no database locks.

Output of the DISPLAY THREAD command
The output of the DISPLAY THREAD command can also indicate that a system
quiesce is in effect as a result of the ARCHIVE LOG command.

The DISPLAY THREAD command allows you to select which type of information
you want to include in the display by using one or more of the following:
v Active, indoubt, postponed-abort, or pooled threads
v Allied threads that are associated with the address spaces whose

connection-names are specified
v Allied threads
v Distributed threads
v Distributed threads that are associated with a specific remote location
v Detailed information about connections with remote locations
v A specific logical unit of work ID (LUWID)

The information that is returned by the DISPLAY THREAD command reflects a
dynamic status. By the time the information is displayed, the status might have
changed. Moreover, the information is consistent only within one address space
and is not necessarily consistent across all address spaces.

To use the TYPE, LOCATION, DETAIL, and LUWID keywords, you must have
SYSOPR authority or higher.

More information about how to interpret this output can be found in the topics
describing the individual connections and in the description of message DSNV408I.

446 Administration Guide

|

|
|

|

|
|
|

|
|
|

|
|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|



Related tasks

“Archiving the log” on page 510
Related reference

-DISPLAY THREAD (DB2) (DB2 Command Reference)
Related information

DSNV408I (DB2 Messages)

Displaying information about threads
Use the DISPLAY THREAD TYPE(INDOUBT) command to find information about
allied and database access indoubt threads. This command provides information
about threads where DB2 is a participant, a coordinator, or both.

The TYPE(INDOUBT) option tells you which systems still need indoubt
resolution and provides the LUWIDs that you need to recover indoubt threads. A
thread that has completed phase 1 of commit and still has a connection with its
coordinator is in the prepared state and is displayed as part of the DISPLAY
THREAD active report. If a prepared thread loses its connection with its
coordinator, it enters the indoubt state and terminates its connections to any
participants at that time. Any threads that are in the prepared or indoubt state
when DB2 terminates are indoubt after DB2 restart. However, if the participant
system is waiting for a commit or rollback decision from the coordinator, and the

connection is still active, DB2 considers the thread active.

If a thread is indoubt at a participant, you can determine whether a commit or
abort decision was made at the coordinator by issuing the DISPLAY THREAD
command at the coordinator as described previously. If an indoubt thread appears
at one system and does not appear at the other system, the latter system backed
out the thread, and the first system must therefore do the same.
Related concepts

“Output of the DISPLAY THREAD command” on page 446

Displaying information by location
Use the LOCATION keyword, followed by a list of location names, to display
thread information for particular locations.

You can use an asterisk (*) after the THD and LOCATION keywords. For
example, enter:
-DISPLAY THREAD(*) LOCATION(*) DETAIL

DB2 returns messages like these:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -

NAME ST�1�A�2� REQ ID AUTHID PLAN ASID TOKEN
SERVER RA * 2923 DB2BP ADMF001 DISTSERV 0036 20�3�
V437-WORKSTATION=ARRAKIS, USERID=ADMF001,

APPLICATION NAME=DB2BP
V436-PGM=NULLID.SQLC27A4, SEC=201, STMNT=210
V445-09707265.01BE.889C28200037=203 ACCESSING DATA FOR
( 1)2002:91E:610:1::5�4�
V447-INDEX SESSID A ST TIME
V448-( 1) 446:1300�5� W S2 9802812045091

DISPLAY ACTIVE REPORT COMPLETE
DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

Chapter 15. Monitoring and controlling DB2 and its connections 447

|

|

|

|

|

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_displaythread.htm#db2z_cmd_displaythread
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnv408i.htm#dsnv408i


Key Description

1 The ST (status) column contains characters that indicate the connection
status of the local site. The TR indicates that an allied, distributed thread
has been established. The RA indicates that a distributed thread has been
established and is in receive mode. The RD indicates that a distributed
thread is performing a remote access on behalf of another location (R) and
is performing an operation that involves DCE services (D). Currently, DB2
supports the optional use of DCE services to authenticate remote users.

2 The A (active) column contains an asterisk that indicates that the thread is
active within DB2. It is blank when the thread is inactive within DB2
(active or waiting within the application).

3 This LUWID is unique across all connected systems. This thread has a
token of 20 (it appears in two places in the display output).

4 This is the location of the partner. If the RDBNAME is not known, the
location column contains either an SNA LUNAME or IP address.

5 If the connection uses TCP/IP, the SESSID column contains ″local:remote″,
where local specifies the DB2 TCP/IP port number and remote specifies the
partner’s TCP/IP port number.

Related information

DSNV444I (DB2 Messages)

DSNV446I (DB2 Messages)

DSNV404I (DB2 Messages)

Displaying information for non-DB2 locations
Because DB2 does not receive a location name from non-DB2 locations, you must
enter the LUNAME or IP address of the location for which you want to display
information.

The LUNAME is enclosed by the less-than (<) and greater-than (>)
symbols. The IP address can be in the dotted decimal or colon hexadecimal format.
For example, if you wanted to display information about a non-DB2 DBMS with
the LUNAME of LUSFOS2, you would enter the following command:
-DISPLAY THREAD (*) LOCATION (<LUSFOS2>)

DB2 uses the one of the following formats in messages that display information
about non-DB2 requesters:
v LUNAME notation
v Dotted decimal format
v Colon hexadecimal format

Displaying conversation-level information about threads
Use the DETAIL keyword with the LOCATION keyword to show information
about conversation activity when distribution information is displayed for active
threads.

448 Administration Guide

||
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnv444i.htm#dsnv444i
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnv446i.htm#dsnv446i
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnv404i.htm#dsnv404i


The DETAIL keyword has no effect on the display of indoubt threads.

To display conversation-level information about threads:

Issue the DISPLAY THREAD command with the following options:
-DISPLAY THREAD(*) LOCATION(*) DETAIL

DB2 returns the following messages, which indicate that the local site application is
waiting for a conversation to be allocated in DB2, and a DB2 server that is accessed
by a DRDA client using TCP/IP.
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -

NAME ST A REQ ID AUTHID PLAN ASID TOKEN
TSO TR * 3 SYSADM SYSADM DSNESPRR 002E 2
V436-PGM=DSNESPRR.DSNESM68, SEC=1, STMNT=116
V444-DB2NET.LUND0.A238216C2FAE=2 ACCESSING DATA AT
( 1)USIBMSTODB22-LUND1
V447--INDEX SESSID A ST TIME
V448--( 1) 0000000000000000 N�1� A1�2� 9015816504776

TSO RA * 11 SYSADM SYSADM DSNESPRR 001A 15
V445-STLDRIV.SSLU.A23555366A29=15 ACCESSING DATA FOR
( 1)123.34.101.98
V447--INDEX SESSID A ST TIME
V448--( 1) 446:3171 �3� S2 9015611253108

DISPLAY ACTIVE REPORT COMPLETE
DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

Key Description

�1� The information on this line is part of message DSNV447I. The
conversation A (active) column for the server is useful in determining
when a DB2 thread is hung and whether processing is waiting in the
network stack (VTAM or TCP/IP) or in DB2. A value of W indicates that
the thread is suspended in DB2 and is waiting for notification from the
network that the event has completed. A value of N indicates that control
of the conversation is in the network stack.

�2� The information on this line is part of message DSNV448I. The A in the
conversation ST (status) column for a serving site indicates that a
conversation is being allocated in DB2. The 1 indicates that the thread uses
DB2 private protocol access. A 2 would indicate DRDA access. An R in the
status column would indicate that the conversation is receiving, or waiting
to receive a request or reply. An S in this column for a server indicates that
the application is sending, or preparing to send a request or reply.

�3� The information on this line is part of message DSNV448I. The SESSID
column has changed. If the connection uses VTAM, the SESSID column
contains a VTAM session identifier. If the connection uses TCP/IP, the
SESSID column contains ″local:remote″, where local specifies the DB2
TCP/IP port number and remote specifies the partner’s TCP/IP port
number.

Chapter 15. Monitoring and controlling DB2 and its connections 449

||
|
|
|
|
|
|



Related reference

-DISPLAY THREAD (DB2) (DB2 Command Reference)
Related information

DSNV447I (DB2 Messages)

DSNV448I (DB2 Messages)

Displaying threads by LUWID
Use the optional LUWID keyword, which is valid only when DDF is started, to
display threads by logical unit of work identifiers. The LUWIDs are assigned to the
thread by the site that originated the thread.

You can use an asterisk (*) in an LUWID keyword, like you can use an
asterisk in a LOCATION name. For example, issue the command DISPLAY THREAD
TYPE(INDOUBT) LUWID(NET1.*) to display all the indoubt threads whose LUWID has
a network name of NET1. The command DISPLAY THREAD TYPE(INDOUBT)
LUWID(IBM.NEW*) displays all indoubt threads whose LUWID has a network name
of ″IBM″ and whose LUNAME begins with ″NEW.″

Use the DETAIL keyword with the DISPLAY THREAD LUWID command to show
the status of every conversation that is connected to each displayed thread, and to
indicate whether a conversation is using DRDA access or DB2 private protocol
access.

To display threads by LUWIDs:

Issue the DISPLAY THREAD command with the following options:
-DISPLAY THREAD(*) LUWID (luwid) DETAIL

DB2 returns the following message:
-DISPLAY THREAD(*) LUWID (luwid) DET

DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH TR 5 TC3923S0 SYSADM TC392 000D 2
V436-PGM=*.TC3923S0, SEC=1, STMNT=116
V444-DB2NET.LUNSITE0.A11A7D7B2057=2 �1�ACCESSING DATA AT
( 1)USIBMSTODB22-LUNSITE1
V447--INDEX SESSID A ST TIME
V448--( 1) 00C3F4228C5A244C S2�2� 8929612225354

DISPLAY ACTIVE REPORT COMPLETE
DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

Key Description

�1� In the preceding display output, you can see that the LUWID has been
assigned a token of 2. You can use this token instead of the long version of
the LUWID to cancel or display the given thread. For example:
-DISPLAY THREAD(*) LUWID(2) DET

�2� In addition, the status column for the serving site contains a value of S2.
The S means that this thread can send a request or response, and the 2
means that this is a DRDA access conversation.

450 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_displaythread.htm#db2z_cmd_displaythread
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnv447i.htm#dsnv447i
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnv448i.htm#dsnv448i


Displaying threads by type
Use the TYPE keyword with the DISPLAY THREAD command to request the type
of thread to display.

For example, you can show only active threads that are executing a stored
procedure or user-defined function by issuing the following command:
-DISPLAY THREAD(*) TYPE(PROC)

Monitoring all DBMSs in a transaction
Use the DETAIL keyword of the DISPLAY THREAD command to monitor all of
the requesting and serving DBMSs that are involved in a transaction.

For example, you could monitor an application that runs at
USIBMSTODB21 requesting information from USIBMSTODB22, which must
establish conversations with secondary servers USIBMSTODB23 and
USIBMSTODB24 to provide the requested information. The following figure
depicts such an example. In this example, ADA refers to DRDA access, and SDA
refers to DB2 private protocol access. USIBMSTODB21 is considered to be
upstream from USIBMSTODB22. USIBMSTODB22 is considered to be upstream
from USIBMSTODB23. Conversely, USIBMSTODB23 and USIBMSTODB22 are
downstream from USIBMSTODB22 and USIBMSTODB21 respectively.

The application that runs at USIBMSTODB21 is connected to a server at
USIBMSTODB22 by using DRDA access. If you enter the DISPLAY THREAD
command with the DETAIL keyword from USIBMSTODB21, you receive the
following output:
-DISPLAY THREAD(*) LOC(*) DET

DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH TR * 6 BKH2C SYSADM YW1019C 0009 2
V436-PGM=BKH2C.BKH2C, SEC=1, STMNT=4
V444-USIBMSY.SSLU.A23555366A29=2 ACCESSING DATA AT
( 1)USIBMSTODB22-SSURLU
V447--INDEX SESSID A ST TIME
V448--( 1) 0000000300000004 N R2 9015611253116
DISPLAY ACTIVE REPORT COMPLETE
11:26:23 DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

This output indicates that the application is waiting for data to be returned by the
server at USIBMSTODB22.

USIBMSTODB23

USIBMSTODB24

SDA

SDA

USIBMSTODB22ADAUSIBMSTODB21

Figure 33. Example of a DB2 transaction that involves four sites

Chapter 15. Monitoring and controlling DB2 and its connections 451

|
|

|
|



The server at USIBMSTODB22 is running a package on behalf of the application at
USIBMSTODB21 to access data at USIBMSTODB23 and USIBMSTODB24 by DB2
private protocol access. If you enter the DISPLAY THREAD command with the
DETAIL keyword from USIBMSTODB22, you receive the following output:
-DISPLAY THREAD(*) LOC(*) DET

DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH RA * 0 BKH2C SYSADM YW1019C 0008 2
V436-PGM=BKH2C.BKH2C, SEC=1, STMNT=4
V445-STLDRIV.SSLU.A23555366A29=2 ACCESSING DATA FOR
( 1)USIBMSTODB21-SSLU
V444-STLDRIV.SSLU.A23555366A29=2 ACCESSING DATA AT
( 2)USIBMSTODB23-OSSLU
( 3)USIBMSTODB24-OSSURLU
V447--INDEX SESSID A ST TIME
V448--( 1) 0000000300000004 S2 9015611253108
V448--( 2) 0000000600000002 S1 9015611253077
V448--( 3) 0000000900000005 N R1 9015611253907
DISPLAY ACTIVE REPORT COMPLETE
11:26:34 DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

This output indicates that the server at USIBMSTODB22 is waiting for data to be
returned by the secondary server at USIBMSTODB24.

The secondary server at USIBMSTODB23 is accessing data for the primary server
at USIBMSTODB22. If you enter the DISPLAY THREAD command with the
DETAIL keyword from USIBMSTODB23, you receive the following output:
-DISPLAY THREAD(*) LOC(*) DET

DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH RA * 2 BKH2C SYSADM YW1019C 0006 1
V445-STLDRIV.SSLU.A23555366A29=1 ACCESSING DATA FOR

( 1)USIBMSTODB22-SSURLU
V447--INDEX SESSID A ST TIME
V448--( 1) 0000000600000002 W R1 9015611252369
DISPLAY ACTIVE REPORT COMPLETE
11:27:25 DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

This output indicates that the secondary server at USIBMSTODB23 is not currently
active.

The secondary server at USIBMSTODB24 is also accessing data for the primary
server at USIBMSTODB22. If you enter the DISPLAY THREAD command with the
DETAIL keyword from USIBMSTODB24, you receive the following output:
-DISPLAY THREAD(*) LOC(*) DET

DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH RA * 2 BKH2C SYSADM YW1019C 0006 1
V436-PGM=*.BKH2C, SEC=1, STMNT=1
V445-STLDRIV.SSLU.A23555366A29=1 ACCESSING DATA FOR
( 1)USIBMSTODB22-SSURLU
V447--INDEX SESSID A ST TIME
V448--( 1) 0000000900000005 S1 9015611253075
DISPLAY ACTIVE REPORT COMPLETE
11:27:32 DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

This output indicates that the secondary server at USIBMSTODB24 is currently
active.

452 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



The conversation status might not change for a long time. The conversation could
be hung, or the processing could be taking a long time. To determine whether the
conversation is hung, issue the DISPLAY THREAD command again and compare
the new timestamp to the timestamps from previous output messages. If the
timestamp is changing, but the status is not changing, the job is still processing. If
you need to terminate a distributed job, perhaps because it is hung and has been
holding database locks for a long time, you can use the CANCEL DDF THREAD
command if the thread is in DB2 (whether active or suspended). If the thread is in

VTAM, you can use the VARY NET TERM command.
Related tasks

“Canceling threads” on page 481

Controlling connections
The method that you use to control connections between DB2 and another
subsystem or environment depends on the subsystem or environment that is
involved.

Controlling TSO connections
z/OS does not provide commands for controlling or monitoring a TSO connection
to DB2.

The connection is monitored instead by the DB2 command DISPLAY
THREAD, which displays information about connections to DB2 (from other
subsystems as well as from z/OS).

The command is generally entered from a z/OS console or an administrator’s TSO

session.
Related tasks

“Monitoring threads” on page 445

Connecting to DB2 from TSO
The z/OS operator is not involved in starting and stopping TSO connections.
Those connections are made through the DSN command processor.

The DSN command processor is invoked in one of these ways:
v Explicitly, by the DSN command
v Implicitly, through DB2I (DB2 Interactive)

When a DSN session is active, you can enter DSN subcommands, DB2 commands,
and TSO commands.

The DSN command can be issued in the foreground or background, when running
under the TSO terminal monitor program (TMP). The full syntax of the command
is:
DSN SYSTEM (subsystemid) RETRY (n1) TEST (n2)

The parameters are optional, and have the following meanings:

subsystemid
Is the subsystem ID of the DB2 subsystem to be connected.

Chapter 15. Monitoring and controlling DB2 and its connections 453



n1 Is the number of times to attempt the connection if DB2 is not running
(one attempt every 30 seconds).

n2 Is the DSN tracing system control that can be used if a problem is
suspected.

For example, this invokes a DSN session, requesting five retries at 30-second
intervals:
DSN SYSTEM (DB2) RETRY (5)

To make an implicit connection, invoke a DSN session by selecting any of these
operations:
v SQL statements using SPUFI
v DCLGEN
v BIND/REBIND/FREE
v RUN
v DB2 commands
v Program preparation and execution

In carrying out those operations, the DB2I panels invoke CLISTs, which start the

DSN session and invoke appropriate subcommands.
Related tasks

“Running TSO application programs” on page 379

Monitoring TSO and CAF connections
To display information about connections that use the TSO attachment facility and
the call attachment facility (CAF), issue the DISPLAY THREAD command.

The following table summarizes how the output for the DISPLAY
THREAD command differs for a TSO online application, a TSO batch application,
a QMF session, and a call attachment facility application.

Table 97. Differences in DISPLAY THREAD information for different environments

Connection Name AUTHID Corr-ID1 Plan1

DSN (TSO
Online)

TSO Logon ID Logon ID RUN .. Plan(x)

DSN (TSO Batch) BATCH Job USER= Job Name RUN .. Plan(x)

QMF DB2CALL Logon ID Logon ID ’QMFvr0’

CAF DB2CALL Logon ID Logon ID OPEN parm

Notes:

1. After the application connects to DB2 but before a plan is allocated, this field is blank.

The name of the connection can have one of the following values:

Name Connection to
TSO Program that runs in TSO foreground
BATCH

Program that runs in TSO background
DB2CALL

Program that uses the call attachment facility and that runs in the same
address space as a program that uses the TSO attachment facility

454 Administration Guide



The correlation ID, corr-id, is either the foreground authorization ID or the
background job name.

The following command displays information about TSO and CAF threads,
including those threads that process requests to or from remote locations:
-DISPLAY THREAD(BATCH,TSO,DB2CALL)

Related tasks

“Monitoring threads” on page 445
Related information

DSNV404I (DB2 Messages)

Disconnecting from DB2 while under TSO
Several conditions can cause the TSO connection to DB2 to end.

The connection to DB2 ends, and the thread is terminated, when:
v You enter the END subcommand.
v You enter DSN again. (A new connection is established immediately.)
v You enter the CANCEL THREAD command (for threads that are active or

suspended in DB2).
v You enter the MVS CANCEL command.
v You press the attention key (PA1).

DSNV401I = DISPLAY THREAD REPORT FOLLOWS -
DSNV402I = ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN

�1�BATCH T * 2997 TEP2 SYSADM DSNTEP41 0019 18818
�2�BATCH RA * 1246 BINETEP2 SYSADM DSNTEP44 0022 20556

V445-DB2NET.LUND1.AB0C8FB44C4D=20556 ACCESSING DATA FOR SAN_JOSE
�3�TSO T 12 SYSADM SYSADM DSNESPRR 0028 5570
�4�DB2CALL T * 18472 CAFCOB2 SYSADM CAFCOB2 001A 24979
�5�BATCH T * 1 PUPPY SYSADM DSNTEP51 0025 20499
�6� PT * 641 PUPPY SYSADM DSNTEP51 002D 20500
�7� PT * 592 PUPPY SYSADM DSNTEP51 002D 20501

DISPLAY ACTIVE REPORT COMPLETE
DSN9022I = DSNVDT '-DIS THREAD' NORMAL COMPLETION

Key Description

1 This is a TSO batch application.

2 This is a TSO batch application running at a remote location and accessing tables at
this location.

3 This is a TSO online application.

4 This is a call attachment facility application.

5 This is an originating thread for a TSO batch application.

6 This is a parallel thread for the originating TSO batch application thread.

7 This is a parallel thread for the originating TSO batch application thread.

Figure 34. DISPLAY THREAD output that shows TSO and CAF connections

Chapter 15. Monitoring and controlling DB2 and its connections 455

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnv404i.htm#dsnv404i


v Any of the following operations end, or you enter END or RETURN when using
any of them:
– SQL statements using SPUFI
– DCLGEN
– BIND/REBIND/FREE
– RUN

For example, the following command and subcommands establish a connection to
DB2, run a program, and terminate the connection:

TSO displays:
READY

You enter:
DSN SYSTEM (DSN)

DSN displays:
DSN

You enter:
RUN PROGRAM (MYPROG)

DSN displays:
DSN

You enter:
END

TSO displays:
READY

Controlling CICS connections
Certain CICS attachment facility commands can be entered from a CICS terminal
to control and monitor connections between CICS and DB2.

DSNC DISCONNECT
Terminates threads using a specific DB2 plan.

DSNC DISPLAY
Displays thread information or statistics.

DSNC MODIFY
Modifies the maximum number of threads for a transaction or group.

DSNC STOP
Disconnects CICS from DB2.

DSNC STRT
Starts the CICS attachment facility.

456 Administration Guide



CICS command responses are sent to the terminal from which the corresponding
command was entered, unless the DSNC DISPLAY command specifies an
alternative destination. For details on specifying alternate destinations for output,

see the DSNC DISPLAY command in the DB2 Command Reference.
Related information

Overview: How you can define the CICS DB2 connection

Connecting from CICS
You can start a connection to DB2 at any time after CICS initialization by using the
CICS attachment facility. The CICS attachment facility is a set of DB2-provided
modules that are loaded into the CICS address space.

To connect to DB2, issue the following command to start the attachment
facility:
DSNC STRT ssid

For ssid, specify a DB2 subsystem ID to override the value that is specified in the
CICS INITPARM macro.

You can also start the attachment facility automatically at CICS initialization by

using a program list table (PLT).

Restarting CICS
One function of the CICS attachment facility is to keep data synchronized between
the two systems.

If DB2 completes phase 1 but does not start phase 2 of the commit process,
the units of recovery that are being committed are termed indoubt. An indoubt unit
of recovery might occur if DB2 terminates abnormally after completing phase 1 of
the commit process. CICS might commit or roll back work without DB2 knowing
about it.

DB2 cannot resolve those indoubt units of recovery (that is, commit or roll back the
changes made to DB2 resources) until the connection to CICS is restarted. This
means that CICS should always be auto-started (START=AUTO in the DFHSIT
table) obtain all necessary information for indoubt thread resolution that is
available from its log. Do not perform a cold start. The START option can be
specified in the DFHSIT table, as described in CICS Transaction Server for z/OS
Resource Definition Guide.

If CICS has requests active in DB2 when a DB2 connection terminates, the
corresponding CICS tasks might remain suspended even after CICS is reconnected
to DB2. Purge those tasks from CICS using a CICS-supplied transaction such as:
CEMT SET TASK(nn) FORCE

See CICS Transaction Server for z/OS CICS Supplied Transactions for more information
about transactions that CICS supplies.

If any unit of work is indoubt when the failure occurs, the CICS attachment facility
automatically attempts to resolve the unit of work when CICS is reconnected to
DB2. Under some circumstances, however, CICS cannot resolve indoubt units of

recovery. You have to manually recover these indoubt units of recovery.

Chapter 15. Monitoring and controlling DB2 and its connections 457

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/topic/com.ibm.cics.ts31.doc/dfhtk/dfhtk0a.htm#dfhtk0a


Related tasks

“Recovering CICS-DB2 indoubt units of recovery” on page 459

Defining CICS threads
Every CICS transaction that accesses DB2 requires a thread to service the DB2
requests. Each thread uses one z/OS subtask to execute DB2 code for the CICS
application.

The DSNC STRT command starts the CICS DB2 attachment facility, which
allows CICS application programs to access DB2 databases.

Threads are created at the first DB2 request from the application if one is not
already available for the specific DB2 plan.

For complete information about defining CICS threads with DB2, see CICS DB2

Guide.

Monitoring CICS threads
No operator intervention is required for connecting applications; CICS handles the
threads dynamically. You can monitor threads by using CICS attachment facility
commands or DB2 commands.

Any authorized CICS user can monitor the threads and change the
connection parameters as needed. Operators can use the following CICS
attachment facility commands to monitor the threads:
DSNC DISPLAY PLAN plan-name destination
DSNC DISPLAY TRANSACTION transaction-id destination

These commands display the threads that the resource or transaction is using. The
following information is provided for each created thread:
v Authorization ID for the plan that is associated with the transaction (8

characters).
v PLAN/TRAN name (8 characters).
v A or I (one character).

If A is displayed, the thread is within a unit of work. If I is displayed, the
thread is waiting for a unit of work, and the authorization ID is blank.

The following CICS attachment facility command is used to monitor CICS:
DSNC DISPLAY STATISTICS destination

Displaying CICS-DB2 indoubt units of recovery:

You can display a list of CICS-DB2 indoubt units of recovery.

To display a list of indoubt units of recovery, issue the command:
-DISPLAY THREAD (connection-name) TYPE (INDOUBT)

The command produces messages similar to these:

458 Administration Guide



DSNV407I -STR INDOUBT THREADS - 480
COORDINATOR STATUS RESET URID AUTHID
CICS41 INDOUBT 00019B8ADE9E ADMF001
V449-HAS NID= CICS41.AACC9B739F125184 AND ID=GT00LE39
DISPLAY INDOUBT REPORT COMPLETE
DSN9022I -STR DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

Related information

DSNV408I (DB2 Messages)

Recovering CICS-DB2 indoubt units of recovery:

You can recover CICS-DB2 indoubt units of recovery.

To recover an indoubt unit of recovery, issue one of the following
commands:
-RECOVER INDOUBT (connection-name) ACTION (COMMIT) ID (correlation-id)
-RECOVER INDOUBT (connection-name) ACTION (ABORT) ID (correlation-id)

The default value for connection-name is the connection name from which you
entered the command. The correlation-id is the correlation ID of the thread to be
recovered. You can determine the correlation ID by issuing the command DISPLAY
THREAD. Your choice for the ACTION parameter indicates whether to commit or
roll back the associated unit of recovery.

One of the following messages might be issued after you use the RECOVER
command:
DSNV414I - THREAD correlation-id COMMIT SCHEDULED
DSNV415I - THREAD correlation-id ABORT SCHEDULED

Related concepts

“Multiple system consistency” on page 537
Related tasks

“Resolving indoubt units of recovery” on page 544
Related information

“Recovering CICS indoubt units of recovery” on page 632

Displaying CICS postponed units of recovery:

You can display a list of CICS postponed units of recovery.

To display a list of postponed units of recovery, issue the command:
-DISPLAY THREAD (connection-name) TYPE (POSTPONED)

The command produces messages similar to these:
DSNV431I -POSTPONED ABORT THREADS - 480
COORDINATOR STATUS RESET URID AUTHID
CICS41 P-ABORT 00019B8ADE9E ADMF001

Chapter 15. Monitoring and controlling DB2 and its connections 459

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnv408i.htm#dsnv408i


V449-HAS NID= CICS41.AACC9B739F125184 AND ID=GT00LE39
DISPLAY POSTPONED ABORT REPORT COMPLETE
DSN9022I -STR DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

Related information

DSNV408I (DB2 Messages)

Disconnecting CICS applications
To disconnect a particular CICS transaction from DB2, you must abnormally
terminate the transaction.

To disconnect a CICS application from DB2:
v The DB2 command CANCEL THREAD can be used to cancel a particular

thread. CANCEL THREAD requires that you know the token for any thread that
you want to cancel. Enter the following command to cancel the thread that is
identified by the token as indicated in the display output.
-CANCEL THREAD(46)

When you issue CANCEL THREAD for a thread, that thread is scheduled to be
terminated in DB2.

v The command DSNC DISCONNECT terminates the threads allocated to a plan
ID, but it does not prevent new threads from being created. This command frees
DB2 resources that are shared by the CICS transactions and allows exclusive
access to them for special-purpose processes such as utilities or data definition
statements.
The thread is not canceled until the application releases it for reuse, either at
SYNCPOINT or end-of-task.
For complete information about the use of CICS attachment commands with

DB2, see CICS DB2 Guide.

Disconnecting from CICS
To disconnect the DB2 attachment to CICS, you can do an orderly disconnection or
a forced disconnection.

Performing an orderly termination from CICS:

Orderly termination is recommended whenever possible. An orderly termination of
the connection allows each CICS transaction to terminate before thread subtasks
are detached. Therefore, no indoubt units of recovery should exist when you
reconnect.

To perform an orderly termination, use one of the following methods:
v Enter the DSNC STOP QUIESCE command. CICS and DB2 remain active.

For example, the following command stops the DB2 subsystem (QUIESCE)
allows the currently identified tasks to continue normal execution, and does not
allow new tasks to identify themselves to DB2:
-STOP DB2 MODE (QUIESCE)

This message appears when the stop process starts and frees the entering
terminal (option QUIESCE):
DSNC012I THE ATTACHMENT FACILITY STOP QUIESCE IS PROCEEDING

460 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnv408i.htm#dsnv408i


When the stop process ends and the connection is terminated, this message is
added to the output from the CICS job:
DSNC025I THE ATTACHMENT FACILITY IS INACTIVE

v Enter the CICS command CEMT PERFORM SHUTDOWN. During program list
table (PLT) processing, the CICS attachment facility is also named to shut down.
DB2 remains active. For information about the CEMT PERFORM SHUTDOWN
command, see CICS for MVS/ESA CICS-Supplied Transactions.

v Enter the DB2 command CANCEL THREAD. The thread terminates abnormally.

Performing a forced termination from CICS:

Although forced termination is not recommended, at times you might need to
force the connection to end.

A forced termination of the connection can abnormally terminate CICS
transactions that are connected to DB2. Therefore, indoubt units of recovery can
exist at reconnect.

A forced termination occurs under the following circumstances:
v You enter the DSNC STOP FORCE command. This command waits 15 seconds

before detaching the thread subtasks and in some cases can achieve an orderly
termination.
This message appears when the stop process starts and frees the entering
terminal (option FORCE):
DSNC022I THE ATTACHMENT FACILITY STOP FORCE IS PROCEEDING

DB2 and CICS remain active.
v You enter the CICS command CEMT PERFORM SHUTDOWN IMMEDIATE. For

information about this command, see CICS for MVS/ESA CICS-Supplied
Transactions. DB2 remains active.

v You enter the DB2 command STOP DB2 MODE (FORCE). CICS remains active.
v A DB2 abend occurs. CICS remains active.
v A CICS abend occurs. DB2 remains active.
v STOP is issued to the DB2 or CICS attachment facility. The CICS transaction

overflows to the pool. The transaction issues an intermediate commit. The thread
is terminated at commit time, and further DB2 access is not allowed.

When the stop process ends and the connection is terminated, this message is
added to the output from the CICS job:
DSNC025I THE ATTACHMENT FACILITY IS INACTIVE

Controlling IMS connections
You use IMS operator commands to control and monitor the connection to DB2.

/START SUBSYS
Connects the IMS control region to a DB2 subsystem.

/TRACE
Controls the IMS trace.

Chapter 15. Monitoring and controlling DB2 and its connections 461



/DISPLAY SUBSYS
Displays connection status and thread activity.

/DISPLAY OASN SUBSYS
Displays outstanding units of recovery.

/CHANGE SUBSYS
Deletes an indoubt unit of recovery from IMS.

/STOP SUBSYS
Disconnects IMS from a DB2 subsystem.

IMS command responses are sent to the terminal from which the corresponding
command was entered. Authorization to enter IMS commands is based on IMS
security.
Related reference

IMS commands (DB2 Command Reference)

Connections to the IMS control region
IMS makes one connection to its control region from each DB2 subsystem. IMS can
make the connection either automatically or in response to a command.

Connections are made in the following ways:
v Automatically during IMS cold start initialization or at warm start of IMS if a

DB2 connection was active when IMS is shut down.
v In response to the /START SUBSYS ssid command, where ssid is the DB2

subsystem identifier.
The command causes the following message to be displayed at the logical
terminal (LTERM):
DFS058 START COMMAND COMPLETED

The message is issued regardless of whether DB2 is active and does not imply
that the connection is established.

The order of starting IMS and DB2 is not vital. If IMS is started first, when DB2
comes up, DB2 posts the control region MODIFY task, and IMS again tries to
reconnect.

If DB2 is stopped by the STOP DB2 command, the /STOP SUBSYS command, or a
DB2 abend, IMS cannot reconnect automatically. You must make the connection by
using the /START SUBSYS command.

The following messages can be produced when IMS attempts to connect a DB2
subsystem. In each message, imsid is the IMS connection name.
v If DB2 is active, these messages are sent:

– To the z/OS console:
DFS3613I ESS TCB INITIALIZATION COMPLETE

– To the IMS master terminal:
DSNM001I IMS/TM imsid CONNECTED TO SUBSYSTEM ssnm

v If DB2 is not active, this message is sent to the IMS master terminal:
DSNM003I IMS/TM imsid FAILED TO CONNECT TO SUBSYSTEM ssnm

RC=00 imsid

RC=00 means that a notify request has been queued. When DB2 starts, IMS is
also notified.

462 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_imscommands.htm#db2z_imscommands


No message goes to the z/OS console.

IMS thread attachment
IMS connection threads describe the IMS application connection, traces progress,
processes resource functions, and delimits accessibility to DB2 resources and
services.

Execution of the first SQL statement of the program causes the IMS attachment
facility to create a thread and allocate a plan, whose name is associated with the
IMS application program module name. DB2 sets up control blocks for the thread
and loads the plan.

Duplicate IMS correlation IDs
Under certain circumstances, two threads can have the same correlation ID.

Two threads can have the same correlation ID (pst#.psbname) if all of these
conditions occur:
v Connections have been broken several times.
v Indoubt units of recovery were not recovered.
v Applications were subsequently scheduled in the same region.

To uniquely identify threads which have the same correlation ID (pst#.psbname)
requires that you be able to identify and understand the network ID (NID). For
connections with IMS, you should also be able to identify and understand the IMS
originating sequence number (OASN).

The NID is shown in a condensed form on the messages that are issued by the
DB2 DISPLAY THREAD command processor. The IMS subsystem name (imsid) is
displayed as the net_node. The net_node is followed by the 8-byte OASN, which is
displayed in hexadecimal format (16 characters), with all leading zeros omitted.
The net_node and the OASN are separated by a period.

For example, if the net_node is IMSA, and the OASN is 0003CA670000006E, the
NID is displayed as IMSA.3CA670000006E on the DB2 DISPLAY THREAD
command output.

If two threads have the same corr-id, use the NID instead of corr-id on the
RECOVER INDOUBT command. The NID uniquely identifies the work unit.

The OASN is a 4-byte number that represents the number of IMS scheduling since
the last IMS cold start. The OASN is occasionally found in an 8-byte format, where
the first 4 bytes contain the scheduling number, and the last 4 bytes contain the
number of IMS sync points (commits) during this schedule. The OASN is part of
the NID.

The NID is a 16-byte network ID that originates from IMS. The NID contains the
4-byte IMS subsystem name, followed by four bytes of blanks, followed by the
8-byte version of the OASN. In communications between IMS and DB2, the NID

serves as the recovery token.

Displaying IMS attachment facility threads
You use the DISPLAY THREAD command to display IMS attachment facility
threads.

Chapter 15. Monitoring and controlling DB2 and its connections 463



DISPLAY THREAD output for DB2 connections to IMS differs depending
on whether DB2 is connected to a DL/I batch program, a control region, a
message-driven program, or a non-message-driven program. The following table
summarizes these differences.

Table 98. Differences in DISPLAY THREAD information for IMS connections

Connection Name AUTHID2 ID1,2 Plan1,2

DL/I batch DDITV02
statement

JOBUSER= Job Name DDITV02
statement

Control region IMSID N/A N/A N/A

Message driven IMSID Signon ID or
ltermid

PST+ PSB RTT or program

Non-message
driven

IMSID AXBUSER or
PSBNAME

PST+ PSB RTT or program

Notes:

1. After the application connects to DB2 but before sign-on processing completes, this field
is blank.

2. After sign-on processing completes but before a plan is allocated, this field is blank.

The following command displays information about IMS threads, including those
accessing data at remote locations:
-DISPLAY THREAD(imsid)

Terminating IMS attachment facility threads
When an application terminates, IMS invokes an exit routine to disconnect the
application from DB2. You cannot terminate a thread without causing an abend in
the IMS application with which it is associated.

To terminate an IMS application, use one of these methods:
v Terminate the application.

The IMS commands /STOP REGION reg# ABDUMP or /STOP REGION reg#
CANCEL can be used to terminate an application that runs in an online
environment. For an application that runs in the DL/I batch environment, the

DSNV401I -STR DISPLAY THREAD REPORT FOLLOWS -
DSNV402I -STR ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN

�1�SYS3 T * 3 0002BMP255 ADMF001 PROGHR1 0019 99
SYS3 T * 4 0001BMP255 ADMF001 PROGHR2 0018 97

�2�SYS3 N 5 SYSADM 0065 0
DISPLAY ACTIVE REPORT COMPLETE
DSN9022I -STR DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

Key Description

1 This is a message-driven BMP.

2 This thread has completed sign-on processing, but a DB2 plan has not been
allocated.

Figure 35. DISPLAY THREAD output showing IMS connections

464 Administration Guide



z/OS command CANCEL can be used. See IMS Command Reference for more
information about terminating IMS applications.

v Use the DB2 command CANCEL THREAD.
CANCEL THREAD can be used to cancel a particular thread or set of threads.
CANCEL THREAD requires that you know the token for any thread that you
want to cancel. Enter the following command to cancel the thread that is
identified by a token in the display output:
-CANCEL THREAD(46)

When you issue CANCEL THREAD, that thread is scheduled to be terminated
in DB2.

Displaying IMS-DB2 indoubt units of recovery
You can display information about threads whose status is indoubt by using the
DB2 DISPLAY THREAD command.

One function of the thread that connects DB2 to IMS is to keep data in
synchronization between the two systems. If the application program requires it, a
change to IMS data must also be made to DB2 data. If DB2 abends while
connected to IMS, IMS might commit or back out work without DB2 being aware
of it. When DB2 restarts, that work is termed indoubt. Typically, some decision
must be made about the status of the work.

To display a list of indoubt units of recovery, issue the following command:
-DISPLAY THREAD (imsid) TYPE (INDOUBT)

The command produces messages similar to these:
DSNV401I -STR DISPLAY THREAD REPORT FOLLOWS -
DSNV406I -STR POSTPONED ABORTT THREADS - 920
COORDINATOR STATUS RESET URID AUTHID
SYS3 P-ABORT 00017854FF6B ADMF001
V449-HAS NID= SYS3.400000000 AND ID= 0001BMP255
BATCH P-ABORT 00017854A8A0 ADMF001
V449-HAS NID= DSN:0001.0 AND ID= RUNP10
BATCH P-ABORT 00017854AA2E ADMF001
V449-HAS NID= DSN:0002.0 AND ID= RUNP90
BATCH P-ABORT 0001785CD711 ADMF001
V449-HAS NID= DSN:0004.0 AND ID= RUNP12
DISPLAY POSTPONED ABORT REPORT COMPLETE
DSN9022I -STR DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

Related tasks

Chapter 17, “Restarting DB2 after termination,” on page 523
Related information

DSNV408I (DB2 Messages)

Recovering IMS-DB2 indoubt units of recovery
When you determine that indoubt units of recovery exist, you recover from this
situation by using the DB2 RECOVER INDOUBT command.

To recover an indoubt unit, issue one of the following commands.

Chapter 15. Monitoring and controlling DB2 and its connections 465

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnv408i.htm#dsnv408i


In each command, imsid is the connection name, and pst#.psbname is the correlation
ID that is listed by the command DISPLAY THREAD. Your choice of the ACTION
parameter tells whether to commit or roll back the associated unit of recovery.
v -RECOVER INDOUBT (imsid) ACTION (COMMIT) ID (pst#.psbname)

v -RECOVER INDOUBT (imsid) ACTION (ABORT) ID (pst#.psbname)

One of the following messages might be issued after you issue the RECOVER
command:
DSNV414I - THREAD pst#.psbname COMMIT SCHEDULED
DSNV415I - THREAD pst#.psbname ABORT SCHEDULED

Related tasks

“Resolving indoubt units of recovery” on page 544

Displaying postponed IMS-DB2 units of recovery
You can display a list of postponed IMS-DB2 units of recovery.

To display a list of postponed units of recovery, issue the following command:
-DISPLAY THREAD (imsid) TYPE (POSTPONED)

In this command, imsid is the connection name. The command produces messages
similar to these:
DSNV401I -STR DISPLAY THREAD REPORT FOLLOWS -
DSNV406I -STR POSTPONED ABORTT THREADS - 920
COORDINATOR STATUS RESET URID AUTHID
SYS3 P-ABORT 00017854FF6B ADMF001
V449-HAS NID= SYS3.400000000 AND ID= 0001BMP255
BATCH P-ABORT 00017854A8A0 ADMF001
V449-HAS NID= DSN:0001.0 AND ID= RUNP10
BATCH P-ABORT 00017854AA2E ADMF001
V449-HAS NID= DSN:0002.0 AND ID= RUNP90
BATCH P-ABORT 0001785CD711 ADMF001
V449-HAS NID= DSN:0004.0 AND ID= RUNP12
DISPLAY POSTPONED ABORT REPORT COMPLETE
DSN9022I -STR DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

Related tasks

Chapter 17, “Restarting DB2 after termination,” on page 523
Related information

DSNV406I (DB2 Messages)

Resolving IMS residual recovery entries
You can resolve IMS residual recovery entries (RREs).
1. To display the residual recovery entry (RRE) information, issue the following

command:
/DISPLAY OASN SUBSYS subsystem-name

2. To purge the RRE, issue one of these commands:
v /CHANGE SUBSYS subsystem-name RESET
v /CHANGE SUBSYS subsystem-name RESET OASN nnnn

466 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnv406i.htm#dsnv406i


Where nnnn is the originating application sequence number that is listed in the
display. The originating application sequence number is the schedule number
of the program instance, indicating its place in the sequence of invocations of
that program since the last cold start of IMS. IMS cannot have two indoubt
units of recovery with the same schedule number.

These commands reset the status of IMS; they do not result in any communication
with DB2.

IMS residual recovery entries:

At certain times, IMS builds a list of residual recovery entries (RREs). RREs are units
of recovery about which DB2 might be in doubt.

RREs occur in several situations:
v If DB2 is not operational, IMS has RREs that cannot be resolved until DB2 is

operational. Those are not a problem.
v If DB2 is operational and connected to IMS, and if IMS rolled back the work that

DB2 has committed, the IMS attachment facility issues message DSNM005I. If
the data in the two systems must be consistent, this is a problem situation.

v If DB2 is operational and connected to IMS, RREs can still exist, even though no
messages have informed you of this problem. The only way to recognize this
problem is to issue the IMS /DISPLAY OASN SUBSYS command after the DB2
connection to IMS has been established.

Related information

“Recovering from IMS indoubt units of recovery” on page 626

Controlling IMS dependent region connections
Controlling IMS dependent region connections involves these activities: connecting
from dependent regions, monitoring connection activity, and disconnecting from
dependent regions.

How IMS dependent region connections work:

The IMS attachment facility that is used in the control region is also loaded into
dependent regions. A connection is made from each dependent region to DB2. This
connection is used to pass SQL statements and to coordinate the commitment of
DB2 and IMS work.

The following process is used by IMS to initialize and connect.
1. Read the SSM from IMS.PROCLIB.

A subsystem member can be specified on the dependent region EXEC
parameter. If it is not specified, the control region SSM is used. If the region is
never to connect to DB2, specify a member with no entries to avoid loading the
attachment facility.

2. Load the DB2 attachment facility from prefix.SDSNLOAD.
For a batch message processing (BMP) program, the load is not done until the
application issues its first SQL statement. At that time, IMS attempts to make
the connection.
For a message processing program (MPP) region or IMS Fast Path (IFP) region,
the connection is made when the IMS region is initialized, and an IMS
transaction is available for scheduling in that region.

Chapter 15. Monitoring and controlling DB2 and its connections 467



An IMS dependent region establishes two connections to DB2: a region
connection and an application connection, which occurs at execution of the first
SQL statement.

If DB2 is not active, or if resources are not available when the first SQL statement
is issued from an application program, the action taken depends on the error
option specified on the SSM user entry. The options are:

Option Action

R The appropriate return code is sent to the application, and the SQL code is
returned.

Q The application abends. This is a PSTOP transaction type; the input
transaction is re-queued for processing, and new transactions are queued.

A The application abends. This is a STOP transaction type; the input
transaction is discarded, and new transactions are not queued.

The region error option can be overridden at the program level by using the
resource translation table (RTT).
Related concepts

IMS attachment facility macro (DSNMAPN) (DB2 Installation and Migration)

Disconnecting from IMS dependent regions:

Usually, IMS master terminal operators avoid disconnecting a dependent region
explicitly.

However, they might want to change values in the SSM member of IMS.PROCLIB.
To do that, they can issue /STOP REGION, update the SSM member, and issue
/START REGION.

Monitoring activity on connections from DB2
A thread is established from a dependent region when an application makes its
first successful DB2 request. You can issue IMS or DB2 commands to see
information about connections and the applications that currently use them.
v From DB2:

-DISPLAY THREAD (imsid)

v From IMS:
/SSR -DISPLAY THREAD (imsid)

Either command produces the following messages:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
conn-name s * req-ct corr-id auth-id pname asid token
conn-name s * req-ct corr-id auth-id pname asid token
DISPLAY ACTIVE REPORT COMPLETE
DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

468 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsnmapn.htm#db2z_dsnmapn


Related tasks

“Displaying information by location” on page 447
Related information

DSNV404I (DB2 Messages)

Monitoring activity of connections from IMS
You can monitor the connection to DB2 from IMS by using the /DISPLAY SUBSYS
command.

In addition to showing which program is active on each dependent region
connection, the display also shows the LTERM user name and gives the control
region connection status. The syntax of the command is:
/DISPLAY SUBSYS subsystem-name

The connection between IMS and DB2 is shown as one of the following states:
CONNECTED
NOT CONNECTED
CONNECT IN PROGRESS
STOPPED
STOP IN PROGRESS
INVALID SUBSYSTEM NAME=name
SUBSYSTEM name NOT DEFINED BUT RECOVERY OUTSTANDING

The thread status from each dependent region is shown as one of the following
states:
CONN
CONN, ACTIVE (includes LTERM of user)

The following four examples show the output that might be generated when an
IMS /DISPLAY SUBSYS command is issued.

The following figure shows the output that is returned for a DSN subsystem that is
not connected. The IMS attachment facility issues message DSNM003I in this
example.

The following figure shows the output that is returned for a DSN subsystem that is
connected. The IMS attachment facility issues message DSNM001I in this example.

0000 15.49.57 R 45,/DIS SUBSYS NEW
0000 15.49.57 IEE600I REPLY TO 45 IS;/DIS SUBSYS END
0000 15.49.57 JOB 56 DFS000I DSNM003I IMS/TM V1 SYS3 FAILED TO CONNECT TO SUBSYSTEM DSN RC=00 SYS3
0000 15.49.57 JOB 56 DFS000I SUBSYS CRC REGID PROGRAM LTERM STATUS SYS3
0000 15.49.57 JOB 56 DFS000I DSN : NON CONN SYS3
0000 15.49.57 JOB 56 DFS000I *83228/154957* SYS3
0000 15.49.57 JOB 56 *46 DFS996I *IMS READY* SYS3

Figure 36. Example of output from IMS /DISPLAY SUBSYS processing

0000 15.58.59 R 46,/DIS SUBSYS ALL
0000 15.58.59 IEE600I REPLY TO 46 IS;/DIS SUBSYS ALL
0000 15.59.01 JOB 56 DFS551I MESSAGE REGION MPP1 STARTED ID=0001 TIME=1551 CLASS=001,002,003,004
0000 15.59.01 JOB 56 DFS000I DSNM001I IMS/TM=V1 SYS3 CONNECTED TO SUBSYSTEM DSN SYS3
0000 15.59.01 JOB 56 DFS000I SUBSYS CRC REGID PROGRAM LTERM STATUS SYS3
0000 15.59.01 JOB 56 DFS000I DSN : CONN SYS3
0000 15.59.01 JOB 56 DFS000I *83228/155900* SYS3
0000 15.59.01 JOB 56 *47 DFS996I *IMS READY* SYS3

Figure 37. Example of output from IMS /DISPLAY SUBSYS processing

Chapter 15. Monitoring and controlling DB2 and its connections 469

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnv404i.htm#dsnv404i


The following figure shows the output that is returned for a DSN subsystem that is
in a stopped status. The IMS attachment facility issues message DSNM002I in this
example.

The following figure shows the output that is returned for a DSN subsystem that is
connected and region 1. You can use the values from the REGID and the
PROGRAM fields to correlate the output of the command to the LTERM that is
involved.

Disconnecting from IMS
The connection between IMS and DB2 ends when either IMS or DB2 terminates.
Alternatively, the IMS master terminal operator can explicitly break the connection.

To break the connection, enter this command:
/STOP SUBSYS subsystem-name

That command sends the following message to the terminal that entered it, usually
the master terminal operator (MTO):
DFS058I STOP COMMAND IN PROGRESS

The /START SUBSYS subsystem-name command is required to re-establish the
connection.

In an implicit or explicit disconnect, the following message is sent to the IMS
master terminal:
DSNM002I IMS/TM imsid DISCONNECTED FROM SUBSYSTEM subsystem-name - RC=z

That message uses the following reason codes (RC):

Code Meaning

A IMS is terminating normally (for example, /CHE
FREEZE|DUMPQ|PURGE). Connected threads complete.

0000 15.59.28 R 47,/STO SUBSYS ALL
0000 15.59.28 IEE600I REPLY TO 47 IS;/STO SUBSYS ALL
0000 15.59.37 JOB 56 DFS058I 15:59:37 STOP COMMAND IN PROGRESS SYS3
0000 15.59.37 JOB 56 *48 DFS996I *IMS READY* SYS3
0000 15.59.44 R 48,/DIS SUBSYS ALL
0000 15.59.44 IEE600I REPLY TO 48 IS;/DIS SUBSYS ALL
0000 15.59.45 JOB 56 DFS000I DSNM002I IMS/TM V1 SYS3 DISCONNECTED FROM SUBSYSTEM DSN RC = E. SYS3
0000 15.59.45 JOB 56 DFS000I SUBSYS CRC REGID PROGRAM LTERM STATUS SYS3
0000 15.59.45 JOB 56 DFS000I DSN : STOPPED SYS3
0000 15.59.45 JOB 56 DFS000I *83228/155945* SYS3
0000 15.59.45 JOB 56 *49 DFS996I *IMS READY* SYS3

Figure 38. Example of output from the IMS /DISPLAY SUBSYS command

0000 16.09.35 JOB 56 R 59,/DIS SUBSYS ALL
0000 16.09.35 JOB 56 IEE600I REPLY TO 59 IS;/DIS SUBSYS ALL
0000 16.09.38 JOB 56 DFS000I SUBSYS CRC REGID PROGRAM LTERM STATUS SYS3
0000 16.09.38 JOB 56 DFS000I DSN : CONN SYS3
0000 16.09.38 JOB 56 DFS000I 1 CONN SYS3
0000 16.09.38 JOB 56 DFS000I *83228/160938* SYS3
0000 16.09.38 JOB 56 *60 DFS996I *IMS READY* SYS3
0000 16.09.38 JOB 56

Figure 39. Example of output from IMS /DISPLAY SUBSYS processing for a DSN subsystem that is connected and
the region ID (1) that is included.

470 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|



B IMS is terminating abnormally. Connected threads are rolled back. DB2
data is backed out now; DL/I data is backed out at IMS restart.

C DB2 is terminating normally after a STOP DB2 MODE (QUIESCE)
command. Connected threads complete.

D DB2 is terminating normally after a STOP DB2 MODE (FORCE) command,
or DB2 is terminating abnormally. Connected threads are rolled back. DL/I
data is backed out now. DB2 data is backed out now if DB2 terminated
normally; otherwise, it is backed out at restart.

E IMS is ending the connection because of a /STOP SUBSYS subsystem-name
command. Connected threads complete.

If an application attempts to access DB2 after the connection ended and before a
thread is established, the attempt is handled according to the region error option
specification (R, Q, or A).

Controlling RRS connections
You can start or restart a Resource Recovery Services attachment facility (RRSAF)
connection at any time after Resource Recovery Services (RRS) is started.

If RRS is not started, an IDENTIFY request fails with reason code
X’00F30091’.

Application programs can use the following RRSAF functions to control
connections to DB2:

IDENTIFY
Establishes the task (TCB) as a user of the named DB2 subsystem. When
the first task within an address space issues a connection request, the
address space is initialized as a user of DB2.

SIGNON
Provides a user ID and, optionally, one or more secondary authorization
IDs that are to be associated with the connection. Invokes the sign-on exit
routine. Optionally, lets a thread join a global transaction.

AUTH SIGNON
Provides a user ID, an access control environment element (ACEE), and,
optionally, one or more secondary authorization IDs that are to be
associated with the connection. Invokes the sign-on exit routine.

CREATE THREAD
Allocates a plan. If you provide a plan name, DB2 allocates that plan. If
you provide a collection name, DB2 allocates a special plan named ?RRSAF
and a package list that contains the collection name.

After CREATE THREAD completes, DB2 can execute SQL statements.

TERMINATE THREAD
Deallocates the plan.

TERMINATE IDENTIFY
Removes the task as a user of DB2. If this is the last or only task in the
address space with a DB2 connection, the TERMINATE IDENTIFY
command terminates the address space connection to DB2.

Chapter 15. Monitoring and controlling DB2 and its connections 471



TRANSLATE
Returns an SQL code and printable text, in the SQLCA, that describes a
DB2 error reason code.

Related tasks

Programming your applications for concurrency (DB2 Performance)

Invoking the Resource Recovery Services attachment facility (Application
Programming and SQL Guide)

Abnormal termination involving DB2 and RRS
If DB2 abnormally terminates but RRS remains active, RRS might commit or roll
back work without DB2 knowledge. In a similar manner, if RRS abnormally
terminates after DB2 has completed phase 1 of commit processing for an
application, DB2 does not know whether to commit or roll back the work.

In either case, when DB2 restarts, that work is termed indoubt.

DB2 cannot resolve those indoubt units of recovery (that is, commit or roll back the
changes made to DB2 resources) until DB2 restarts with RRS.

If any unit of work is indoubt when a failure occurs, DB2 and RRS automatically

resolve the unit of work when DB2 restarts with RRS.

Displaying RRS indoubt units of recovery
You can display a list of the Resource Recovery Services (RRS) indoubt units of
recovery.

To display a list of indoubt units of recovery:

Issue the following command:
-DISPLAY THREAD (RRSAF) TYPE (INDOUBT)

The command produces output that is similar to the following example:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV406I - INDOUBT THREADS -
COORDINATOR STATUS RESET URID AUTHID
RRSAF INDOUBT 00019B8ADE9E ADMF001
V449-HAS NID= AD64101C7EED90000000000101010000 AND ID= ST47653RRS
DISPLAY INDOUBT REPORT COMPLETE
DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

For RRSAF connections, a network ID is the z/OS RRS unit of recovery ID (URID),
which uniquely identifies a unit of work. A z/OS RRS URID is a 32-character

number.
Related information

DSNV408I (DB2 Messages)

Recovering RRS indoubt units of recovery manually
You might need to manually recover an indoubt unit of recovery if the RRS log is
lost. When that happens, message DSN3011I is displayed on the z/OS console.

472 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.perf/db2z_programapps4concurrency.htm#db2z_programapps4concurrency
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_invokerrsaf.htm#db2z_invokerrsaf
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_invokerrsaf.htm#db2z_invokerrsaf
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnv408i.htm#dsnv408i


To recover an indoubt unit of recovery:
1. Determine the correlation ID of the thread to be recovered by issuing the

DISPLAY THREAD command.
2. Issue one of the following commands to recover the indoubt unit:
v -RECOVER INDOUBT (RRSAF) ACTION (COMMIT) ID (correlation-id)
v -RECOVER INDOUBT (RRSAF) ACTION (ABORT) ID (correlation-id)

The ACTION parameter of the RECOVER command indicates whether to
commit or roll back the associated unit of recovery.

If you recover a thread that is part of a global transaction, all threads in the global
transaction are recovered.

The following messages might be issued when you issue the RECOVER INDOUBT
command:
DSNV414I - THREAD correlation-id COMMIT SCHEDULED

DSNV415I - THREAD correlation-id ABORT SCHEDULED

The following DSNV418I message might also be issued:
DSNV418I - RECOVER INDOUBT REJECTED FOR ID=correlation-id

If this message is issued, use the following NID option of RECOVER INDOUBT:
-RECOVER INDOUBT(RRSAF) ACTION(action) NID(nid)

where nid is the 32-character field that is displayed in the DSNV449I message.

Related concepts

“Multiple system consistency” on page 537
Related tasks

“Resolving indoubt units of recovery” on page 544

Displaying RRS postponed units of recovery
You can display a list of the Resource Recovery Services (RRS) postponed units of
recovery.

To display a list of postponed units of recovery:

Issue the following command:
-DISPLAY THREAD (RRSAF) TYPE (POSTPONED)

The command produces output that is similar to the following example:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV406I - POSTPONED ABORT THREADS -
COORDINATOR STATUS RESET URID AUTHID
RRSAF P-ABORT 00019B8ADE9E ADMF001
V449-HAS NID= AD64101C7EED90000000000101010000 AND ID= ST47653RRS
DISPLAY POSTPONED ABORT REPORT COMPLETE
DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

For RRSAF connections, a network ID is the z/OS RRS unit of recovery ID (URID),
which uniquely identifies a unit of work. A z/OS RRS URID is a 32-character

number.

Chapter 15. Monitoring and controlling DB2 and its connections 473



Related information

DSNV408I (DB2 Messages)

Monitoring and displaying RRSAF connections
The Resource Recovery Services attachment facility (RRSAF) allows an application
or application monitor to disassociate a DB2 thread from a TCB. Later the thread
can be associated with the same or a different TCB within the same address space.

RRSAF uses the RRS Switch Context (CTXSWCH) service to do this. Only
authorized programs can execute CTXSWCH.

DB2 stores information in an RRS CONTEXT about an RRSAF thread so that DB2
can locate the thread later. An application or application monitor can then invoke
CTXSWCH to disassociate the CONTEXT from the current TCB and then associate
the CONTEXT with the same TCB or a different TCB.

The following command displays information about RRSAF threads, including
those that access data at remote locations:
-DISPLAY THREAD(RRSAF)

The command produces output similar to the output in the following figure:

Disconnecting RRSAF applications from DB2
To disconnect a Resource Recovery Services attachment facility (RRSAF) transaction
from DB2, you must abnormally terminate the transaction.

You can use the CANCEL THREAD command to cancel a particular
thread. The CANCEL THREAD command requires that you know the token for any

DSNV401I = DISPLAY THREAD REPORT FOLLOWS -
DSNV402I = ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN

�1�RRSAF T 4 RRSTEST2-111 ADMF001 ?RRSAF 0024 13
�2�RRSAF T 6 RRSCDBTEST01 USRT001 TESTDBD 0024 63
�3�RRSAF DI 3 RRSTEST2-100 USRT002 ?RRSAF 001B 99
�4�RRSAF TR 9 GT01XP05 SYSADM TESTP05 001B 235

V444-DB2NET.LUND0.AA8007132465=16 ACCESSING DATA AT
V446-SAN_JOSE:LUND1

DISPLAY ACTIVE REPORT COMPLETE

Key Description

�1� This is an application that used CREATE THREAD to allocate the special plan that
is used by RRSAF (plan name = ?RRSAF).

�2� This is an application that connected to DB2 and allocated a plan with the name
TESTDBD.

�3� This is an application that is currently not connected to a TCB (shown by status
DI).

�4� This is an active connection that is running plan TESTP05. The thread is accessing
data at a remote site.

Figure 40. DISPLAY THREAD output showing RRSAF connections

474 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnv408i.htm#dsnv408i


thread that you want to cancel. Issue the DISPLAY THREAD command to obtain
the token number, and then enter the following command to cancel the thread:
-CANCEL THREAD(token)

When you issue the CANCEL THREAD command, DB2 schedules the thread for

termination.

Controlling connections to remote systems
You can control connections to remote systems that use distributed data by
controlling the threads. The types of threads that are involved in connecting to
other systems are allied threads and database access threads.

An allied thread is a thread that is connected locally to your DB2 subsystem,
that is from TSO, CICS, IMS, or a stored procedures address space. A database access
thread is a thread that is initiated by a remote DBMS to your DB2 subsystem.

Related concepts

“DB2 commands for monitoring connections to other systems” on page 478
Related tasks

“Resolving indoubt units of recovery” on page 544
Related information

“Recovering from database access thread failure” on page 699

Starting DDF
You can start the distributed data facility (DDF) if you have at least SYSOPR
authority.

To start the distributed data facility (DDF), if it has not already been
started, use the following command:
-START DDF

When DDF is started and is responsible for indoubt thread resolution with remote
partners, message DSNL432I or DSNL433I, or both, is generated. These messages
summarize the responsibility DDF has for indoubt thread resolution with remote
partners.

The following messages are associated with this command:
DSNL003I - DDF IS STARTING
DSNL004I - DDF START COMPLETE LOCATION locname

LU netname.luname
GENERICLU netname.gluname
DOMAIN domain
TCPPORT tcpport
SECPORT secport
RESPORT resport

If the DDF is not properly installed, the START DDF command fails, and message
,DSN9032I, - REQUESTED FUNCTION IS NOT AVAILABLE, is issued. If the DDF has
started, the START DDF command fails, and message ,DSNL001I, - DDF IS
ALREADY STARTED, is issued. Use the DISPLAY DDF command to display the status
of DDF.

Chapter 15. Monitoring and controlling DB2 and its connections 475



When you install DB2, you can request that the distributed data facility start
automatically when DB2 starts.

Related concepts

Chapter 18, “Maintaining consistency across multiple systems,” on page 537
Related reference

Distributed data facility panel 1: DSNTIPR (DB2 Installation and Migration)

Suspending DDF server activity
You can use the STOP DDF MODE(SUSPEND) command to suspend DDF server
threads temporarily.

Suspending DDF server threads frees all resources that are held by the
server threads and lets the following operations complete:
v CREATE
v ALTER
v DROP
v GRANT
v REVOKE

When you issue STOP DDF MODE(SUSPEND), DB2 waits for all active DDF
database access threads to become pooled or to terminate. Two optional keywords
on this command, WAIT and CANCEL, let you control how long DB2 waits and

what action DB2 takes after a specified time period.
Related reference

-STOP DDF (DB2) (DB2 Command Reference)

Resuming DDF server activity
You can resume suspended DDF server activity.

To resume suspended DDF server threads, issue the START DDF

command.
Related reference

-STOP DDF (DB2) (DB2 Command Reference)

Displaying information about DDF work
The DISPLAY DDF command displays information regarding the status of DDF.
This command also displays information that is related to the start of DDF, such as
the location name, the LU name, the IP address, and domain names.

To issue the DISPLAY DDF command, you must have SYSOPR authority or
higher.

Tip: You can use the optional DETAIL keyword to receive additional configuration
and statistical information.

The DISPLAY DDF DETAIL command is especially useful because it reflects the
presence of new inbound connections that are not reflected by other commands.
For example, if DDF is in INACTIVE MODE, as denoted by a DT value of I in the

476 Administration Guide

|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipr.htm#db2z_dsntipr
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_stopddf.htm#db2z_cmd_stopddf
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_stopddf.htm#db2z_cmd_stopddf


message DSNL090I, and DDF is stopped with mode SUSPEND, or the maximum
number of active database access threads has been reached, new inbound
connections are not yet reflected in the DISPLAY THREAD report. However, the
presence of these new connections is reflected in the DISPLAY DDF DETAIL
report, although specific details regarding the origin of the connections, such as the
client system IP address or LU name, are not available until the connections are
actually associated with a database access thread.

Enter one of the following commands:
v To show only the basic information, enter:

-DISPLAY DDF

v To show additional information, enter the following command:
-DISPLAY DDF DETAIL

DB2 returns output similar to this sample.
DSNL080I - DSNLTDDF DISPLAY DDF REPORT FOLLOWS-
DSNL081I �1� STATUS=STARTD
DSNL082I �2� LOCATION �3�LUNAME �4�GENERICLU
DSNL083I SVL650A USIBMSY.SYEC650A -NONE
DSNL084I �5� TCPPORT=446 SECPORT=0 �6�RESPORT=5001 IPNAME=-NONE
DSNL085I �7� IPADDR=::9.110.115.106
DSNL085I �7� IPADDR=2002:91E:610:1::5
DSNL086I �8� SQL DOMAIN=v8ec103.svl.ibm.com
DSNL086I �9� RESYNC DOMAIN=v8ec103.svl.ibm.com
DSNL087I �10�ALIAS PORT SECPORT
DSNL088I �11�ALIASLOC1 551 0
DSNL088I ALIASLOC2 552 0
DSNL088I ALIASLOC3 553 0
DSNL088I ALIASLOC4 554 0
DSNL088I ALIASLOC5 555 0
DSNL088I ALIASLOC6 556 0
DSNL088I ALIASLOC7 557 0
DSNL088I ALIASLOC8 558 0
DSNL089I MEMBER IPADDR=::9.110.115.112
DSNL089I MEMBER IPADDR=2002:91E:610:1::112
DSNL099I DSNLTDDF DISPLAY DDF REPORT COMPLETE

With the DETAIL option, the following additional information is included, before
the DSNL099I line:
DSNL090I �12�DT= A �13�CONDBAT= 64 �14�MDBAT= 64
DSNL092I �15�ADBAT= 1 �16�QUEDBAT= 0 �17�INADBAT= 0 �18�CONQUED= 0
DSNL093I �19�DSCDBAT= 0 �20�INACONN= 0
DSNL100I LOCATION SERVER LIST:
DSNL101I WT IPADDR IPADDR
DSNL102I 64 ::9.110.115.111 2002:91E:610:1::111
DSNL102I ::9.110.115.112 2002:91E:610:1::112
DSNL099I DSNLTDDF DISPLAY DDF REPORT COMPLETE

Key Description
1 The status of the distributed data facility (DDF).

STOPDQ
DDF is not started.

STARTED
DDF is started.

2 The location name of DDF defined in the BSDS.
3 The fully qualified LU name for DDF (that is, the network ID and

LUNAME). If ″-NONE″ is present, then DDF is not started.
4 The fully qualified generic LU name for DDF.
5 The TCPPORT of DDF.
6 The RESPORT of DDF.

Chapter 15. Monitoring and controlling DB2 and its connections 477

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

||
||



7 The IPv4 and IPv6 addresses. If ″-NONE″ is present, then DDF is not
started.

8 The domain that accepts inbound SQL requests from remote partners. If
″-NONE″ is present, then DDF is not started.

9 The domain that accepts inbound two-phase commit resynchronization
requests. If ″-NONE″ is present, then DDF is not started.

10 Column headers for a table that contains the alias names and their
associated ports.

11 An alias name and its associated port.
12 The DDF thread value:

A Indicates that DDF is configured with DDF THREADS ACTIVE.
I Indicates that DDF is configured with DDF THREADS INACTIVE.

13 The maximum number of inbound connections.
14 The maximum number of concurrent active DBATs that can execute SQL.
15 The current number of active database access threads.
16 The total number of queued database access threads. This count is

cumulative and resets only when DB2 restarts.
17 The current number of inactive DBATs (type 1 inactive threads).
18 The current number of connection requests that are queued and waiting.
19 The current number of pooled database access threads.
20 The current number of inactive connections (type 2 inactive connections).

DB2 commands for monitoring connections to other systems:

By issuing certain DB2 commands, you can generate information about the status
of distributed threads.

DISPLAY DDF
Displays information about the status and configuration of the distributed
data facility (DDF), and about the connections or threads controlled by
DDF.

DISPLAY LOCATION
Displays statistics about threads and conversations between a remote DB2
subsystem and the local subsystem.

DISPLAY THREAD
Displays information about DB2, distributed subsystem connections, and
parallel tasks.

Displaying information about connections with other locations:

The DISPLAY LOCATION command displays summary information about
connections with other locations. You can also use this command to display
detailed information about DB2 system conversations.

Prerequisite: To issue the DISPLAY LOCATION command, you must have
SYSOPR authority or higher.

478 Administration Guide

||
|

||
|
||

||
|



System conversations are used either for DB2 private protocol access or for
supporting functions with DRDA access. You can specify location names, SNA LU
names, or IP addresses, and the DETAIL keyword is supported.

To display information about connections with other locations:

Issue the DISPLAY LOCATION command. For example:
-DISPLAY LOCATION(*)

DB2 returns output that is similar to the following example:
DSNL200I -DISPLAY LOCATION REPORT FOLLOWS-
LOCATION PRDID REQSTR SERVER CONVS
USIBMSTODB22 DSN09010 1 0 3
LUND0
USIBMSTODB23 DSN09010 0 0 0
LUND1
DRDALOC SQL08020 3 0 3
::FFFF:124:63:51:17 SQL08020 0 15 15
DISPLAY LOCATION REPORT COMPLETE

You can use an asterisk (*) in place of the end characters of a location name. For
example, you can use DISPLAY LOCATION(SAN*) to display information about all
active connections between your DB2 subsystem and a remote location that begins
with “SAN”. The results will include the number of conversations and the role for
each non-system conversation, requester, or server.
When DB2 connects with a remote location, information about that location,
including LOCATION, PRDID, and LINKNAME (LUNAME or IP address), persists
in the report even if no active connections exist.

The DISPLAY LOCATION command displays the following types of information
for each DBMS that has active connections, except for the local subsystem:
v The location name (or RDBNAME) of the other connected system. If the

RDBNAME is not known, the LOCATION column contains one of the following
identifiers:
– A Virtual Telecommunications Access Method (VTAM) LU name in the format

'<luname>'

– A dotted decimal IPv4 or colon hexadecimal IPv6 address
v The PRDID, which identifies the database product at the location in the format

nnnvvrrm, where:
– nnn is the database product.
– vv is the product version.
– rr is the product release.
– m is the product modification level.

v The number of threads at the local system that are requesting data from the
remote system

v The number of threads at the local system that are acting as a server to the
remote system

v The total number of conversations that are in use between the local system and
the remote system

v The corresponding LINKNAME, representing the LUNAME or IP address of the
system if different from the LOCATION name

Chapter 15. Monitoring and controlling DB2 and its connections 479

|
|
|
|
|
|
|
|
|

|

|
|



DB2 does not receive a location name from non-DB2 requesting DBMSs that are
connected to DB2. In this case, DB2 displays the LUNAME, enclosed in less than
(<) and greater than (>) symbols, or the IP address of the requesting system.

For example, suppose two threads are at location USIBMSTODB21. One thread is a
distributed access thread from a non-DB2 system, and the other is an allied thread
that goes from USIBMSTODB21 to the non-DB2 system. Both threads use SNA
connections. The DISPLAY LOCATION command that is issued at USIBMSTODB21
displays the following output:
DSNL200I -DISPLAY LOCATION REPORT FOLLOWS -
LOCATION PRDID REQSTR SERVER CONVS
NONDB2DBMS 1 0 1
LUND1
<LULA> DSN09010 0 1 1
LULA
DISPLAY LOCATION REPORT COMPLETE

The following output shows the result of the DISPLAY LOCATION(*) command when
DB2 is connected to the following DRDA partners:
v DB2A is connected to DB2 by using TCP/IP for DRDA connections and SNA for

DB2 private-protocol connections.
v DB2SERV is connected to DB2 by using only SNA.
DSNL200I -DISPLAY LOCATION REPORT FOLLOWS -
LOCATION PRDID REQSTR SERVER CONVS
DB2A DSN09010 3 4 9
LUDB2A
DB2A DSN09010 2 1 3
::FFFF:124:38:54:16
DB2SERV DSN09010 1 1 3
LULA
DISPLAY LOCATION REPORT COMPLETE

The DISPLAY LOCATION command displays information for each remote location
that currently is, or once was, in contact with DB2. If a location is displayed with
zero conversations, one of the following conditions exists:
v Sessions currently exist with the partner location, but no active conversations are

allocated to any of the sessions.
v Sessions no longer exist with the partner, because contact with the partner has

been lost.

If you use the DETAIL parameter, each line is followed by information about
conversations that are owned by DB2 system threads, including those that are used

for resynchronization of indoubt units of work.

Canceling dynamic SQL from a client application
You can use the CLI and ODBC function SQLCancel() or the JDBC cancel method
to cancel a remote SQL request from a client application.

To cancel SQL statements that are running on a remote DB2 server:
1. Establish an additional remote connection from your application to the remote

DB2 server.
2. From that connection, issue SQLCancel() or invoke the JDBC cancel method.

When you cancel an SQL statement from a client application, you do not eliminate
the original connection to the remote server. The original connection remains active
to process additional SQL requests. Any cursor that is associated with the canceled

480 Administration Guide

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|



statement is closed, and the DB2 server returns an SQLCODE of -952 to the client
application when you cancel a statement by using this method.

You can cancel only dynamic SQL codes that excludes transaction-level statements
(CONNECT, COMMIT, ROLLBACK) and bind statements from a client application.

For more information about SQLCancel(), see DB2 ODBC Guide and Reference. For
more information about the JDBC cancel method, see DB2 Application Programming

Guide and Reference for Java.

Canceling threads
You can use the CANCEL THREAD command to terminate threads that are active
or suspended in DB2.

Using the CANCEL THREAD command requires SYSOPR authority or higher.

The command has no effect if the thread is not active or suspended in DB2.

If the thread is processing in VTAM or TCP/IP, you can use VTAM or
TCP/IP commands to terminate the conversations, as described in the “-CANCEL
THREAD (DB2)” section in the DB2 Command Reference.

DISPLAY THREAD can be used to determine if a thread is hung in DB2 or VTAM.
In VTAM, there is no reason to use the CANCEL command.

To terminate a thread, enter one of the following commands:
v To cancel a thread with a token, enter:

-CANCEL THREAD (token)

v Alternatively, you can use the following version of the command with either the
token or LUW ID:
-CANCEL DDF THREAD (token or luwid)

The token is a 1-character to 5-character number that identifies the thread result.
When DB2 schedules the thread for termination, the following message for a
distributed thread is issued:
DSNL010I - DDF THREAD token or luwid HAS BEEN CANCELED

For a non-distributed thread, you see the following message:
DSNV426I - csect THREAD token HAS BEEN CANCELED

As a result of entering CANCEL THREAD, the following messages can be
displayed:

DSNL009I
DSNL010I
DSNL022I

CANCEL THREAD allows you to specify that a diagnostic dump be taken.

Chapter 15. Monitoring and controlling DB2 and its connections 481

|
|
|



Related reference

-CANCEL THREAD (DB2) (DB2 Command Reference)
Related information

Diagnosis Guide and Reference

Effects of the CANCEL THREAD command:

A database access thread can be in the prepared state, waiting for the commit
decision from the coordinator. When you issue the CANCEL THREAD command
for a database access thread that is in the prepared state, the thread is converted
from active to indoubt status.

The conversation with the coordinator and all conversations with
downstream participants are terminated, and message DSNL450I is returned. The
resources that are held by the thread are not released until the indoubt state is
resolved. This is accomplished automatically by the coordinator or by using the
command RECOVER INDOUBT.

When the command is entered at the DB2 subsystem that has a database access
thread servicing requests from a DB2 subsystem that owns the allied thread, the
database access thread is terminated. Any active SQL request (and all later
requests) from the allied thread result in a ″resource not available″ return code.

Related tasks

“Resolving indoubt units of recovery” on page 544

Monitoring and controlling stored procedures
Stored procedures, such as native SQL procedures, external SQL procedures, and
external stored procedures, are user-written programs that run at a DB2 server.

External SQL procedures and external stored procedures run in
WLM-established address spaces. To monitor and control stored procedures in
WLM-established address spaces, you might need to use WLM commands rather
than DB2 commands. When you execute a WLM command on a z/OS system that
is part of a Sysplex, the scope of that command is the Sysplex.

Related tasks

Creating a stored procedure (Application Programming and SQL Guide)

Displaying information about stored procedures with DB2 commands:

Use the DISPLAY PROCEDURE command and the DISPLAY THREAD command
to obtain information about a stored procedure while it is running.

Because native SQL procedures do not run in WLM-established address spaces, the
best way to monitor native SQL procedures is by using the START TRACE
command and specifying accounting class 10, which activates IFCID 239.

482 Administration Guide

|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|

|

|
|

|
|
|
|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_cancelthread.htm#db2z_cmd_cancelthread
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc/db2z_digref.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_createsp.htm#db2z_createsp


Related concepts

Interpreting trace output (DB2 Performance)
Related reference

-START TRACE (DB2) (DB2 Command Reference)

Displaying statistics about stored procedures:

Issue the DISPLAY PROCEDURE command to display statistics about stored
procedures that are accessed by DB2 applications.

This command can display the following information about stored procedures:
v Status (started, stop-queue, stop-reject, or stop-abend)
v Number of requests that are currently running and queued
v Maximum number of threads that are running a stored procedure load module

and queued
v Count of timed-out SQL CALLs

To display information about all stored procedures in all schemas that have
been accessed by DB2 applications:

Issue the DISPLAY PROCEDURE command. For example:
-DISPLAY PROCEDURE

Note: To display information about a native SQL procedure, you must run the
procedure in DEBUG mode. If you do not run the native SQL procedure in
DEBUG mode (for example, in a production environment), the DISPLAY
PROCEDURE command will not return output for the procedure.

If you do run the procedure in DEBUG mode the WLM environment column in
the output contains the WLM ENVIRONMENT FOR DEBUG that you specified
when you created the native SQL procedure. The DISPLAY PROCEDURE output
shows the statistics of native SQL procedures as ’0’ if the native SQL procedures
are under the effect of a STOP PROCEDURE command.

The following example shows two schemas (PAYROLL and HRPROD) that have
been accessed by DB2 applications. You can also display information about specific
stored procedures.
DSNX940I csect - DISPLAY PROCEDURE REPORT FOLLOWS-
------ SCHEMA=PAYROLL
PROCEDURE STATUS ACTIVE QUED MAXQ TIMEOUT FAIL WLM_ENV
PAYRPRC1

STARTED 0 0 1 0 0 PAYROLL
PAYRPRC2

STOPQUE 0 5 5 3 0 PAYROLL
PAYRPRC3

STARTED 2 0 6 0 0 PAYROLL
USERPRC4

STOPREJ 0 0 1 0 1 SANDBOX
------ SCHEMA=HRPROD
PROCEDURE STATUS ACTIVE QUED MAXQ TIMEOUT FAIL WLM_ENV
HRPRC1

STARTED 0 0 1 0 1 HRPROCS
HRPRC2

Chapter 15. Monitoring and controlling DB2 and its connections 483

|

|
|

|

|

|

|
|

|

|
|

|

|

|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.perf/db2z_interpretdb2trace.htm#db2z_interpretdb2trace
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_starttrace.htm#db2z_cmd_starttrace


STOPREJ 0 0 1 0 0 HRPROCS
DISPLAY PROCEDURE REPORT COMPLETE
DSN9022I = DSNX9COM '-DISPLAY PROC' NORMAL COMPLETION

Related reference

-DISPLAY PROCEDURE (DB2) (DB2 Command Reference)

Displaying thread information about stored procedures:

Issue the DISPLAY THREAD command to display thread information about stored
procedures.

This command tells whether:
v A thread is waiting for a stored procedure to be scheduled.
v A thread is executing within a stored procedure.

To display active threads that are running stored procedures and
user-defined functions:

Issue the DISPLAY THREAD command. For example:
-DISPLAY THREAD(*) TYPE(PROC)

Example 1: The following example of output from the DISPLAY THREAD
command shows a thread that is executing an external SQL procedure or an
external stored procedure.
-display thread(*) type(proc) detail
DSNV401I ! DISPLAY THREAD REPORT FOLLOWS -
DSNV402I ! ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH SP 3 CALLWLM SYSADM PLNAPPLX 0022 5

V436-PGM=*.MYPROG, SEC=2, STMNT=1
V429 CALLING PROCEDURE=SYSADM .WLMSP ,

PROC=V61AWLM1, ASID=0085, WLM_ENV=WLMENV1
DISPLAY ACTIVE REPORT COMPLETE
DSN9022I ! DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

The SP status indicates that the thread is executing within the stored procedure. An
SW status indicates that the thread is waiting for the stored procedure to be
scheduled.

Example 2: This example of output from the DISPLAY THREAD command shows
a thread that is executing a native SQL procedure. If you do not specify the
DETAIL option, the output will not include information that is specific to the
stored procedure.

Issuing the command -display thread(*) type(proc) detail results in the
following output:
SERVER RA * 22325 driver.exe USRT010 DISTSERV 0067 8
V437-WORKSTATION=CALADAN, SERID=USRT010,
APPLICATION NAME=driver.exe
V436-PGM=USRT010.MARKETWATCH_F1, SEC=3, STMNT=39
V442-CRTKN=9.30.129.213.15369.090129190416
V445-G91E81D8.C3B9.C3AB43861A26=8 ACCESSING DATA FOR
( 1)::FFFF:9.30.129.213
V447--INDEX SESSID A ST TIME V448--( 1) 50105:2364 W S2 902911191075

484 Administration Guide

|
|
|

|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_displayprocedure.htm#db2z_cmd_displayprocedure


Example 3: The following example of output from the DISPLAY THREAD
command shows a thread that is executing a user-defined function.
-display thread(*) type(proc) detail
DSNV401I ! DISPLAY THREAD REPORT FOLLOWS -
DSNV402I ! ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH SP 27 LI33FN1 SYSADM DSNTEP3 0021 4
V436-PGM=*.MYPROG, SEC=2, STMNT=1
V429 CALLING FUNCTION =SYSADM .FUNC1 ,

PROC=V61AWLM1, ASID=0085, WLM_ENV=WLMENV1
DISPLAY ACTIVE REPORT COMPLETE
DSN9022I ! DSNVDT '-DISPLAY THD' NORMAL COMPLETION

Related reference

-DISPLAY THREAD (DB2) (DB2 Command Reference)

Determining the status of an application environment:

Use the z/OS command DISPLAY WLM to determine the status of an application
environment in which a stored procedure runs.

The output from the DISPLAY WLM command lets you determine whether a
stored procedure can be scheduled in an application environment.

For example, you can issue this command to determine the status of application
environment WLMENV1:
D WLM,APPLENV=WLMENV1

You might get results like the following:
IWM029I 15.22.22 WLM DISPLAY
APPLICATION ENVIRONMENT NAME STATE STATE DATA
WLMENV1 AVAILABLE
ATTRIBUTES: PROC=DSNWLM1 SUBSYSTEM TYPE: DB2

The output indicates that WLMENV1 is available, so WLM can schedule stored
procedures for execution in that environment.

Refreshing a WLM application environment for stored procedures:

When you make certain changes to a stored procedure or to the JCL startup
procedure for a WLM application environment, you need to refresh the WLM
application environment.

Before you refresh a WLM application environment, ensure that WLM is operating
in goal mode.

Refreshing the WLM environment starts a new instance of each address space that
is active for the WLM environment. Existing address spaces stop when the current
requests that are executing in those address spaces complete.

Refresh the WLM application environment if any of the following situations are
true:
v For external procedures (including external SQL procedures), you changed the

stored procedure logic, the load module, or the CREATE PROCEDURE
definition.

v For a Java stored procedure, you changed the properties that are pointed to by
the JAVAENV data set.

Chapter 15. Monitoring and controlling DB2 and its connections 485

|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_displaythread.htm#db2z_cmd_displaythread


v You changed the JCL startup procedure for the WLM application environment.

Restriction: In some cases, refreshing the WLM environment might not be
sufficient to incorporate your change. For example, assume that you changed the
NUMTCB value in the JCL. The refresh fails because WLM cannot start a new
WLM address space that has a different NUMTCB value as the existing one. In
this case, you need to quiesce the WLM environment while you change the JCL
startup procedure, and resume the environment when your changes are
complete.

If you create a procedure that uses an existing WLM environment, you do not
need to refresh the WLM environment.

To refresh a WLM application environment for stored procedures:

Perform one of the following actions:
v Call the WLM_REFRESH stored procedure.
v Issue the following z/OS command:

VARY WLM,APPLENV=name,REFRESH

In this command, name is the name of a WLM application environment that is
associated with one or more stored procedures. The application environment is
refreshed to incorporate the changed load modules for all stored procedures and
user-defined functions in the particular environment.

Alternatively, when you make certain changes to the JCL startup procedure, you
must quiesce and then resume the WLM application environment rather than
refresh it. For these types of changes, use the following z/OS commands:
v To stop all stored procedures address spaces that are associated with the WLM

application environment name, use the following z/OS command:
VARY WLM,APPLENV=name,QUIESCE

The address spaces stop when the current requests that are executing in those
address spaces complete.
This command puts the WLM application environment in QUIESCED state.
When the WLM application environment is in QUIESCED state, the stored
procedure requests are queued. If the WLM application environment is restarted
within a certain time, the stored procedures are executed. If a stored procedure
cannot be executed, the CALL statement returns SQL code -471 with reason code
00E79002.

v To restart all stored procedures address spaces that are associated with WLM
application environment name, use the following z/OS command:
VARY WLM,APPLENV=name,RESUME

New address spaces start when all JCL changes are established. Until that time,
work requests that use the new address spaces are queued.
Also, you can use the VARY WLM command with the RESUME option when
the WLM application environment is in the STOPPED state due to a failure. This
state might be the result of a failure when starting the address space, or because
WLM detected five abnormal terminations within 10 minutes. When an
application environment is in the STOPPED state, WLM does not schedule
stored procedures for execution in it. If you try to call a stored procedure when
the WLM application environment is in the STOPPED state, the CALL statement
returns SQL code -471 with reason code 00E7900C. After correcting the condition
that caused the failure, you need to restart the application environment.

486 Administration Guide

|

|
|
|
|
|
|
|

|
|

|

|

|

|

|

|
|
|
|

|
|
|

|
|

|

|
|

|
|
|
|
|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|



Related concepts

″WLM management of stored procedures″ (DB2 Installation Guide)
Related tasks

″Setting up a WLM application environment for stored procedures″ (DB2
Installation Guide)
Related reference

″CREATE PROCEDURE (SQL - native)″ (DB2 SQL Reference)
Related information

″WLM_REFRESH″ (DB2 Application Programming and SQL Guide)

z/OS MVS Planning: Workload Management

Obtaining diagnostic information and debugging stored procedures:

You have several options for obtaining diagnostic information and debugging
stored procedures, depending on the type of stored procedure.

To obtain diagnostic information and debug stored procedures:

Take the appropriate action, depending on the type of stored procedure that you
use.

Type of stored procedure Actions

All types of stored procedures v Look at the diagnostic information in
CEEDUMP. If the startup procedures for
your stored procedures address spaces
contain a DD statement for CEEDUMP,
Language Environment® writes a small
diagnostic dump to CEEDUMP when a
stored procedure terminates abnormally.
The output is printed after the stored
procedures address space terminates. You
can obtain the dump information by
stopping the stored procedures address
space in which the stored procedure is
running.

v Debug the stored procedure as a
stand-alone program on a workstation.

v Record stored procedure debugging
messages to a disk file or JES spool file by
using the Language Environment
MSGFILE runtime option.

v Store debugging information in a table.
This option works well for remote stored
procedures.

C stored procedures Use the Debug Tool for z/OS.

C++ stored procedures Use the Debug Tool for z/OS.

COBOL stored procedures Use the Debug Tool for z/OS.

External applications Use a driver application.

Chapter 15. Monitoring and controlling DB2 and its connections 487

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|
|

|||

||
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

||

||

||

||

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_wlmmangementsp.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_setupwlmenvironment.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_setupwlmenvironment.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.sqlref/db2z_sql_createproceduresqlnative.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_sp_wlmrefresh.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r9/topic/com.ibm.zos.r9.ieaw100/iea2w180.htm


Type of stored procedure Actions

External SQL procedures v Use the Unified Debugger.

v Use the DB2 stored procedure debugger,
which is part of IBM Data Studio.

Java stored procedures v Use the Unified Debugger.

v Use the DB2 stored procedure debugger,
which is part of IBM Data Studio.

Native SQL procedures Use the GET DIAGNOSTICS statement. The
DB2_LINE_NUMBER parameter returns:

v The line number where an error is
encountered in parsing, binding, or
executing a CREATE or ALTER statement
for a native SQL procedure.

v The line number when a CALL statement
invokes a native SQL procedure and the
procedure returns with an error.

This information is not returned for an
external SQL procedure, and this value is
meaningful only if the statement source
contains new line control characters.

Remember: After you finish debugging stored procedures, remember to disable
the debugging option that you used, so that you do not run debugging tools in a
production system.
Related tasks

“Refreshing a WLM application environment for stored procedures” on page 485
Related reference

Integrated Data Management Information Center

Migrating stored procedures from test to production:

After developing and testing a stored procedure, you can migrate it from a test
environment to production.

The process that you follow to migrate a stored procedure from a test environment
to production depends on the type of stored procedure that you want to migrate.
The process that you follow also depends on the change management policy of
your site. You can migrate a native SQL procedure, an external SQL procedure, or
an external stored procedure. You also can choose to recompile to create new object
code and a new package on the production server, or you can choose not to
recompile.

Migrating native SQL procedures from test to production:

Migrating native SQL procedures from a test environment to production is a
straightforward process.

Because native SQL procedures do not contain load modules that need to be
link-edited or WLM address spaces that need to be refreshed, you do not need to
determine whether you want to recompile to create new object code and a new
package on the production server.

488 Administration Guide

||

||

|
|

||

|
|

||
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|

|

|

|

|

|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/idm/v2r1/index.jsp


To migrate a native SQL procedure from a test environment to production:

Deploy the native SQL procedure to the new server.

Migrating external SQL procedures from test to production:

Use IBM Data Studio to migrate external SQL procedures from a test environment
to production.

External SQL procedures are usually built by using IBM Data Studio.

To migrate an external SQL procedure from a test environment to
production:

Use IBM Data Studio to deploy the stored procedure. The binary deploy capability
in IBM Data Studio promotes external SQL procedures without recompiling. The
binary deploy capability copies all necessary components from one environment to
another and performs the bind in the target environment.

Migrating external stored procedures from test to production:

Use the CREATE PROCEDURE statement to migrate external stored procedures
from a test environment to a production environment.

For Java stored procedures, you also can use IBM Data Studio to do a binary
deploy of the stored procedure. The binary deploy capability promotes Java stored
procedures without recompiling. The binary deploy capability copies all necessary
components from one environment to another and performs the bind in the target
environment.

To migrate an external stored procedure from a test environment to
production:
1. Determine the change management policy of your site. You can choose to

recompile to create new object code and a new package on the production
server, or you can choose not to recompile.

2. Depending on your change management policy, complete the appropriate task.
v To migrate the stored procedure without recompiling:

a. Copy the CREATE PROCEDURE statement.
b. Modify the CREATE PROCEDURE statement to reflect the new schema,

new collection ID and new WLM application environment.
c. Define the stored procedure with the new CREATE PROCEDURE

statement. You can use the IBM-supplied programs DSNTIAD or
DSNTEP2.

Note: Make sure that the schema, collection ID and WLM application
environment correspond to the new environment or code level.

d. Copy the DBRM and bind the DBRM to produce a DB2 package.

Note: Make sure that the collection ID of the BIND statement and
collection ID of the CREATE PROCEDURE statement are the same.

e. Copy the load module and refresh the WLM application environment.

Chapter 15. Monitoring and controlling DB2 and its connections 489

|

|

|

|
|

|

|
|

|
|
|
|

|

|

|
|

|
|
|
|
|

|
|

|
|
|

|

|

|

|
|

|
|
|

|
|

|

|
|

|



v To migrate the stored procedure and recompile to create new object code and
a new package on the production server:
a. Copy the CREATE PROCEDURE statement.
b. Modify the CREATE PROCEDURE statement to reflect the new schema,

new collection ID and new WLM application environment.
c. Define the stored procedure with the new CREATE PROCEDURE

statement. You can use the IBM-supplied programs DSNTIAD or
DSNTEP2.

Note: Make sure that the schema, collection ID and WLM application
environment correspond to the new environment or code level.

d. Copy the source code.
e. Precompile, compile, and link-edit. This step produces a DBRM and a

load module.
f. Bind the DBRM to produce a DB2 package.

Note: Make sure that the collection ID of the BIND statement and
collection ID of the CREATE PROCEDURE statement are the same.

g. Refresh the WLM application environment.

Monitoring DDF problems by using NetView
The NetView® program lets you have a single focal point from which to view
problems in the network. DDF sends an alert to NetView when a remote location
is either involved in the cause of the failure or affected by the failure.

To see the recommended action for solving a particular problem, enter the selection
number, and then press Enter. This displays the Recommended Action for Selected
Event panel, shown in the following figure.

Key Description

�1� The system that is reporting the error. The system that is reporting the
error is always on the left side of the panel. That system name appears
first in the messages. Depending on who is reporting the error, either the
LUNAME or the location name is used.

N E T V I E W SESSION DOMAIN: CNM01 OPER2 11/03/89 10:30:06
NPDA-45A * RECOMMENDED ACTION FOR SELECTED EVENT * PAGE 1 OF 1
CNM01 AR �1� AS �2�

+--------+ +--------+
DOMAIN RQST --- SRVR

+--------+ +--------+
USER CAUSED - NONE
INSTALL CAUSED - NONE
FAILURE CAUSED - SNA COMMUNICATIONS ERROR:

RCPRI=0008 RCSEC=0001 �1�
FAILURE OCCURRED ON RELATIONAL DATA BASE USIBMSTODB21

ACTIONS - I008 - PERFORM PROBLEM DETERMINATION PROCEDURE FOR REASON
CODE �3�00D31029 �2�
I168 - FOR RELATIONAL DATA BASE USIBMSTODB22
REPORT THE FOLLOWING LOGICAL UNIT OF WORK IDENTIFIER
DB2NET.LUND0.A1283FFB0476.0001

ENTER DM (DETAIL MENU) OR D (EVENT DETAIL)

Figure 41. Recommended action for selected event panel in NetView. In this example, the AR
(USIBMSTODB21) reports the problem, which affects the AS (USIBMSTODB22).

490 Administration Guide

|
|

|

|
|

|
|
|

|
|

|

|
|

|

|
|

|

|



�2� The system that is affected by the error. The system that is affected by the
error is always displayed to the right of the system that is reporting the
error. The affected system name appears second in the messages.
Depending on what type of system is reporting the error, either the
LUNAME or the location name is used.

If no other system is affected by the error, this system does not appear on
the panel.

�3� DB2 reason code.

For more information about using NetView, see Tivoli NetView for z/OS User’s
Guide.
Related information

Diagnosis Guide and Reference

DDF alerts:

Several major events generate alerts.
v Conversation failures
v Distributed security failures
v DDF abends
v DDM protocol errors
v Database access thread abends
v Distributed allied thread abends

Alerts for DDF are displayed on NetView Hardware Monitor panels and are
logged in the hardware monitor database. The following figure is an example of
the Alerts-Static panel in NetView.

Stopping DDF
You can stop the distributed data facility (DDF) if you have SYSOPR authority or
higher.

N E T V I E W SESSION DOMAIN: CNM01 OPER2 11/03/89 10:29:55
NPDA-30B * ALERTS-STATIC *
SEL# DOMAIN RESNAME TYPE TIME ALERT DESCRIPTION:PROBABLE CAUSE
( 1) CNM01 AS *RQST 09:58 SOFTWARE PROGRAM ERROR:COMM/REMOTE NODE
( 2) CNM01 AR *SRVR 09:58 SOFTWARE PROGRAM ERROR:SNA COMMUNICATIONS
( 3) CNM01 P13008 CTRL 12:11 LINK ERROR:REMOTE DCE INTERFACE CABLE +
( 4) CNM01 P13008 CTRL 12:11 RLSD OFF DETECTED:OUTBOUND LINE
( 5) CNM01 P13008 CTRL 12:11 LINK ERROR:REMOTE DCE INTERFACE CABLE +
( 6) CNM01 P13008 CTRL 12:11 LINK ERROR:INBOUND LINE +
( 7) CNM01 P13008 CTRL 12:10 LINK ERROR:REMOTE DCE INTERFACE CABLE +
( 8) CNM01 P13008 CTRL 12:10 LINK ERROR:REMOTE DCE INTERFACE CABLE +
( 9) CNM01 P13008 CTRL 12:10 LINK ERROR:INBOUND LINE +
(10) CNM01 P13008 CTRL 12:10 LINK ERROR:REMOTE DCE INTERFACE CABLE +
(11) CNM01 P13008 CTRL 12:10 LINK ERROR:REMOTE DCE INTERFACE CABLE +
(12) CNM01 P13008 CTRL 12:10 LINK ERROR:REMOTE DCE INTERFACE CABLE +
(13) CNM01 P13008 CTRL 12:10 LINK ERROR:REMOTE DCE INTERFACE CABLE +
(14) CNM01 P13008 CTRL 12:10 LINK ERROR:REMOTE DCE INTERFACE CABLE +
(15) CNM01 P13008 CTRL 12:10 LINK ERROR:REMOTE DCE INTERFACE CABLE +
PRESS ENTER KEY TO VIEW ALERTS-DYNAMIC OR ENTER A TO VIEW ALERTS-HISTORY
ENTER SEL# (ACTION),OR SEL# PLUS M (MOST RECENT), P (PROBLEM), DEL (DELETE)

Figure 42. Alerts-static panel in NetView. DDF errors are denoted by the resource name AS
(server) and AR (requester). For DB2-only connections, the resource names are RS (server)
and RQ (requester).

Chapter 15. Monitoring and controlling DB2 and its connections 491

|
|
|

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc/db2z_digref.htm


Use one of the following commands:
-STOP DDF MODE (QUIESCE)
-STOP DDF MODE (FORCE)

The STOP DDF command causes the following messages to appear:
DSNL005I - DDF IS STOPPING
DSNL006I - DDF STOP COMPLETE

If the distributed data facility has already been stopped, the STOP DDF command

fails and message DSNL002I - DDF IS ALREADY STOPPED appears.

Stopping DDF using the QUIESCE option:

Stop DDF by using the QUIESCE option of the STOP DDF command whenever
possible. This option is the default.

With the QUIESCE option, the STOP DDF command does not complete
until all VTAM or TCP/IP requests have completed. In this case, no
resynchronization work is necessary when you restart DDF. If any indoubt units of
work require resynchronization, the QUIESCE option produces message DSNL035I.
Use the FORCE option only when you must stop DDF quickly. Restart times are
longer if you use the FORCE option.

To stop DDF with the QUIESCE option, issue the following command:
-STOP DDF MODE (QUIESCE)

Stopping DDF using the FORCE option:

Stop DDF by using the FORCE option of the STOP DDF command only when you
must stop DDF quickly.

When DDF is stopped with the FORCE option, and DDF has indoubt
thread responsibilities with remote partners, message DSNL432I, DSNL433I, or
both are issued.

DSNL432I shows the number of threads that DDF has coordination responsibility
over with remote participants who could have indoubt threads. At these
participants, database resources that are unavailable because of the indoubt threads
remain unavailable until DDF is started and resolution occurs.

DSNL433I shows the number of threads that are indoubt locally and need
resolution from remote coordinators. At the DDF location, database resources are
unavailable because the indoubt threads remain unavailable until DDF is started
and resolution occurs.

To force the completion of outstanding VTAM or TCP/IP requests, use the FORCE
option, which cancels the threads that are associated with distributed requests.

When the FORCE option is specified with STOP DDF, database access threads in
the prepared state that are waiting for the commit or abort decision from the
coordinator are logically converted to the indoubt state. The conversation with the

492 Administration Guide

|

|
|

|

|
|

|

|

|

|
|

|
|
|
|
|
|

|

|

|

|

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|



coordinator is terminated. If the thread is also a coordinator of downstream
participants, these conversations are terminated. Automatic indoubt resolution is
initiated when DDF is restarted.

To stop DDF with the FORCE option, issue the following command:
-STOP DDF MODE (FORCE)

Stopping DDF using VTAM commands:

One way to force DDF to stop is to issue the VTAM VARY NET,INACT command.
This command makes VTAM unavailable and terminates DDF. VTAM forces the
completion of any outstanding VTAM requests immediately.

To stop force DDF to stop, enter the following command:
VARY NET,INACT,ID=db2lu,FORCE

where db2lu is the VTAM LU name for the local DB2 system.
When DDF has stopped, the following command must be issued before START
DDF can be attempted:
VARY NET,ACT,ID=db2lu

Controlling traces
Several traces are available for problem determination.
v DB2 trace
v IMS attachment facility trace
v CICS trace
v Three TSO attachment facility traces
v CAF trace stream
v RRS trace stream
v z/OS component trace used for IRLM

Types of DB2 traces
The DB2 trace facility allows you to trace and record subsystem data and events.

Five different types of traces are available.

Statistics
Data that allows you to conduct DB2 capacity planning and to tune the
entire set of DB2 programs.

Accounting
Data that allows you to conduct DB2 capacity planning and to tune the
entire set of DB2 programs.

Chapter 15. Monitoring and controlling DB2 and its connections 493

|
|
|

|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|



Performance
Data about subsystem events, which can be used to do program, resource,
user, and subsystem-related tuning.

Audit Data that can be used to monitor DB2 security and access to data.

Monitor
Data that can be used to monitor DB2 security and access to data.

Related concepts

Interpreting trace output (DB2 Performance)
Related reference

-START TRACE (DB2) (DB2 Command Reference)

Diagnostic traces for attachment facilities
Several trace facilities provide diagnostic information.
v IMS provides a trace facility that shows the flow of requests across the

connections from the IMS control and IMS dependent regions to DB2. The trace
is recorded on the IMS log if the appropriate options are specified, and then it is
printed with DFSERA10 plus a formatting exit module. For more information
about this trace facility, see IMS Utilities Reference: System.
In addition, the IMS attachment facility of DB2 provides an internal
wrap-around trace table that is always active. When certain unusual error
conditions occur, these trace entries are externalized on the IMS log.

v You can use the CICS trace facility to trace the CICS attachment facility.
Use the transaction CETR to control the CICS trace facility. CETR provides a
series of menus that you can use to set CICS trace options to trace the CICS
attachment facility. For CICS 4.1 and later, set these values in the Component
Trace Options panel:
– For CICS 4.1, specify the value 2 in the FC field.
– For later releases, specify the value 2 in the RI field.
For information about using the CETR transaction to control CICS tracing, see
CICS Transaction Server for z/OS CICS Supplied Transactions.

v The TSO attachment facility provides three tracing mechanisms:
The DSN trace stream
The CLIST trace facility
The SPUFI trace stream

v The call attachment facility trace stream uses the same ddname as the TSO DSN
trace stream, but is independent of TSO.

v The RRSAF trace stream uses the same ddname as the TSO DSN trace stream, but
is independent of TSO. An RRSAF internal trace is included in any ABEND
dump that is produced by RRSAF. This tracing facility provides a history of
RRSAF usage that can aid in diagnosing errors in RRSAF.

Controlling the DB2 trace
DB2 provides commands for controlling the collection of this data.

To use the trace commands, you must have one of the following types of
authority:
v SYSADM or SYSOPR authority

494 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.perf/db2z_interpretdb2trace.htm#db2z_interpretdb2trace
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_starttrace.htm#db2z_cmd_starttrace


v Authorization to issue start and stop trace commands (the TRACE privilege)
v Authorization to issue the display trace command (the DISPLAY privilege)

The trace commands include:

START TRACE
Invokes one or more different types of trace.

DISPLAY TRACE
Displays the trace options that are in effect.

STOP TRACE
Stops any trace that was started by either the START TRACE command or
as a result of the parameters that were specified during installation or
migration.

MODIFY TRACE
Changes the trace events (IFCIDs) that are being traced for a specified
active trace.

You can specify several parameters to further qualify the scope of a trace. You can
trace specific events within a trace type as well as events within specific DB2
plans, authorization IDs, resource manager IDs, and locations. You can also control
where trace data is sent.

When you install DB2, you can request that any trace type and class start

automatically when DB2 starts.
Related reference

Tracing parameters panel: DSNTIPN (DB2 Installation and Migration)

Diagnostic trace for the IRLM
You can control diagnostic traces for the IRLM using z/OS commands.

MODIFY irlmproc,SET,TRACE
Dynamically sets the maximum number of trace buffers for each trace type.
IRLM uses this value only when the external component trace writer is not
activated.

MODIFY irlmproc,STATUS,TRACE
Displays the status of traces and the number of trace buffers that are used
for each trace type. Also displays indication of whether the external
component trace writer is active for the trace.

START irlmproc,TRACE=YES
Captures traces in wrap-around IRLM buffers at IRLM startup.

TRACE CT
Starts, stops, or modifies a diagnostic trace for IRLM. The TRACE CT
command acts independently of traces that are started automatically
during IRLM startup.

Recommendations:

v Do not use the external component trace writer to write traces to the data set.
v Activate all traces during IRLM startup. Use the command START

irlmproc,TRACE=YES to activate all traces.

Chapter 15. Monitoring and controlling DB2 and its connections 495

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipn.htm#db2z_dsntipn


Related reference

z/OS IRLM commands (DB2 Command Reference)

Controlling the resource limit facility (governor)
The governor allows the system administrator to limit the amount of time that is
permitted for the execution of the SELECT, UPDATE, DELETE, and INSERT
dynamic SQL statements.

DB2 provides these commands for controlling the governor:

START RLIMIT
Starts the governor and identifies a resource limit specification table. You
can also use START RLIMIT to switch resource limit specification tables.

DISPLAY RLIMIT
Displays the current status of the governor. If the governor has been
started, the output from the command also identifies the resource limit
specification table.

STOP RLIMIT
Stops the governor and removes any set limits.

The limits are defined in resource limit specification tables and can vary for
different users. One resource limit specification table is used for each invocation of
the governor and is identified on the START RLIMIT command.

When you install DB2, you can request that the governor start automatically when

DB2 starts.
Related concepts

Facilities for controlling resource usage (DB2 Performance)
Related reference

Operator functions panel: DSNTIPO (DB2 Installation and Migration)

Changing subsystem parameter values
You can modify the values of subsystem parameters dynamically even while DB2
is running.

Use the following procedure to modify values dynamically:
1. Run the installation process in UPDATE mode, specifying any new parameter

values. This process produces a new DSNTIJUZ job with the new values; it also
saves these values in the file that is specified as the output member name on
panel DSNTIPA1.

2. Assemble and link-edit the new DSNTIJUZ job, and then submit the job to
create the new load module with the new subsystem parameter values.

3. Issue the SET SYSPARM command to change the subsystem parameters
dynamically:
SET SYSPARM LOAD(load-module-name)

where load-module-name is the same as the output member name in step 1.

496 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_irlmcommands.htm#db2z_irlmcommands
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.perf/db2z_resourcecontrolfacilities.htm#db2z_resourcecontrolfacilities
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipo.htm#db2z_dsntipo


If you want to specify the load module name that is used during DB2 startup,
you can issue the following command:
SET SYSPARM RELOAD

Related reference

Main panel: DSNTIPA1 (DB2 Installation and Migration)

-SET SYSPARM (DB2) (DB2 Command Reference)

Setting the priority of stored procedures
Stored procedure priority is inherited from the caller. The stored procedure always
runs at the dispatching priority of whatever called it.

For example, if you call a stored procedure from CICS, it runs at CICS priority. If
you call a stored procedure from batch, it runs at batch priority. If you call a stored
procedure from DDF, it runs at DDF priority.

To set stored procedure priority:
1. When you set up WLM, ensure that the WLM address spaces are set up with

the default started task priority. WLM address spaces that use the default
started task priority perform system administrative work more efficiently.

2. Set up your service classes for the regular DB2 threads according to the priority
that you want to give to the stored procedure callers. The stored procedure has
the same priority as its caller.

Related tasks

Setting up a WLM application environment for stored procedures (DB2
Installation and Migration)

Using z/OS Workload Manager to set performance objectives (DB2
Performance)

Chapter 15. Monitoring and controlling DB2 and its connections 497

|

|
|

|
|
|

|

|
|
|

|
|
|

|

|
|

|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipa1.htm#db2z_dsntipa1
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_setsysparm.htm#db2z_cmd_setsysparm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_setupwlmenvironment.htm#db2z_setupwlmenvironment
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_setupwlmenvironment.htm#db2z_setupwlmenvironment
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.perf/db2z_usewlm2setperfobjectives.htm#db2z_usewlm2setperfobjectives
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.perf/db2z_usewlm2setperfobjectives.htm#db2z_usewlm2setperfobjectives


498 Administration Guide



Chapter 16. Managing the log and the bootstrap data set

The DB2 log registers data changes and significant events as they occur. The
bootstrap data set (BSDS) contains information about the data sets that contain the
log. You can perform a variety of tasks to ensure that DB2 logging satisfies the
needs of your environment.

DB2 writes each log record to a disk data set called the active log. When the active
log is full, DB2 copies its contents to a disk or tape data set called the archive log.
That process is called offloading. This section describes:

“How database changes are made”
“How the initial DB2 logging environment is established” on page 501
“Management of the bootstrap data set” on page 519
“Discarding archive log records” on page 516

For information about the physical and logical records that make up the log, see
“Reading log records.” That topic also contains information about how to write a
program to read log records.

How database changes are made
Before you can fully understand how logging works, you need to be familiar with
how database changes are made to ensure consistency.

This section discusses units of recovery and rollbacks.

Units of recovery and points of consistency
A unit of recovery begins with the first change to the data after the beginning of the
job, or following the last point of consistency. The unit of recovery ends at a later
point of consistency.

A unit of recovery is the work that changes DB2 data from one point of
consistency to another. This work is done by a single DB2 DBMS for an
application. The point of consistency (also referred to as sync point or commit point)
is a time when all recoverable data that an application program accesses is
consistent with other data.

The following figure shows an example of units of recovery within an application
program.

© Copyright IBM Corp. 1982, 2009 499



In this example, the application process makes changes to databases at SQL
transactions 1 and 2. The application process can include a number of units of
recovery or just one, but any complete unit of recovery ends with a commit point.

For example, a bank transaction might transfer funds from account A to account B.
First, the program subtracts the amount from account A. Next, it adds the amount
to account B. After subtracting the amount from account A, the two accounts are
inconsistent. These accounts are inconsistent until the amount is added to account
B. When both steps are complete, the program can announce a point of consistency
and thereby make the changes visible to other application programs.

Normal termination of an application program automatically causes a point of
consistency. The SQL COMMIT statement causes a point of consistency during
program execution under TSO. A sync point causes a point of consistency in CICS
and IMS programs.
Related concepts

“Multiple system consistency” on page 537

How DB2 rolls back work
If failure occurs within a unit of recovery, DB2 rolls back (backs out) any changes
to data. Rolling back returns the data to its state at the start of the unit of recovery;
that is, DB2 undoes the work.

For a partition-by-growth table space, if a new partition was added in the unit of
recovery, any uncommitted updates can be backed out, but the physical partition is
not deleted.

The events are shown in the following figure.

Application process

Unit of recovery

SQL transaction 1 SQL transaction 2

Time
line

Application
process
begins

SQLT1
begins

SQLT1
ends

SQLT2
begins

SQLT2
ends

Commit
(point of

consistency)

Application
process

ends

Figure 43. A unit of recovery within an application process

500 Administration Guide



The possible events that trigger ″Begin rollback″ in this figure include:
v SQL ROLLBACK statement
v Deadlock (reported as SQLCODE -911)
v Timeout (reported as SQLSTATE 40001)

The effects of inserts, updates, and deletes to large object (LOB) values are backed
out along with all the other changes that were made during the unit of work that
is being rolled back, even if the LOB values that were changed reside in a LOB
table space that has the LOG NO attribute.

An operator or an application can issue the CANCEL THREAD command
with the NOBACKOUT option to cancel long-running threads without backing out
data changes. DB2 backs out changes to catalog and directory tables regardless of
the NOBACKOUT option. As a result, DB2 does not read the log records and does
not write or apply the compensation log records. After CANCEL THREAD
NOBACKOUT processing, DB2 marks all objects that are associated with the
thread as refresh-pending (REFP) and puts the objects in a logical page list (LPL).
For information about how to reset the REFP status, see DB2 Utility Guide and

Reference.

The NOBACKOUT request might fail for either of the following two reasons:
v DB2 does not completely back out updates of the catalog or directory (message

DSNI032I with reason 00C900CC).
v The thread is part of a global transaction (message DSNV439I).

How the initial DB2 logging environment is established
The initial DB2 logging environment is established during installation of DB2.

Installation panels enable you to specify options, such as whether to have dual
active logs (strongly recommended), what media to use for archive log volumes,
and how many log buffers to have.
Related reference

System resource data set names panel: DSNTIPH (DB2 Installation and
Migration)

How DB2 creates log records
Log records typically go through a standard life cycle.
1. DB2 registers changes to data and significant events in recovery log records.

Point of
consistency

New point of
consistency

One unit of recovery

Time
line Database updates Back out updates

Begin unit
of recovery

Begin
rollback

Data is returned to
its initial state; end

unit of recovery

Figure 44. Unit of recovery (rollback)

Chapter 16. Managing the log and the bootstrap data set 501

|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntiph.htm#db2z_dsntiph
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntiph.htm#db2z_dsntiph


2. DB2 processes recovery log records and breaks them into segments if necessary.
3. Log records are placed sequentially in output log buffers, which are formatted as

VSAM control intervals (CIs). Each log record is identified by a continuously
increasing RBA in the range 0 to 248-1, where 248 represents 2 to the 48th power.
(In a data sharing environment, a log record sequence number (LRSN) is used
to identify log records. See DB2 Data Sharing: Planning and Administration for
more information.)

4. The CIs are written to a set of predefined disk active log data sets, which are
used sequentially and recycled.

5. As each active log data set becomes full, its contents are automatically offloaded
to a new archive log data set.

If you change or create data that is compressed, the data logged is also
compressed. Changes to compressed rows that result from inserts, updates, and
deletes are also logged as compressed data. Updates to compressed indexes are not
logged as compressed data.

How DB2 writes the active log
DB2 writes the log buffers to an active log data set in response to several
conditions. The most common condition is that the DB2 subsystem forces the log
buffer to be written.

DB2 also writes the log buffers to an active log data set when they become full, or
when the write threshold is reached.

When DB2 forces the log buffer to be written (such as at commit time), the same
control interval can be written several times to the same location.

Be sure to set your ZPARMs are set so that there are enough log buffers to avoid
the need to wait for a buffer to become available (DSN6LOGP OUTBUFF
parameter). Switching log data sets may also cause a temporary performance
impact when the switch takes place and the associated recovery checkpoint is
taken. This can be minimized by ensuring that the active log data sets are large
enough to avoid frequent switching. In addition, some events can cause log buffers
to be written before the ZPARM-defined threshold has been reached. These events
include, but are not limited to:
v Phase 1 commit
v Abort processing
v GBP-dependent index split
v Mass delete in a data-sharing environment
v Use of GBPCACHE NO
v All log buffers being filled

Consider the probable frequency of these events when you determine how often to
commit changes.

When DB2 is initialized, the active log data sets that are named in the BSDS are
dynamically allocated for exclusive use by DB2 and remain allocated exclusively to
DB2 (the data sets were allocated as DISP=OLD) until DB2 terminates. Those active
log data sets cannot be replaced, nor can new ones be added, without terminating
and restarting DB2. The size and number of log data sets is indicated by what was

502 Administration Guide

|
|
|
|

|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|

|

|

|

|

|

|
|

|
|
|
|
|



specified by installation panel DSNTIPL. The use of dual active logs increases
availability as well as the reliability of recovery by eliminating a single point of
failure.

How DB2 writes (offloads) the archive log
The process of copying active logs to archive logs is called offloading.

The relationship of offloading to other logging events is shown schematically in the
following figure.

During the process, DB2 determines which data set to offload. Using the last log
relative byte address (RBA) that was offloaded, as registered in the BSDS, DB2
calculates the log RBA at which to start. DB2 also determines the log RBA at which
to end, from the RBA of the last log record in the data set, and registers that RBA
in the BSDS.

When all active logs become full, the DB2 subsystem runs an offload and halts
processing until the offload is completed. If the offload processing fails when the
active logs are full, DB2 cannot continue doing any work that requires writing to
the log.
Related information

“Recovering from active log failures” on page 637

What triggers an offload
An offload of an active log to an archive log can be triggered by several events.

The most common situations that trigger an offload include:
v An active log data set is full.
v DB2 starts, but an active log data set is full.
v The ARCHIVE LOG command is issued.

An offload can be also triggered by two uncommon events:
v An error occurs while writing to an active log data set. The data set is truncated

before the point of failure, and the record that failed to write becomes the first
record of the next data set. An offload is triggered for the truncated data set as
in a normal end-of-file condition. With dual active logs, both copies are
truncated so the two copies remain synchronized.

v The last unarchived active log data set becomes full. Message DSNJ110E is
issued, stating the percentage of its capacity in use; IFCID trace record 0330 is

Write to
active log

Triggering
event

Offload
process

Write to
archive log

Record on
BSDS

Figure 45. The offloading process

Chapter 16. Managing the log and the bootstrap data set 503

|
|
|



also issued if statistics class 3 is active. If all active logs become full, DB2 issues
the following message and stops processing until offloading occurs.
DSNJ111E - OUT OF SPACE IN ACTIVE LOG DATA SETS

Role of the operator in the offload process
When it is time to offload an active log, you can send a request to the z/OS
console operator to mount a tape or prepare a disk unit.

The value of the WRITE TO OPER field of the DSNTIPA installation panel
determines whether the request is received. If the value is YES, the request is
preceded by a WTOR (message number DSNJ008E) informing the operator to
prepare an archive log data set for allocating.

The operator need not respond to message DSNJ008E immediately. However,
delaying the response delays the offload process. It does not affect DB2
performance unless the operator delays response for so long that DB2 uses all the
active logs.

The operator can respond by canceling the offload. In that case, if the allocation is
for the first copy of dual archive data sets, the offload is merely delayed until the
next active log data set becomes full. If the allocation is for the second copy, the
archive process switches to single-copy mode, but for the one data set only.

When DB2 switches active logs and finds that the offload task has been active
since the last log switch, it issues the following message to notify the operator of a
possible outstanding tape mount or some other problem that prevents the offload
of the previous active log data set.
DSNJ017E - csect-name WARNING - OFFLOAD TASK HAS BEEN ACTIVE SINCE

date-time AND MAY HAVE STALLED

DB2 continues processing. The operator can cancel and then restart the offload.

Messages that are returned during offloading
During the offload process, DB2 sends a series of messages to the z/OS console.
Most of these messages include information about the RBA ranges in the various
log data sets.
v The following message appears during DB2 initialization when the current active

log data set is found, and after a data set switch. During initialization, the
STARTRBA value in the message does not refer to the beginning of the data set,
but to the position in the log where logging is to begin.
DSNJ001I - csect-name CURRENT COPY n ACTIVE LOG DATA SET IS

DSNAME=..., STARTRBA=..., ENDRBA=...

v The following message appears when an active data set is full:
DSNJ002I - FULL ACTIVE LOG DATA SET DSNAME=...,

STARTRBA=..., ENDRBA=...

v One of the following message appears when offload reaches end-of-volume or
end-of-data-set in an archive log data set:
The non-data sharing version of this message is:
DSNJ003I - FULL ARCHIVE LOG VOLUME DSNAME=..., STARTRBA=..., ENDRBA=...,

STARTTIME=..., ENDTIME=..., UNIT=..., COPYnVOL=...,
VOLSPAN=..., CATLG=...

The data sharing version of this message is:
DSNJ003I - FULL ARCHIVE LOG VOLUME DSNAME=..., STARTRBA=..., ENDRBA=...,

STARTLRSN=..., ENDLRSN=..., UNIT=..., COPYnVOL=...,
VOLSPAN=..., CATLG=...

504 Administration Guide



v The following message appears when one data set of the next pair of active logs
is not available because of a delay in offloading, and logging continues on one
copy only:
DSNJ004I - ACTIVE LOG COPY n INACTIVE, LOG IN SINGLE MODE,

ENDRBA=...

v The following message appears when dual active logging resumes after logging
has been performed on one copy only:
DSNJ005I - ACTIVE LOG COPY n IS ACTIVE, LOG IN DUAL MODE,

STARTRBA=...

v The following message indicates that the offload task has ended:
DSNJ139I LOG OFFLOAD TASK ENDED

Effects of interruptions and errors on the offload process
DB2 can handle some types of interruptions during the offloading process.

DB2 handles interruptions to the offloading process in the following ways:
v The STOP DB2 command does not take effect until offloading is finished.
v A DB2 failure during offload causes offload to begin again from the previous

start RBA when DB2 is restarted.
v Offload handling of read I/O errors on the active log is described under

“Recovering from active log failures” on page 637, or write I/O errors on the
archive log, under “Recovering from archive log failures” on page 642.

v An unknown problem that causes the offload task to hang means that DB2
cannot continue processing the log. This problem might be resolved by retrying
the offload, which you can do by using the option CANCEL OFFLOAD of the
command ARCHIVE LOG.

Archive log data sets
Archive log data sets can be placed on standard tapes or disks and can be
managed by DFSMShsm (Data Facility Hierarchical Storage Manager). Archive logs
are always written by QSAM.

Prior to DB2 Version 9, archive logs on tape are read by BSAM; those on disk are
read by BDAM. From DB2 Version 9 forward, they are always read using BSAM.
The block size of an archive log data set is a multiple of 4 KB.

Output archive log data sets are dynamically allocated, with names chosen by DB2.
The data set name prefix, block size, unit name, and disk sizes that are needed for
allocation are specified when DB2 is installed, and recorded in the DSNZPxxx
module. You can also choose, at installation time, to have DB2 add a date and time
to the archive log data set name.

Restrictions: Be aware of the following restrictions for archive log data sets and
volumes:
v You cannot specify specific volumes for new archive logs. If allocation errors

occur, offloading is postponed until the next time loading is triggered.
v Do not use partitioned data set extended (PDSE) for archive log data. PDSEs are

not supported for archive logs.

Chapter 16. Managing the log and the bootstrap data set 505

|
|
|



Related reference

Archive log data set parameters panel: DSNTIPA (DB2 Installation and
Migration)

System resource data set names panel: DSNTIPH (DB2 Installation and
Migration)

How dual archive logging works
Each log control interval (CI) that is retrieved from the active log is written to two
archive log data sets. The log records that are contained on a pair of dual archive
log data sets are identical, but ends-of-volumes are not synchronized for
multivolume data sets.

Archiving to disk offers faster recoverability but is more expensive than archiving
to tape. If you use dual logging, on installation panel DSNTIPA enables you to
specify that the primary copy of the archive log go to disk and the secondary copy
go to tape.

Dual archive logging increases recovery speed without using as much disk. The
second tape is intended as a backup, or it can be sent to a remote site in
preparation for disaster recovery. To make recovering from the COPY2 archive tape
faster at the remote site, use the installation parameter ARC2FRST to specify that
COPY2 archive log should be read first. Otherwise, DB2 always attempts to read
the primary copy of the archive log data set first.

Tips for archiving
You can archive to tape or disk.

Tips for archiving to tape:

If you choose to archive to tape, following certain tips can help you avoid
problems.

If the unit name reflects a tape device, DB2 can extend to a maximum of twenty
volumes. DB2 passes a file sequence number of 1 on the catalog request for the
first file on the next volume. Although a file sequence number of 1 might appear
to be an error in the integrated catalog facility catalog, be aware that this situation
causes no problems in DB2 processing.

If you choose to offload to tape, consider adjusting the size of your active log data
sets so that each data set contains the amount of space that can be stored on a
nearly full tape volume. That adjustment minimizes tape handling and volume
mounts, and it maximizes the use of tape resources. However, such an adjustment
is not always necessary.

If you want the active log data set to fit on one tape volume, consider placing a
copy of the BSDS on the same tape volume as the copy of the active log data set.
Adjust the size of the active log data set downward to offset the space that is
required for the BSDS.

Tips for archiving to disk:

If you choose to archive to disk, following certain tips can help you avoid
problems.

506 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipa.htm#db2z_dsntipa
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipa.htm#db2z_dsntipa
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntiph.htm#db2z_dsntiph
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntiph.htm#db2z_dsntiph


All archive log data sets that are allocated on disk must be cataloged. If you
choose to archive to disk, the field CATALOG DATA of installation panel DSNTIPA
must contain YES. If this field contains NO, and you decide to place archive log
data sets on disk, you receive message DSNJ072E each time an archive log data set
is allocated, although the DB2 subsystem still catalogs the data set.

If you use disk storage, ensure that the primary and secondary space quantities
and block size and allocation unit are large enough so that the disk archive log
data set does not attempt to extend beyond 15 volumes. The possibility of
unwanted z/OS B37 or E37 abends during the offload process is thereby
minimized. Primary space allocation is set with the PRIMARY QUANTITY field of
the DSNTIPA installation panel. If the archive log is not allocated with the
DSNTYPE=LARGE attribute, then the primary space quantity must be less than
64KB tracks because of the DFSMS Direct Access Device Space Management limit
of 64KB tracks on a single volume when allocating a sequential disk data set
without the DSNTYPE=LARGE attribute.

Tips for archiving with DFSMS:

You can use DFSMS (Data Facility Storage Management Subsystem) to manage
archive log data sets.

When archiving to disk, DB2 uses the number of online storage volumes for the
specified unit to determine a count of candidate volumes, up to a maximum of 15
volumes. If you are using SMS to direct archive log data set allocation, override
this candidate volume count by specifying YES for the field SINGLE VOLUME on
installation panel DSNTIPA. This enables SMS to manage the allocation volume
count appropriately when creating multi-volume disk archive log data sets.

Because SMS requires disk data sets to be cataloged, ensure that the field
CATALOG DATA on installation panel DSNTIPA contains YES. Even if it does not,
message DSNJ072E is returned, and DB2 forces the data set to be cataloged.

Prior to DB2 Version 9: DB2 uses the basic direct access method (BDAM) to read
archive logs from disk. DFSMS does not support reading of extended sequential
format data sets using BDAM. Extended sequential format data sets may be
striped, compressed, or both. Therefore, do not direct DFSMS to assign extended
sequential format attributes to your archive log data sets.

DB2 Version 9 and later: DB2 uses the basic sequential access method (BSAM) to
read archive logs from disk and BSAM supports the use of Extended Format (EF)
data sets. However, the use of EF data sets for archive logs is not supported until
DB2 Version 9 new function mode is activated. To ensure that you do not
encounter any compatibility or coexistence problems, you should not create EF
archive log data sets until all members of a data sharing group are migrated to
new function mode.

Ensure that DFSMS does not alter the LRECL, BLKSIZE, or RECFM of the archive
log data sets. Altering these attributes could result in read errors when DB2
attempts to access the log data.

Attention: DB2 does not issue an error or a warning if you write or alter archive
data to an unreadable format. For example, if DB2 successfully writes archive log
data to an extended format data set, DB2 issues an error message only when you
attempt to read that data, not when the data is written.

Chapter 16. Managing the log and the bootstrap data set 507

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|



Automatic archive log deletion
You can use a disk or tape management system to delete archive log data sets or
tapes automatically.

The length of the retention period (in days), which is passed to the management
system in the JCL parameter RETPD, is determined by the RETENTION PERIOD
field on the DSNTIPA installation panel.

The default for the retention period keeps archive logs forever. Any other retention
period must be long enough to contain as many recovery cycles as you plan for.
For example, if your operating procedures call for a full image copy every sixty
days of the least frequently-copied table space, and you want to keep two
complete image copy cycles on hand at all times, you need an archive log retention
period of at least 120 days. For more than two cycles, you need a correspondingly
longer retention period.

If archive log data sets or tapes are deleted automatically, the operation does not
update the archive log data set inventory in the BSDS. If you want, you can update
the BSDS with the change log inventory utility. The update is not really necessary;
it wastes space in the BSDS to record old archive logs, but it does no other harm
because the archive log data set inventory wraps and automatically deletes the
oldest entries.
Related concepts

“Recommendations for changing the BSDS log inventory” on page 520
Related reference

Archive log data set parameters panel: DSNTIPA (DB2 Installation and
Migration)

How DB2 retrieves log records
Normal DB2 operation and recovery tasks rely on the availability of log records.
DB2 retrieves log records from different sources, depending on the situation.

Log records are retrieved by DB2 through the following events:
v A log record is requested using its RBA.
v DB2 searches for the log record in the following locations in the order in which

they are presented:
1. The log buffers.
2. The active logs. The bootstrap data set registers which log RBAs apply to

each active or archive log data set. If the record is in an active log, DB2
dynamically acquires a buffer, reads one or more CIs, and returns one record
for each request.

3. The archive logs. DB2 determines which archive volume contains the CIs,
dynamically allocates the archive volume, acquires a buffer, and reads the
CIs.

Managing the log
You can control and monitor log activity by using several DB2 commands and a
utility.

508 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipa.htm#db2z_dsntipa
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipa.htm#db2z_dsntipa


Quiescing activity before offloading
You can use the MODE(QUIESCE) option of the ARCHIVE LOG command to
ensure that activity has stopped before the log is archived.

With this option, DB2 work is quiesced after a commit point, and the
resulting point of consistency is captured in the current active log before it is
offloaded. Unlike the QUIESCE utility, ARCHIVE LOG MODE(QUIESCE) does not
force all changed buffers to be written to disk and does not record the log RBA in
SYSIBM.SYSCOPY. It does record the log RBA in the bootstrap data set.

Consider using MODE(QUIESCE) when planning for offsite recovery. Using
MODE(QUIESCE) creates a system-wide point of consistency, which can minimize
the number of data inconsistencies when the archive log is used with the most
current image copy during recovery.

In a data sharing group, ARCHIVE LOG MODE(QUIESCE) might result in a delay
before activity on all members has stopped. If this delay is unacceptable to you,
consider using ARCHIVE LOG SCOPE(GROUP) instead. This command causes
truncation and offload of the logs for each active member of a data sharing group.
Although the resulting archive log data sets do not reflect a point of consistency,
all the archive logs are made at nearly the same time and have similar LRSN
values in their last log records. When you use this set of archive logs to recover the
data sharing group, you can use the ENDLRSN option in the CRESTART statement
of the change log inventory utility (DSNJU003) to truncate all the logs in the group
to the same point in time.

The MODE(QUIESCE) option suspends all new update activity on DB2 up to the
maximum period of time that is specified on the installation panel DSNTIPA. If the
time needed to quiesce is less than the time that is specified, the command
completes successfully; otherwise, the command fails when the time period
expires. This time amount can be overridden when you issue the command, by
using the TIME option:
-ARCHIVE LOG MODE(QUIESCE) TIME(60)

The preceding command allows for a quiesce period of up to 60 seconds before
archive log processing occurs.

Important: Use of this option during prime time, or when time is critical, can
cause a significant disruption in DB2 availability for all jobs and users that use
DB2 resources.

By default, the command is processed asynchronously from the time you submit
the command. (To process the command synchronously with other DB2
commands, use the WAIT(YES) option with QUIESCE; the z/OS console is then
locked from DB2 command input for the entire QUIESCE period.)

During the quiesce period:
v Jobs and users on DB2 are allowed to go through commit processing, but they

are suspended if they try to update any DB2 resource after the commit.
v Jobs and users that only read data can be affected, because they can be waiting

for locks that are held by jobs or users that were suspended.
v New tasks can start, but they are not allowed to update data.

Chapter 16. Managing the log and the bootstrap data set 509



As shown in the following example, the DISPLAY THREAD output issues message
DSNV400I to indicate that a quiesce is in effect:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV400I - ARCHIVE LOG QUIESCE CURRENTLY ACTIVE
DSNV402I - ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH T * 20 TEPJOB SYSADM DSNTEP3 0012 12
DISPLAY ACTIVE REPORT COMPLETE
DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

When all updates are quiesced, the quiesce history record in the BSDS is updated
with the date and time that the active log data sets were truncated, and with the
last-written RBA in the current active log data sets. DB2 truncates the current
active log data sets, switches to the next available active log data sets, and issues
message DSNJ311E, stating that offload started.

If updates cannot be quiesced before the quiesce period expires, DB2 issues
message DSNJ317I, and archive log processing terminates. The current active log
data sets are not truncated and not switched to the next available log data sets,
and offload is not started.

Regardless of whether the quiesce is successful, all suspended users and jobs are
then resumed, and DB2 issues message DSNJ312I, stating that the quiesce is ended
and update activity is resumed.

If ARCHIVE LOG is issued when the current active log is the last available active
log data set, the command is not processed, and DB2 issues this message:
DSNJ319I - csect-name CURRENT ACTIVE LOG DATA SET IS THE LAST

AVAILABLE ACTIVE LOG DATA SET. ARCHIVE LOG PROCESSING WILL
BE TERMINATED.

If ARCHIVE LOG is issued when another ARCHIVE LOG command is already in
progress, the new command is not processed, and DB2 issues this message:
DSNJ318I - ARCHIVE LOG COMMAND ALREADY IN PROGRESS.

Related reference

Archive log data set parameters panel: DSNTIPA (DB2 Installation and
Migration)

Archiving the log
If you are a properly authorized operator, you can archive the current DB2 active
log data sets when necessary by issuing the ARCHIVE LOG command. Using the
ARCHIVE LOG command can help with diagnosis by enabling you to quickly
offload the active log to the archive log, where you can use DSN1LOGP to further
analyze the problem.

You must have either SYSADM authority or have been granted the ARCHIVE
privilege.

To archive the log, enter the following command:
-ARCHIVE LOG

510 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipa.htm#db2z_dsntipa
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipa.htm#db2z_dsntipa


When you issue the preceding command, DB2 truncates the current active log data
sets, runs an asynchronous offload, and updates the BSDS with a record of the
offload. The RBA that is recorded in the BSDS is the beginning of the last complete
log record that is written in the active log data set that is being truncated.

Example

You can use the ARCHIVE LOG command as follows to capture a point of
consistency for the MSTR01 and XUSR17 databases:
-STOP DATABASE (MSTR01,XUSR17)
-ARCHIVE LOG
-START DATABASE (MSTR01,XUSR17)

In this simple example, the STOP command stops activity for the databases before
archiving the log.

Canceling log offloads

In some cases, the offload of an active log might be suspended when something
goes wrong with the offload process, such as a problem with allocation or tape
mounting. If the active logs cannot be offloaded, the DB2 active log data sets
become full and DB2 stops logging.

To cancel (and retry) an offload, issue this command:
-ARCHIVE LOG CANCEL OFFLOAD

When you enter the command, DB2 restarts the offload, beginning with the oldest
active log data set and proceeding through all active log data sets that need
offloading. If the offload fails again, you must fix the problem that is causing the

failure before the command can work.

Dynamically changing the checkpoint frequency
You can use the LOGLOAD option or the CHKTIME option of the SET LOG
command to dynamically change the checkpoint frequency without recycling DB2.

The LOGLOAD value specifies the number of log records that DB2 writes
between checkpoints. The CHKTIME value specifies the number of minutes
between checkpoints.

Either value affects the restart time for DB2. For example, during prime shift, your
DB2 shop might have a low logging rate but require that DB2 restart quickly if it
terminates abnormally. To meet this restart requirement, you can decrease the
LOGLOAD value to force a higher checkpoint frequency. In addition, during
off-shift hours, the logging rate might increase as batch updates are processed, but
the restart time for DB2 might not be as critical. In that case, you can increase the
LOGLOAD value which lowers the checkpoint frequency.

You also can use either the LOGLOAD option or the CHKTIME option to initiate
an immediate system checkpoint. For example:
-SET LOG LOGLOAD(0)
-SET LOG CHKTIME(0)

Chapter 16. Managing the log and the bootstrap data set 511



The CHKFREQ value that is altered by the SET LOG command persists only while
DB2 is active. On restart, DB2 uses the CHKFREQ value in the DB2 subsystem

parameter load module.
Related reference

-SET LOG (DB2) (DB2 Command Reference)

Setting limits for archive log tape units
Use the DB2 SET ARCHIVE command to set the upper limit for the number of,
and the deallocation time of, tape units for the archive log.

This command overrules the values that are specified during installation,
or in a previous invocation of the SET ARCHIVE command. The changes that are
initiated by the SET ARCHIVE command are temporary. At restart, DB2 uses the

values that are set during installation.
Related reference

-SET ARCHIVE (DB2) (DB2 Command Reference)

Monitoring the system checkpoint
DB2 schedules a system checkpoint every time it switches active log data sets,
regardless of the currently defined checkpoint frequency.

If DB2 switches active logs and finds that there has not been a system checkpoint
since the last log switch, it issues the following message to notify the operator that
the system checkpoint processor might not be functioning.
DSNJ016E - csect-name WARNING - SYSTEM CHECKPOINT PROCESSOR MAY

HAVE STALLED. LAST CHECKPOINT WAS TAKEN date-time

DB2 continues processing. This situation can result in a very long restart if logging
continues without a system checkpoint. If DB2 continues logging beyond the
defined checkpoint frequency, quiesce activity and terminate DB2 to minimize the
restart time.

You can issue the DISPLAY LOG command or run the print log map utility
(DSNJU004) to display the most recent checkpoint.
Related tasks

“Displaying log information”

Displaying log information
Use the DISPLAY LOG command to display the current checkpoint frequency. The
checkpoint frequency can be either the number of log records or the minutes
between checkpoints.

You can obtain additional information about log data sets and checkpoints

from the print log map utility (DSNJU004).

512 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_setlog.htm#db2z_cmd_setlog
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_setarchive.htm#db2z_cmd_setarchive


Related reference

-DISPLAY LOG (DB2) (DB2 Command Reference)

-SET LOG (DB2) (DB2 Command Reference)

DSNJU004 (print log map) (DB2 Utilities)

Resetting the log RBA
Each DB2 subsystem writes its own recovery logs. The log records are sequenced
with a relative byte address (RBA), which you need to reset before the RBA reaches
its maximum value.

To determine when to reset the log RBA, use one of the following two methods:
v Apply the PTF for APAR PK27611. After you apply this APAR, message

DSNJ032I is issued at the active log switch when the RBA threshold is reached.
If the RBA exceeds x’F00000000000’, the message is issued with the keyword
WARNING and processing continues. If the RBA exceeds x’FFFF00000000’, the
message is issued with the keyword CRITICAL, and DB2 is stopped. To resolve
any outstanding units of work, DB2 will restart automatically in restart-light
mode. Then, DB2 will stop again. In this situation, you need to restart DB2 in
ACCESS(MAINT) mode, and you must reset the log RBA value.

v Calculate how much space is left in the log. You can use the print log map
(DSNJU004) utility to obtain the highest written RBA value in the log. Subtract
this RBA from x’FFFFFFFFFFFF’ to determine how much space is left in the log.
If APAR PK27611 is applied, you need to use the RBA value of x’FFFF00000000’
for this calculation.
You can use the output for the print log map utility to determine how many
archive logs are created on an average day. This number multiplied by the RBA
range of the archive log data sets (ENDRBA minus STARTRBA) provides the
average number of bytes that are logged per day. Divide this value into the
space remaining in the log to determine approximately how much time is left
before the end of the log RBA range is reached. If there is less than one year
remaining before the end of the log RBA range is reached, start planning to reset
the log RBA value. If less than three months remain before the end of the log
RBA range is reached, you need to take immediate action to reset the log RBA
value.

Log RBA range
The log RBA is an ever-increasing 6 byte hexadecimal value that starts as 0 (zero)
when the DB2 subsystem is first installed and increases to a maximum value of
x’FFFFFFFFFFFF’ (2 to the 48th).

The rate at which the log RBA value increases through this range depends on the
logging rate of the DB2 subsystem. In cases where a heavy logging rate is
sustained over a period of years, the log RBA value can begin to approach the end
of the range.

Before the DB2 subsystem reaches the end of the log RBA range, you need to reset
the log RBA value. The process that you complete to reset the log RBA value
depends on whether the DB2 subsystem is the member of a data sharing group or
in a non-data sharing environment.

Chapter 16. Managing the log and the bootstrap data set 513

|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_displaylog.htm#db2z_cmd_displaylog
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_setlog.htm#db2z_cmd_setlog
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnju004.htm#db2z_utl_dsnju004


Related tasks

“Resetting the log RBA value in a data sharing environment”
“Resetting the log RBA value in a non-data sharing environment”

Resetting the log RBA value in a data sharing environment
Before the member of a data sharing group reaches the end of the log RBA range,
you need to reset the log RBA value for that member.

To reset the log RBA value in a data sharing environment:
1. Issue the STOP DB2 command to quiesce the member that is approaching the

end of the log RBA range.
2. Restart this member in ACCESS(MAINT) mode.
3. Issue the -DISPLAY THREAD command. Ensure that there are no INDOUBT or

POSTPONED ABORT units of recovery.
4. Issue the -DISPLAY DATABASE(*) SPACENAM(*) RESTRICT command. Ensure

that all restricted states are removed.
5. Quiesce the member again by issuing the -STOP DB2 command.
6. Optional: Start a new member to take over the work of the member that is

quiesced. If this is an acceptable solution, you can leave the original member
stopped indefinitely.

7. To bring the original member back into the data sharing group, you must cold
start the member with a STARTRBA of 0 (zero). To cold start the member:
a. Before restarting the member, apply the PTF for APAR PK22872.
b. If you are running an application that reads the logs with IFI (for example,

a data replication product), apply the PTF for APAR PK81566 before
restarting this member.

c. Make a full image copy of all data. To make a full image copy, the member
might need to remain quiesced for a period of time. The length of time
depends on the size of the databases. After all of the data has been image
copied, you no longer need the member logs for recovery.

d. Cold start this member back to the RBA value of 0 (zero). This step removes
all log data from the BSDS, and you can use the member again. This step
requires utility DSNJU003 with the following options:
CRESTART CREATE,STARTRBA=0,ENDRBA=0

Related concepts

“Log RBA range” on page 513

Resetting the log RBA value in a non-data sharing
environment

Before a DB2 subsystem in a non-data sharing environment reaches the end of the
log RBA range, you need to reset the log RBA value for that subsystem.

To reset the log RBA value in a non-data sharing environment:
1. Issue the STOP DB2 command to quiesce the subsystem that is approaching

the end of the log RBA range.
2. Restart DB2 in ACCESS(MAINT) mode.
3. Issue the -DISPLAY THREAD command. Ensure that there are no INDOUBT

or POSTPONED ABORT units of recovery.
4. Issue the -DISPLAY UTILITY command. Ensure there are no active or stopped

utilities.

514 Administration Guide

|
|
|



5. Issue the -DISPLAY DATABASE(*) SPACENAM(*) RESTRICT command.
Ensure that all restricted states are removed.

6. Quiesce the DB2 subsystem again by issuing the -STOP DB2 command.
7. Use IDCAMS to delete and redefine the table spaces SYSUTILX, SYSCOPY,

and SYSLGRNX and their corresponding indexes. Then, re-initialize these
page sets. For information about how to re-initialize these page sets, see
member DSNTIJID in library SDSNSAMP.

8. Determine whether you can use the COPY utility, and complete the
appropriate task as follows:
v If the PTF for APAR PK28576 is applied, or can be applied, and you can use

the COPY utility to make copies of all data, apply the PTF for APAR
PK28576. This APAR enables the COPY utility to reset the RBA values in
pages as they are copied. See the documentation for the PTF for information
about enabling the COPY utility function that is provided by this APAR.

v If you cannot use the COPY utility, do the following:
a. Use DSN1COPY to copy every table space and partition to another data

set. If indexes are not included in this process, you must rebuild the
indexes after restarting DB2.

b. Use DSN1COPY with the RESET parameter to copy each table space or
partition to its original data set. This process resets the RBA values in all
of the page sets. If indexes are not included in this process, you must
rebuild the indexes after restarting DB2.

9. Cold start this subsystem back to the RBA value of 0 (zero) by using
ACCESS(MAINT). This step removes all log data from the BSDS. This step
requires utility DSNJU003 with the following options:
CRESTART CREATE,STARTRBA=0,ENDRBA=0

10. If you did not reset the indexes by using DSN1COPY as specified in step 8,
rebuild all indexes. Start by rebuilding the catalog and directory indexes, and
then rebuild the indexes on user data.

11. Take new, full image copies of all data. If you applied the PTF for APAR
PK28576, run the COPY utility with option SHRLEVEL REFERENCE to
automatically reset the RBA values in all of the page sets. This step can be
performed in parallel with the previous step after the catalog and directory
indexes are rebuilt.

12. Stop DB2. If applicable, disable the reset RBA function in the COPY utility,
and restart DB2 for normal access.

Related concepts

“Log RBA range” on page 513

Canceling and restarting an offload
If the offload task remains stalled, the active logs eventually become full and DB2
stops database update activity.

Issue the ARCHIVE LOG CANCEL OFFLOAD command to cancel and

restart the offload task.

Displaying the status of an offload
To view the status of the offload task, issue the DISPLAY LOG command.

Chapter 16. Managing the log and the bootstrap data set 515

|
|
|



Discarding archive log records
You must keep enough log records to recover units of work and databases.

To recover units of recovery, you need log records at least until all current actions
are completed. If DB2 terminates abnormally, restart requires all log records since
the previous checkpoint or the beginning of the oldest UR that was active at the
abend, whichever is first on the log.

To tell whether all units of recovery are complete, read the status counts in the
DB2 restart messages. If all counts are zero, no unit-of-recovery actions are
pending. If indoubt units of recovery remain, identify and recover them by the
methods described in Chapter 15, “Monitoring and controlling DB2 and its
connections,” on page 427.

To recover databases, you need log records and image copies of table spaces. How
long you keep log records depends, on how often you make those image copies. If
you do not already know what records you want to keep, see Chapter 19, “Backing
up and recovering your data,” on page 553 for suggestions about recovery cycles.

Locating archive log data sets
To ensure that you can recover your data in the event of a failure, you need to
locate archive log data sets.

In preparation, you must:
v Keep all the logs that have been written since the most recent checkpoint of

DB2, so that DB2 can restart.
v Keep all the logs for two or more complete image copy cycles of your

least-frequently copied table space.

You can discard active data sets, based on their log RBA ranges. The earliest log
record that you need to retain is identified by a log RBA. You can discard any
archive log data sets that contain only records with log RBAs that are lower than
that RBA.

To locate archive log data sets:
1. Resolve indoubt units of recovery. If DB2 is running with TSO, continue with

step 2 on page 517. If DB2 is running with IMS, CICS, or distributed data, the
following substeps apply:
a. Ensure that the period between one startup and the next startup is free of

any indoubt units of recovery. Ensure that no DB2 activity is going on when
you are performing this set of substeps. (To minimize impact on users,
consider planning this work for a non-prime shift.) To determine whether
indoubt units of recovery exist, issue the following DB2 command:
-DISPLAY THREAD TYPE(INDOUBT)

If you find no indoubt units of recovery, skip to step 2 on page 517.
b. If one or more indoubt units of recovery exist, take one of the following

actions:
v If IMS or CICS is involved with the indoubt units of work, start IMS or

CICS. Starting IMS or CICS causes that subsystem to resolve the indoubt
units of recovery. If the thread is a distributed indoubt unit of recovery,
restart the distributed data facility (DDF) to resolve the unit of work. If

516 Administration Guide



DDF does not start or cannot resolve the unit of work, issue the following
command to resolve the unit of work:
-RECOVER INDOUBT

v Issue the following DB2 command:
-RECOVER INDOUBT

c. Re-issue the DISPLAY THREAD TYPE(INDOUBT) command to ensure that
the indoubt units have been recovered. When no indoubt units of recovery
remain, continue with step 2.

2. Find the startup log RBA. Keep at least all log records with log RBAs greater
than the one that is given in this message, which is issued at restart:
DSNR003I RESTART...PRIOR CHECKPOINT RBA=xxxxxxxxxxxx

If you suspended DB2 activity while performing step 1, restart DB2 now.
3. Find the minimum log RBA that is needed. Suppose that you have determined

to keep some number of complete image copy cycles of your least-frequently
copied table space. You now need to find the log RBA of the earliest full image
copy that you want to keep.
a. If you have any table spaces that were created so recently that no full image

copies of them have ever been taken, take full image copies of them. If you
do not take image copies of them, and you discard the archive logs that log
their creation, DB2 can never recover them.

The following SQL statement generates a list of the table spaces for
which no full image copy is available:
SELECT X.DBNAME, X.NAME, X.CREATOR, X.NTABLES, X.PARTITIONS

FROM SYSIBM.SYSTABLESPACE X
WHERE NOT EXISTS (SELECT * FROM SYSIBM.SYSCOPY Y

WHERE X.NAME = Y.TSNAME
AND X.DBNAME = Y.DBNAME
AND Y.ICTYPE = 'F')

ORDER BY 1, 3, 2;

b. Issue the following SQL statement to find START_RBA values:

SELECT DBNAME, TSNAME, DSNUM, ICTYPE, ICDATE, HEX(START_RBA)
FROM SYSIBM.SYSCOPY
ORDER BY DBNAME, TSNAME, DSNUM, ICDATE;

The statement generates a list of all databases and the table spaces within
them, in ascending order by date.

c. Find the START_RBA value for the earliest full image copy (ICTYPE=F) that
you intend to keep. If your least-frequently copied table space is partitioned,
and you take full image copies by partition, use the earliest date for all the
partitions.
If you plan to discard records from SYSIBM.SYSCOPY and
SYSIBM.SYSLGRNX, note the date of the earliest image copy that you want
to keep.

4. Copy catalog and directory tables. Take full image copies of the DB2 table
spaces that are listed in the following table to ensure that copies of these table
spaces are included in the range of log records that you plan to keep.

Chapter 16. Managing the log and the bootstrap data set 517



Table 99. Catalog and directory tables to copy

Database name Table space names

DSNDB01 DBD01
SCT02
SPT01

SYSUTILX
SYSLGRNX

DSNDB06 SYSCOPY
SYSDBASE
SYSDBAUT
SYSGPAUT
SYSGROUP
SYSPKAGE

SYSPLAN
SYSSTATS
SYSSTR
SYSUSER
SYSVIEWS

5. Locate and discard archive log volumes. Now that you know the minimum log
RBA, from step 3, suppose that you want to find archive log volumes that
contain only log records earlier than that. Proceed as follows:
a. Execute the print log map utility (DSNJU004) to print the contents of the

BSDS.
b. Find the sections of the output titled “ARCHIVE LOG COPY n DATA

SETS”. (If you use dual logging, two sections exist.) The STARTRBA and
ENDRBA columns in the output show the range of log RBAs that are
contained in each volume. Find the volumes (two, for dual logging) whose
ranges include the minimum log RBA that you found in step 3. These
volumes are the earliest volumes that you need to keep.
If no volumes have an appropriate range, one of the following cases applies:
v The minimum log RBA has not yet been archived, and you can discard

all archive log volumes.
v The list of archive log volumes in the BSDS wrapped around when the

number of volumes exceeded the maximum number that is allowed. The
maximum number is specified in the RECORDING MAX field
(MAXARCH subsystem parameter) of installation panel DSNTIPA. If the
BSDS does not register an archive log volume, it can never be used for
recovery. Therefore, consider adding information about existing volumes
to the BSDS.
Also, consider increasing the value of the MAXARCH subsystem
parameter to change the maximum number of archive log volumes that
are to be recorded in the BSDS.

c. Delete any archive log data set or volume (both copies, for dual logging)
whose ENDRBA value is less than the STARTRBA value of the earliest
volume that you want to keep.
Because BSDS entries wrap around, the first few entries in the BSDS archive
log section might be more recent than the entries at the bottom. Look at the
combination of date and time to compare age. Do not assume that you can
discard all entries above the entry for the archive log that contains the
minimum log RBA.

d. Delete the data sets. If the archives are on tape, scratch the tapes. If they are
on disks, run a z/OS utility to delete each data set. Then, if you want the
BSDS to list only existing archive volumes, use the change log inventory

utility (DSNJU003) to delete entries for the discarded volumes.

518 Administration Guide



Related tasks

“Resolving indoubt units of recovery” on page 544
Related reference

DSNJU004 (print log map) (DB2 Utilities)

Archive log data set parameters panel: DSNTIPA (DB2 Installation and
Migration)

DSNJU003 (change log inventory) (DB2 Utilities)

Management of the bootstrap data set
The bootstrap data set (BSDS) is a VSAM key-sequenced data set that contains
information about the log data sets and the records that those data sets include.
The BSDS also contains information about buffer pool attributes.

The BSDS is defined with access method services when DB2 is installed and is
allocated by a DD statement in the DB2 startup procedure. It is deallocated when
DB2 terminates.

The active logs are first registered in the BSDS by job DSNTIJID, during DB2
installation. They cannot be replaced, nor can new ones be added, without
terminating and restarting DB2.

Archive log data sets are dynamically allocated. When one is allocated, the data set
name is registered in the BSDS in separate entries for each volume on which the
archive log resides. The list of archive log data sets expands as archives are added,
and the list wraps around when a user-determined number of entries is reached.
The maximum number of archive log data sets are 1000 for single archive logging
and 2000 for dual archive logging..

You can manage the inventory of archive log data sets with the change log
inventory utility (DSNJU003).

A wide variety of tape management systems exist, along with the opportunity for
external manual overrides of retention periods. Because of that, DB2 does not have
an automated method to delete the archive log data sets from the BSDS inventory
of archive log data sets. Thus, the information about an archive log data set can be
in the BSDS long after the archive log data set is scratched by a tape management
system following the expiration of the retention period of the data set.

Conversely, the maximum number of archive log data sets might be exceeded, and
the data from the BSDS might be dropped long before the data set reaches its
expiration date.

If you specified at installation that archive log data sets are to be cataloged when
allocated, the BSDS points to the integrated catalog facility catalog for the
information that is needed for later allocations. Otherwise, the BSDS entries for
each volume register the volume serial number and unit information that is needed
for later allocation.

Chapter 16. Managing the log and the bootstrap data set 519

|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnju004.htm#db2z_utl_dsnju004
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipa.htm#db2z_dsntipa
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipa.htm#db2z_dsntipa
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnju003.htm#db2z_utl_dsnju003


Related reference

DSNJCNVB (DB2 Utilities)

Restoring dual-BSDS mode
In dual-BSDS mode, DB2 keeps duplicate copies of the BSDS. If an I/O error
occurs, DB2 deallocates the failing copy and continues with a single BSDS.
However, you can restore the dual-BSDS mode.

To restore dual-BSDS mode:
1. Use access method services to rename or delete the failing BSDS.
2. Define a new BSDS with the same name as the deleted BSDS.
3. Issue the DB2 RECOVER BSDS command to make a copy of the good BSDS in

the newly allocated data set.

BSDS copies with archive log data sets
Every time that a new archive log data set is created, a copy of the BSDS is also
created either on tape or on disk.

If the archive log is on tape, the BSDS is the first file on the first output volume. If
the archive log is on disk, the BSDS copy is a separate file, which could reside on a
separate volume.

Recommendation: For better offload performance and space utilization, use a
block size of 28672 for tape or 24576 for disk. (The default value is 24576.) If
required, you can change this value in the BLOCK SIZE field on installation panel
DSNTIPA. Also adjust the PRIMARY QUANTITY and SECONDARY QUANTITY
fields to reflect any changes in block size.

The data set names of the BSDS copy and the archive log are the same, except that
the first character of the last data set name qualifier in the BSDS name is B instead
of A, as in the following example:

Archive log name
DSNCAT.ARCHLOG1.A0000001

BSDS copy name
DSNCAT.ARCHLOG1.B0000001

If a read error occurs while copying the BSDS, the copy is not created. Message
DSNJ125I is issued, and the offload to the new archive log data set continues
without the BSDS copy.

The utility DSNJU004, print log map, lists the information that is stored in the
BSDS.
Related reference

DSNJU004 (print log map) (DB2 Utilities)

Recommendations for changing the BSDS log inventory
You do not need to take special steps to keep the BSDS updated with records of
logging events. DB2 does that automatically.

However, you might want to change the BSDS if you:
v Add more active log data sets.

520 Administration Guide

|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnjcnvb.htm#db2z_utl_dsnjcnvb
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnju004.htm#db2z_utl_dsnju004


v Copy active log data sets to newly allocated data sets, as when providing larger
active log allocations.

v Move log data sets to other devices.
v Recover a damaged BSDS.
v Discard outdated archive log data sets.
v Create or cancel control records for conditional restart.
v Add or change the DDF communication record.

You can change the BSDS by running the DB2 batch change log inventory
(DSNJU003) utility. Do not run this utility when DB2 is active. Run it only when
DB2 is inactive, or inconsistent results might result.

You can copy an active log data set using the access method services IDCAMS
REPRO statement. The copy can be performed when only DB2 is down, because
DB2 allocates the active log data sets as exclusive (DISP=OLD) at DB2 startup. For
more information about the REPRO statement, see DFSMS/MVS: Access Method
Services for the Integrated Catalog and z/OS DFSMS Access Method Services for
Catalogs.
Related reference

DSNJU003 (change log inventory) (DB2 Utilities)

Chapter 16. Managing the log and the bootstrap data set 521

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnju003.htm#db2z_utl_dsnju003


522 Administration Guide



Chapter 17. Restarting DB2 after termination

When you need to restart DB2 after DB2 terminates normally or abnormally, keep
in mind these considerations, which are important for backup and recovery, and
for maintaining consistency.

The term object, used in any discussion of restarting DB2 after termination, refers to
any database, table space, or index space.
Related concepts

Chapter 18, “Maintaining consistency across multiple systems,” on page 537
Related tasks

Chapter 19, “Backing up and recovering your data,” on page 553

Methods of restarting
DB2 can restart in several different ways. Some options are based on how DB2
terminated or what your environment is.

Types of termination
DB2 terminates normally in response to the STOP DB2 command . If DB2 stops for
any other reason, the termination is considered abnormal.

Normal termination
In a normal termination, DB2 stops all activity in an orderly way.

You can use either STOP DB2 MODE (QUIESCE) or STOP DB2 MODE
(FORCE). The effects each command are compared in the following table.

Table 100. Termination using QUIESCE and FORCE

Thread type QUIESCE FORCE

Active threads Run to completion Roll back

New threads Permitted Not permitted

New connections Not permitted Not permitted

You can use either command to prevent new applications from connecting to DB2.

When you issue the STOP DB2 MODE(QUIESCE) command, current threads can
run to completion, and new threads can be allocated to an application that is
running.

With IMS and CICS, STOP DB2 MODE(QUIESCE) allows a current thread to run
only to the end of the unit of recovery, unless either of the following conditions are
true:
v Open, held cursors exist.
v Special registers are not in their original state.

Before DB2 can stop, all held cursors must be closed and all special registers must
be in their original state, or the transaction must complete.

© Copyright IBM Corp. 1982, 2009 523



With CICS, QUIESCE mode stops the CICS attachment facility, so an active task
might not necessarily run to completion.

For example, assume that a CICS transaction opens no cursors that are declared
WITH HOLD and modifies no special registers, as follows:
EXEC SQL
. ← -STOP DB2 MODE(QUIESCE) issued here...
SYNCPOINT...
EXEC SQL ← This receives an AETA abend

The thread is allowed to run only through the first SYNCPOINT.

When you issue the command STOP DB2 MODE(FORCE), no new threads are
allocated, and work on existing threads is rolled back.

A data object might be left in an inconsistent state, even after a shutdown with
mode QUIESCE, if it was made unavailable by the command STOP DATABASE, or
if DB2 recognized a problem with the object. MODE (QUIESCE) does not wait for
asynchronous tasks that are not associated with any thread to complete before it
stops DB2. This can result in data commands such as STOP DATABASE and
START DATABASE having outstanding units of recovery when DB2 stops. These
outstanding units of recovery become inflight units of recovery when DB2 is

restarted; then they are returned to their original states.

Abnormal terminations (abends)
An abnormal termination, or abend, is said to happen when DB2 does not
terminate in an orderly way.

An abend can leave data in an inconsistent state for any of the following reasons:
v Units of recovery might be interrupted before reaching a point of consistency.
v Committed data might not be written to external media.
v Uncommitted data might be written to external media.

Normal restart and recovery
DB2 uses its recovery log and the bootstrap data set (BSDS) to determine what to
recover when restarting. The BSDS identifies the active and archive log data sets,
the location of the most recent DB2 checkpoint on the log, and the high-level
qualifier of the integrated catalog facility catalog name.

After DB2 is initialized, the restart process goes through four phases, which are
described in the following sections:

“Phase 1: Log initialization” on page 525
“Phase 2: Current status rebuild” on page 526
“Phase 3: Forward log recovery” on page 527
“Phase 4: Backward log recovery” on page 528

The terms inflight, indoubt, in-commit, and in-abort refer to statuses of a unit of work
that is coordinated between DB2 and another system, such as CICS, IMS, or a
remote DBMS. For definitions of those terms, see “Consistency after termination or
failure” on page 542.

At the end of the fourth phase recovery, a checkpoint is taken and committed
changes are reflected in the data.

524 Administration Guide



Application programs that do not commit often enough cause long-running units
of recovery (URs). These long-running URs might be inflight after a DB2 failure.
Inflight URs can extend DB2 restart time. You can restart DB2 more quickly by
postponing the backout of long-running URs. Installation options LIMIT
BACKOUT and BACKOUT DURATION establish what work to delay during
restart.

If your DB2 subsystem has the UR checkpoint count option enabled, DB2 generates
console message DSNR035I and trace records for IFCID 0313 to inform you about
long-running URs. The UR checkpoint count option is enabled at installation time,
through field UR CHECK FREQ on panel DSNTIPL.

If your DB2 subsystem has the UR log threshold option enabled, DB2 generates
console message DSNB260I when an inflight UR writes more than the
installation-defined number of log records. DB2 also generates trace records for
IFCID 0313 to inform you about these long-running URs. The UR log threshold
option is established at installation time, through field UR LOG WRITE CHECK on
panel DSNTIPL.

Restart of large object (LOB) table spaces is like restart of other table spaces. LOB
table spaces that are defined with LOG NO do not log LOB data, but they log
enough control information (and follow a force-at-commit policy) so that they can
restart without loss of data integrity.

After DB2 has gone through a group or normal restart that involves group buffer
pool (GBP) failure, group buffer pool recovery pending (GRECP) can be
automatically initiated for all objects except the object that is explicitly deferred
during restart (ZPARM defer), or the object that is associated with the indoubt or
postponed-abort UR.
Related reference

Active log data set parameters: DSNTIPL (DB2 Installation and Migration)

Phase 1: Log initialization
During the first restart phase, DB2 attempts to locate the last log RBA that was
written before termination. Logging continues at the subsequent RBA.

In phase 1:
1. DB2 compares the high-level qualifier of the integrated catalog facility catalog

name that is in the BSDS with the corresponding qualifier of the name in the
current subsystem parameter module (DSNZPxxx).
v If they are equal, processing continues with step 2.
v If they are not equal, DB2 terminates with this message:

DSNJ130I ICF CATALOG NAME IN BSDS
DOES NOT AGREE WITH DSNZPARM.
BSDS CATALOG NAME=aaaaa,
DSNZPARM CATALOG NAME=bbbbb

Without the check, the next DB2 session could conceivably update an entirely
different catalog and set of table spaces. If the check fails, you probably have
the wrong parameter module. Start DB2 with the command START DB2
PARM(module-name), and name the correct module.

2. DB2 checks the consistency of the timestamps in the BSDS.
v If both copies of the BSDS are current, DB2 tests whether the two timestamps

are equal.
– If they are equal, processing continues with step 3 on page 526.

Chapter 17. Restarting DB2 after termination 525

|
|
|
|
|
|

|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipl.htm#db2z_dsntipl


– If they are not equal, DB2 issues message DSNJ120I and terminates. That
can happen when the two copies of the BSDS are maintained on separate
disk volumes (as recommended) and one of the volumes is restored while
DB2 is stopped. DB2 detects the situation at restart.
To recover, copy the BSDS with the latest timestamp to the BSDS on the
restored volume. Also recover any active log data sets on the restored
volume, by copying the dual copy of the active log data sets onto the
restored volume.

v If one copy of the BSDS was deallocated, and logging continued with a
single BSDS, a problem could arise. If both copies of the BSDS are
maintained on a single volume, and the volume was restored, or if both
BSDS copies were restored separately, DB2 might not detect the restoration.
In that case, log records that are not noted in the BSDS would be unknown
to the system.

3. DB2 finds in the BSDS the log RBA of the last log record that was written
before termination.
The highest RBA field (as shown in the output of the print log map utility) is
updated only when the following events occur:
v When DB2 is stopped normally (STOP DB2).
v When active log writing is switched from one data set to another.
v When DB2 has reached the end of the log output buffer. The size of this

buffer is determined by the OUTPUT BUFFER field of installation panel
DSNTIPL.

4. DB2 scans the log forward, beginning at the log RBA of the most recent log
record, up to the last control interval (CI) that was written before termination.

5. DB2 prepares to continue writing log records at the next CI on the log.
6. DB2 issues message DSNJ099I, which identifies the log RBA at which logging

continues for the current DB2 session. That message signals the end of the log
initialization phase of restart.

Related reference

Active log data set parameters: DSNTIPL (DB2 Installation and Migration)
Related information

“Recovering from BSDS failures” on page 645

Phase 2: Current status rebuild
During the second restart phase, DB2 determines the statuses of objects at the time
of termination. By the end of the phase, DB2 has determined whether any units of
recovery were interrupted by the termination.

In phase 2:
1. DB2 checks the BSDS to find the log RBA of the last complete checkpoint

before termination.
2. DB2 processes the RESTART or DEFER option of the parameter module of the

START DB2 command if any exist. The default is always RESTART ALL.
3. DB2 reads every log record from that checkpoint up to the end of the log

(which was located during phase 1), and identifies:
v All exception conditions that exist for each database and all image copy

information that is related to the DSNDB01.SYSUTILX, DSNDB01.DBD01,
and DSNDB06.SYSCOPY table spaces.

v All objects that are open at the time of termination.

526 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipl.htm#db2z_dsntipl


v How far back in the log to go to reconstruct data pages that were not written
to disk.

The number of log records that are written between one checkpoint and the
next is set when DB2 is installed.
You can temporarily modify the checkpoint frequency by using the command
SET LOG. The value that you specify persists while DB2 is active; on restart,
DB2 uses the value that is specified in the CHECKPOINT FREQ field of
installation panel DSNTIPL.

4. DB2 issues message DSNR004I, which summarizes the activity that is required
at restart for outstanding units of recovery.

5. DB2 issues message DSNR007I if any outstanding units of recovery are
discovered. The message includes, for each outstanding unit of recovery, its
connection type, connection ID, correlation ID, authorization ID, plan name,
status, log RBA of the beginning of the unit of recovery (URID), and the date
and time of its creation.

During phase 2, no database changes are made, nor are any units of recovery
completed. DB2 determines what processing is required by phase 3, forward log
recovery, before access to databases is allowed.
Related reference

Active log data set parameters: DSNTIPL (DB2 Installation and Migration)

-SET LOG (DB2) (DB2 Command Reference)

Phase 3: Forward log recovery
During the third restart phase, DB2 completes the processing for all committed
changes and database write operations.

DB2 processing during phase 3 includes:
v Making all database changes for each indoubt unit of recovery and locking the

data to prevent access to it after restart
v Making database changes for inflight and in-abort units of recovery
v In the case of group restarts in which locks have been lost, acquiring locks to

prevent access to data that is in use by those units of recovery

DB2 can use the fast log apply process to enhance performance of the forward
recovery phase. See the Log Apply Storage field on panel DSNTIPL in DB2
Installation Guide for details about defining storage for the sort that is used in fast
log apply processing. DB2 executes these steps:
1. DB2 detects whether a page set that is being recovered is at the same level ID

as it was when the page set was last closed. If it is not, DB2 issues message
DSNB232I and places the pages for that object on the logical page list (LPL).
DB2 does not restart that object. In this case, you must recover from the
down-level page set by using one of the methods described in “Recovering
from a down-level page set problem” on page 686.

2. DB2 scans the log forward, beginning at the lowest (earliest) log RBA that is
either required for completion of database writes or that is associated with the
“Begin Unit of Recovery” of units of recovery that require locks.
That log RBA is determined during phase 2. REDO log records for all units of
recovery are processed in this phase.

3. DB2 uses the log RBA of the earliest potential REDO log record for each object
(determined during phase 2). All earlier changes to the object have been
written to disk; therefore, DB2 ignores their log records.

Chapter 17. Restarting DB2 after termination 527

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipl.htm#db2z_dsntipl
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_setlog.htm#db2z_cmd_setlog


4. DB2 reads the data or index page for each remaining REDO log record. The
page header registers the log RBA of the record of the last change to the page.
v If the log RBA of the page header is greater than or equal to that of the

current log record, the logged change has already been made and written to
disk, and the log record is ignored.

v If the log RBA in the page header is less than that of the current log record,
the change has not been made; DB2 makes the change to the page in the
buffer pool.

5. DB2 writes pages to disk as the need for buffers demands it.
6. DB2 marks the completion of each unit of recovery that is processed. If restart

processing terminates later, those units of recovery do not reappear in status
lists.

7. DB2 stops scanning at the current end of the log.
8. DB2 writes to disk all modified buffers that are not yet written.
9. DB2 issues message DSNR005I, which summarizes the number of remaining

in-commit or indoubt units of recovery. No in-commit units of recovery
should exist because all processing for these units should have completed. The
number of indoubt units of recovery should be equal to the number that is
specified in the previous DSNR004I restart message.

10. DB2 issues message DSNR007I, which identifies any outstanding unit of
recovery that still must be processed.

If DB2 encounters a problem while applying log records to an object during phase
3, the affected pages are placed in the logical page list. Message DSNI001I is issued
once per page set or partition, and message DSNB250E is issued once per page.
Restart processing continues.

DB2 issues status message DSNR031I periodically during this phase.

Phase 4: Backward log recovery
During the fourth restart phase, DB2 changes that were performed for inflight or
in-abort units of recovery are reversed.

In phase 4:
1. DB2 scans the log backward, starting at the current end. The scan continues

until the earliest “Begin Unit of Recovery” record for any outstanding inflight
or in-abort unit of recovery.
If you specified limited backout processing, the scan might stop prematurely
(however, DB2 verifies that all catalog and directory changes are completely
backed out). In this case, the scan completes after DB2 receives the RECOVER
POSTPONED command. You can have DB2 automatically issue this command
after restart by specifying the AUTO option for limited backout processing, or
you can issue this command manually.

2. DB2 reads the data or index page for each remaining undo log record. The
page header registers the log RBA of the record of the last change to the page.
v If the log RBA of the page header is greater than or equal to that of the

current log record, the logged change has already been made and written to
disk, so DB2 reverses it.

v If the log RBA in the page header is less than that of the current log record,
the change has not been made and DB2 ignores it.

528 Administration Guide



3. DB2 writes redo compensation information in the log for each undo log record,
as it does when backing out a unit of recovery. The redo records describe the
reversal of the change and facilitate media recovery. They are written under all
circumstances, even when:
v The disk version of the data did not need to be reversed.
v The page set has pages on the LPL.
v An I/O error occurred on the disk version of the data.
v The disk version of the data could not be allocated or opened.
v The page set is deferred at restart using the DEFER subsystem parameter.

4. DB2 writes pages to disk as the need for buffers demands it.
5. DB2 writes to disk all modified buffers that have not yet been written.
6. DB2 issues message DSNR006I, which summarizes the number of remaining

inflight, in-abort, and postponed-abort units of recovery. The number of inflight
and in-abort units of recovery should be zero; the number of postponed-abort
units of recovery might not be zero.

7. DB2 marks the completion of each completed unit of recovery in the log so
that, if restart processing terminates, the unit of recovery is not processed again
at the next restart.

8. If necessary, DB2 reacquires write claims for the objects on behalf of the
indoubt and postponed-abort units of recovery.

9. DB2 takes a checkpoint after all database writes have been completed.

If DB2 encounters a problem while applying a log record to an object during phase
4, the affected pages are placed in the logical page list. Message DSNI001I is issued
once per page set or partition, and message DSNB250E is issued once per page.
Restart processing continues.

DB2 issues status message DSNR031I periodically during this phase.

Automatic restart
If you run DB2 in a sysplex, you can have the automatic restart function of z/OS
automatically restart DB2 or IRLM after a failure.

When DB2 or IRLM stops abnormally, z/OS determines whether z/OS failed too,
and where DB2 or IRLM should be restarted. It then restarts DB2 or IRLM.

You must have DB2 installed with a command prefix scope of S to take advantage
of automatic restart.

Restart in a data sharing environment
In a data sharing environment, restart processing coordinates data recovery across
more than one DB2 subsystem.

When certain critical resources are lost, restart includes additional processing to
recover and rebuild those resources. This process is called group restart.
Related concepts

Group restart phases (DB2 Data Sharing Planning and Administration)

Restart implications for table spaces that are not logged
Even if all tables that are modified by a transaction reside in table spaces that are
not logged, a unit of recovery is established before any of those updates are
performed. Undo processing continues to read the log in the backward direction,

Chapter 17. Restarting DB2 after termination 529

|

|

|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.dshare/db2z_grouprestartphases.htm#db2z_grouprestartphases


looking for undo log records that need to be applied. Undo processing stops when
it detects the beginning of this unit of recovery as recorded on the log.

Therefore you still need to perform frequent commits to limit the distance that
undo processing might need to go backward on the log to find the beginning of
the unit of recovery. If a transaction that is not logged does not do frequent
commits, it is subject to being reported as a long-running unit of recovery in
message DSNR035I. This means that if such a unit of recovery persists for a
duration that qualifies as a long-running unit of recovery, message DSNR035I is
issued to identify it.

If, during restart, you need to undo work that has not been logged because of the
NOT LOGGED attribute, the table space loses its data integrity, and therefore must
be recovered. Recovery can be accomplished by using the RECOVER utility or by
reinserting the appropriate data. For example, a summary table can be re-created
by one or more INSERT statements; a materialized query table can be rebuilt by
using a REFRESH TABLE SQL statement.

To mark the need for recovery, the table space or partition is marked with
RECOVER-pending status. To prevent any access to the corrupt data, the table
space or partition is placed in the LPL. When undo processing places a table space
or partition in the logical page list (LPL) and marks it with RECOVER-pending
status, it also places all of the updated indexes on all tables in the table space in
the LPL. The corresponding partitions of data-partitioned secondary indexes
(DPSIs) are placed in the LPL, which prevents other processes that use index-only
access from seeing data whose integrity is in doubt. These indexes are also marked
with REBUILD-pending status.

After restart, when DB2 is operational, if undo processing is needed for a unit of
recovery in which modifications were made to the table space that was not logged,
the entire table space or partition is placed in the LPL, and the table space is
marked with RECOVER-pending status. This can happen, for example, as a result
of a rollback, abort, trigger error, or duplicate key or referential constraint
violation. The LPL ensures that no concurrently running agent can see any of the
data whose integrity is in doubt.

Avoid duplicate key or referential constraint violations in table spaces that are not
logged because the result is an unavailable table space that requires manual action.

When a table space or partition is placed in the LPL because undo processing is
needed for a table space that is not logged, either at restart time or during rollback
processing, automatic LPL recovery is not initiated, and a START DATABASE
command identifying this table space has no effect on its LPL status.
Related tasks

“Altering table spaces” on page 89

Conditional restart
A conditional restart is a DB2 restart that is directed by a user-defined conditional
restart control record (CRCR).

If you want to skip some portion of the log processing during DB2 restart, you can
use a conditional restart. However, if a conditional restart skips any database
change log records, data in the associated objects becomes inconsistent, and any
attempt to process them for normal operations might cause unpredictable results.

530 Administration Guide

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|

|



The only operations that can safely be performed on the objects are recovery to a
prior point of consistency, total replacement, or dropping.

In unusual cases, you might choose to make inconsistent objects available for use
without recovering them. For example, the only inconsistent object might be a table
space that is dropped as soon as DB2 is restarted, or the DB2 subsystem might be
used only for testing application programs that are still under development. In
cases like those, where data consistency is not critical, normal recovery operations
can be partially or fully bypassed by using conditional restart control records in
the BSDS.
Related concepts

Restarting a member with conditions (DB2 Data Sharing Planning and
Administration)
Related reference

DSNJU003 (change log inventory) (DB2 Utilities)

Restart considerations for identity columns
Cold starts and conditional restarts that skip forward recovery can cause additional
data inconsistency within identity columns and sequence objects. After such
restarts, DB2 might assign duplicate identity column values and create gaps in
identity column sequences.

Terminating DB2 normally
Whenever possible, ensure that DB2 terminates normally.

To terminate DB2, issue either of the following commands:
v -STOP DB2 MODE (QUIESCE)

v -STOP DB2 MODE (FORCE)

During shutdown, use the command DISPLAY THREAD to check the shutdown
progress. If shutdown is taking too long, you can issue STOP DB2 MODE
(FORCE), but rolling back work can take as long as or longer than the completion
of QUIESCE.

When stopping in either mode, the following steps occur:
1. Connections end.
2. DB2 ceases to accept commands.
3. DB2 disconnects from the IRLM.

4. The shutdown checkpoint is taken and the BSDS is updated.

Restarting automatically
You control how automatic restart works by using automatic restart policies.

When the automatic restart function is active, the default action is to restart the
subsystems when they fail. If this default action is not what you want, then you
must create a policy that defines the action that you want taken.

To create a policy, you need the element names of the DB2 and IRLM subsystems:

Chapter 17. Restarting DB2 after termination 531

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.dshare/db2z_restartmemberconds.htm#db2z_restartmemberconds
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.dshare/db2z_restartmemberconds.htm#db2z_restartmemberconds
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnju003.htm#db2z_utl_dsnju003


v For a non-data-sharing DB2, the element name is ’DB2$’ concatenated by the
subsystem name (DB2$DB2A, for example). To specify that a DB2 subsystem is
not to be restarted after a failure, include RESTART_ATTEMPTS(0) in the policy
for that DB2 element.

v For local mode IRLM, the element name is a concatenation of the IRLM
subsystem name and the IRLM ID. For global mode IRLM, the element name is
a concatenation of the IRLM data sharing group name, the IRLM subsystem
name, and the IRLM ID.

For instructions on defining automatic restart policies, see z/OS MVS Setting Up a
Sysplex.

Deferring restart processing
You have several options for deferring restart processing on an object.
v To vary the device (or volume) on which the objects reside offline:

If the data sets that contain an object are not available, and the object requires
recovery during restart, DB2 flags it as stopped and requiring deferred restart.
DB2 then restarts without it.

v To delay the backout of a long-running UR:
On installation panel DSNTIPL, you can use the following options:
– LIMIT BACKOUT defined as YES or AUTO indicates that some backout

processing is to postponed when restarting DB2. Issue the RECOVER
POSTPONED command to complete the backout processing when the YES
option is selected. DB2 does the backout work automatically after DB2 is
running and receiving new work when the AUTO option is selected.

– BACKOUT DURATION indicates the number of log records, specified as a
multiplier, that are to be read during the backward log scan phase of restart.

The amount of backout processing that is to be postponed is determined by:
– The frequency of checkpoints
– The BACKOUT DURATION installation option
– The characteristics of the inflight and in-abort activity when DB2 stopped
Selecting a limited backout affects log processing during restart. The backward
processing of the log proceeds until the oldest inflight or in-abort UR with
activity against the catalog or directory is backed out, and until the requested
number of log records have been processed.

v To name the object with DEFER when installing DB2:
On installation panel DSNTIPS, you can use the following options:
– DEFER ALL defers restart log apply processing for all objects, including DB2

catalog and directory objects.
– DEFER list_of_objects defers restart processing only for objects in the list.
Alternatively, you can specify RESTART list_of_objects, which limits restart
processing to the list of objects in the list.
DEFER does not affect processing of the log during restart. Therefore, even if
you specify DEFER ALL, DB2 still processes the full range of the log for both the
forward and backward log recovery phases of restart. However, logged
operations are not applied to the data set.

532 Administration Guide



Deferral of restart
Usually, restarting DB2 activates restart processing for objects that were available
when DB2 terminated (in other words, not stopped with the STOP DATABASE
command). Restart processing applies or backs out log records for objects that have
unresolved work.

Restart processing is controlled by specifications on installation panel DSNTIPS,
and the default is RESTART ALL.

If some specific object is causing problems, one option is to defer its restart
processing by starting DB2 without allowing that object to go through restart
processing. When you defer restart of an object, DB2 puts pages that are necessary
for restart of the object in the logical page list (LPL). Only those pages are
inaccessible; the rest of the object can still be accessed after restart.

There are restrictions to DB2’s activation of restart processing for available objects.
When DEFER ALL is specified at a site that is designated as RECOVERYSITE in
DSNZPxxx, all pages for an object that is deferred are placed in the LPL (as a page
range, not as a large list of individual pages). The following conditions apply:
v If DB2 cannot open and read the DBD01 table space it will not put DB2 into

ACCESS(MAINT), and DSNX204I is not be issued. Instead either DSNT500I or
DSNT501I ’resource unavailable’ is issued.

v For a deferred restart scenario that needs to recover all DB2 objects after DB2 is
up, it is recommend that you set the ZPARM DEFER ALL and start DB2 with
the ACCESS(MAINT) option.

v If DEFER ALL is specified, DSNX204I is not issued.
v With DEFER ALL, DB2 will not open any data sets, including SYSLGRNX and

DSNRTSTS, during any phase of restart, and will not attempt to apply any log
records.

DB2 can also defer restart processing for particular objects. DB2 puts pages in the
LPL for any object (or specific pages of an object) with certain problems, such as
an open or I/O error during restart. When an error is encountered while accessing
an index object during restart, the entire index is put in the LPL, not just the
individual pages.

Performing conditional restart
Normal recovery operations can be partially or fully bypassed by using conditional
restart control records in the BSDS.

The procedure for conditional restart is:
1. Optional: When considering a conditional restart, it is often useful to run the

DSN1LOGP utility and review a summary report of the information contained
in the log.

2. While DB2 is stopped, run the change log inventory utility by using the
CRESTART control statement to create a new conditional restart control record.

3. Restart DB2. The recovery operations that take place are governed by the
current conditional restart control record.

4. Optional: For data sharing environments, use the LIGHT(YES) or
LIGHT(NOINDOUBTS) parameter on the START DB2 command to quickly
recover retained locks on a DB2 member. For more information, see DB2 Data
Sharing: Planning and Administration.

Chapter 17. Restarting DB2 after termination 533

|
|
|
|

|
|
|

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|



Related concepts

“Messages at start” on page 375

Options for recovery operations after conditional restart
The recovery operations that take place during restart are controlled by the
currently active conditional restart control record. An active control record is
created or deactivated by running the change log inventory utility with the
CRESTART control statement.

You can choose to:
v Retain a specific portion of the log for future DB2 processing
v Read the log forward to recover indoubt and uncommitted units of recovery
v Read the log backward to back out uncommitted and in-abort units of recovery
v Do a cold start, not processing any log records

A conditional restart record that specifies left truncation of the log causes any
postponed-abort units of recovery that began earlier than the truncation RBA to
end without resolution. The combination of unresolved postponed-abort units of
recovery can cause more records than requested by the BACKODUR system
parameter to be processed. The left truncation RBA takes precedence over
BACKODUR in this case.

Be careful about doing a conditional restart that discards log records. If the
discarded log records contain information from an image copy of the DB2
directory, a future execution of the RECOVER utility on the directory fails.

Conditional restart records
In addition to information describing the active and archive logs, the BSDS
contains two queues of records that are associated with conditional restart.

The two queues are:
v A wrap-around queue of conditional restart control records. Each element in the

queue records the choices that you made when you created the record and the
progress of the restart operation that it controls. When the operation is complete,
the use count is set at 1 for the record, and the record is not used again.

v A queue of checkpoint descriptions. Because a conditional restart can specify use
of a particular log record range, the recovery process cannot automatically use
the most recent checkpoint. The recovery process must find the latest checkpoint
within the specified range, and that checkpoint queue is then used for that
purpose.

You can use the utility DSN1LOGP to read information about checkpoints and
conditional restart control records.
Related reference

DSN1LOGP (DB2 Utilities)

Resolving postponed units of recovery
You can postpone some of the backout work that is associated with long-running
units of work during system restart by using the LIMIT BACKOUT installation
option. By delaying such backout work, the DB2 subsystem can be restarted more
quickly.

534 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1logp.htm#db2z_utl_dsn1logp


If you specify LIMIT BACKOUT = YES, you must use the RECOVER POSTPONED
command to resolve postponed units of recovery.

Use the RECOVER POSTPONED command to complete postponed backout
processing on all units of recovery; you cannot specify a single unit of work for
resolution. This command might take several hours to complete depending on the
content of the long-running job. In some circumstances, you can elect to use the
CANCEL option of the RECOVER POSTPONED command. This option leaves the
objects in an inconsistent state (REFP) that you must resolve before using the
objects. However, you might choose the CANCEL option for the following reasons:
v You determine that the complete recovery of the postponed units of recovery

will take more time to complete than you have available. You also determine it
is faster to either recover the objects to a prior point in time or run the LOAD
utility with the REPLACE option.

v You want to replace the existing data in the object with new data.
v You decide to drop the object. To drop the object successfully, complete the

following steps:
1. Issue the RECOVER POSTPONED command with the CANCEL option.
2. Issue the DROP TABLESPACE statement.

v You do not have the DB2 logs to successfully recover the postponed units of
recovery.

Related reference

Active log data set parameters: DSNTIPL (DB2 Installation and Migration)

RECOVER POSTPONED command
Output from the RECOVER POSTPONED command consists of informational
messages.

In the following figure, backout processing was performed against two table space
partitions and two index partitions:

If a required page cannot be accessed during RECOVER POSTPONED processing,
or if any other error is encountered while attempting to apply a log record, the
page set or partition is deferred and processing continues. DB2 writes a
compensation log record to reflect those deferrals and places the page in the logical
page list. Some errors that are encountered during recovery of indexes cause the
entire page set to be placed in the logical page list. Some errors halt the
construction of the compensation log and mark the page set as RECP.

DSNV435I ! RESOLUTION OF POSTPONED ABORT URS HAS BEEN SCHEDULED
DSN9022I ! DSNVRP 'RECOVER POSTPONED' NORMAL COMPLETION
DSNR047I ! DSNRBMON POSTPONED ABORT BACKOUT
PROCESSING LOG RECORD AT RBA 000002055000 TO RBA 000001E6A20E
DSNR047I ! DSNRBMON POSTPONED ABORT BACKOUT
PROCESSING LOG RECORD AT RBA 000002049000 TO RBA 000001E6A20E
DSNI024I ! DSNIARPL BACKOUT PROCESSING HAS COMPLETED

FOR PAGESET DSNDB04 .I PART 00000004.
DSNI024I ! DSNIARPL BACKOUT PROCESSING HAS COMPLETED

FOR PAGESET DSNDB04 .PT PART 00000004.
DSNI024I ! DSNIARPL BACKOUT PROCESSING HAS COMPLETED

FOR PAGESET DSNDB04 .I PART 00000002.
DSNI024I ! DSNIARPL BACKOUT PROCESSING HAS COMPLETED

FOR PAGESET DSNDB04 .PT PART 00000002.

Figure 46. Example of output from RECOVER POSTPONED processing

Chapter 17. Restarting DB2 after termination 535

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipl.htm#db2z_dsntipl


Recovering from an error during RECOVER POSTPONED
processing

When an error prevents logging of a compensation log record, DB2 terminates
abnormally.

If DB2 terminates abnormally:
1. Fix the error.
2. Restart DB2.
3. Re-issue the RECOVER POSTPONED command if automatic backout

processing has not been specified.
If the RECOVER POSTPONED processing lasts for an extended period, the
output includes DSNR047I messages to help you monitor backout processing.
These messages show the current RBA that is being processed and the target
RBA.

536 Administration Guide



Chapter 18. Maintaining consistency across multiple systems

Data consistency issues arise when DB2 acts in conjunction with other systems,
such as IMS, CICS, or remote database management systems (DBMSs).

Multiple system consistency
DB2 can work with other DBMSs, including IMS, and other types of remote
DBMSs through the distributed data facility (DDF). DB2 can also work with other
DB2 subsystems through the DDF.

If data in more than one subsystem is to be consistent, all update operations at all
subsystems for a single logical unit of work must either be committed or backed
out.

Two-phase commit process
In a distributed system, the actions of a logical unit of work might occur at more
than one system.

When these actions update recoverable resources, the commit process ensures that
either all the effects of the logical unit of work persist, or none of the effects
persist. The commit process ensures this outcome despite component, system, or
communications failures.

DB2 uses a two-phase commit process to communicate between subsystems. The
two-phase commit process is controlled by one of the subsystems, called the
coordinator. The other systems that are involved are called the participants. DB2,
CICS, or WebSphere® Application Server are always the coordinator when they
interact with DB2. In transactions that include those systems, DB2 is always a
participant. DB2 is always the coordinator when it interacts with TSO, and DB2
completely controls the commit process in these interactions. In interactions with
other DBMSs, including other DB2 subsystems, your local DB2 can be either the
coordinator or a participant.

The following figure illustrates the two-phase commit process. Events in the
coordinator (IMS, CICS, or DB2) are shown on the upper line, events in the
participant on the lower line.

© Copyright IBM Corp. 1982, 2009 537



The numbers below are keyed to the timeline in the figure. The resultant state of
the update operations at the participant are shown between the two lines.
1. The data in the coordinator is at a point of consistency.
2. An application program in the coordinator calls the participant to update

some data, by executing an SQL statement.
3. This starts a unit of recovery in the participant.
4. Processing continues in the coordinator until an application synchronization

point is reached.
5. The coordinator then starts commit processing. IMS can do that by using a

DL/I CHKP call, a fast path SYNC call, a GET UNIQUE call to the I/O PCB,
or a normal application termination. CICS uses a SYNCPOINT command or a
normal application termination. A DB2 application starts commit processing
by an SQL COMMIT statement or by normal termination. Phase 1 of commit
processing begins.

6. The coordinator informs the participant that it is to prepare for commit. The
participant begins phase 1 processing.

7. The participant successfully completes phase 1, writes this fact in its log, and
notifies the coordinator.

8. The coordinator receives the notification.
9. The coordinator successfully completes its phase 1 processing. Now both

subsystems agree to commit the data changes because both have completed
phase 1 and could recover from any failure. The coordinator records on its log
the instant of commit—the irrevocable decision of the two subsystems to make
the changes.

1       2    3         4      5     6          7     8      9      10   11       12    13

Coordinator

Old point of
consistency

Application
synchronization
point

Instant of
Commit

New point of
consistency

Phase 1

Commit
process begins

Phase 2

Time
line

Participant

Phase 1

Begin unit of
recovery

New point of
consistency

End unit of
recovery

Period b

Data is
backed out
at restart

Period a

Data is
backed out
at restart

Period c

Data is
indoubt at
restart and
either backed
out or
committed

Period d

Data is
committed
at restart

Phase 2

Old point of
consistency

Figure 47. Time line illustrating a commit that is coordinated with another subsystem

538 Administration Guide



The coordinator now begins phase 2 of the processing—the actual
commitment.

10. The coordinator notifies the participant that it can begin phase 2.
11. The participant logs the start of phase 2.
12. Phase 2 is successfully completed, which establishes a new point of

consistency for the participant. The participant then notifies the coordinator
that it is finished with phase 2.

13. The coordinator finishes its phase 2 processing. The data that is controlled by
both subsystems is now consistent and available to other applications.

On some occasions, the coordinator invokes the participant when no participant
resource has been altered since the completion of the last commit process. This can
happen, for example, when a SYNCPOINT is issued after performance of a series
of SELECT statements or when end-of-task is reached immediately after a
SYNCPOINT is issued. When this occurs, the participant performs both phases of
the two-phase commit during the first commit phase and records that the user or
job is read-only at the participant.

Commit coordinator and multiple participants
The principles and methods for maintaining consistency across more than two
systems are similar to those that are used to ensure consistency across two
systems. The main difference involves the role of a system as coordinator or
participant when a unit of work spans multiple systems.

The coordinator of a unit of work that involves two or more other DBMSs must
ensure that all systems remain consistent. After the first phase of the two-phase
commit process, the DB2 coordinator waits for the other participants to indicate
that they can commit the unit of work. If all systems are able, the DB2 coordinator
sends the commit decision and each system commits the unit of work.

If even one system indicates that it cannot commit, the DB2 coordinator
communicates the decision to roll back the unit of work at all systems. This
process ensures that data among multiple DBMSs remains consistent. When DB2 is
the participant, it follows the decision of the coordinator, whether the coordinator
is another DB2 or another DBMS.

DB2 is always the participant when interacting with IMS, CICS, or WebSphere
Application Server systems. However, DB2 can also serve as the coordinator for
other DBMSs or for other DB2 subsystems in the same unit of work. For example,
if DB2 receives a request from a coordinating system that also requires data
manipulation on another system, DB2 propagates the unit of work to the other
system and serves as the coordinator for that system.

In the following figure, DB2A is the participant for an IMS transaction, but DB2
becomes the coordinator for the two database servers (AS1 and AS2), for DB2B,
and for its respective DB2 servers (DB2C, DB2D, and DB2E).

Chapter 18. Maintaining consistency across multiple systems 539



If the connection between DB2A and the coordinating IMS system fails, the
connection becomes an indoubt thread. However, DB2A connections to the other
systems are still waiting and are not considered indoubt. Automatic recovery
occurs to resolve the indoubt thread. When the thread is recovered, the unit of
work commits or rolls back, and this action is propagated to the other systems that
are involved in the unit of work.

Illustration of multi-site update
You can set up a multi-site update that involves one coordinator and two
participants.

The following figure shows an example of a multi-site update with one coordinator
and two participants.

The following process describes each action that the figure illustrates.

Phase 1

1. When an application commits a logical unit of work, it signals the DB2
coordinator. The coordinator starts the commit process by sending
messages to the participants to determine whether they can commit.

2. A participant (Participant 1) that is willing to let the logical unit of work
be committed, and which has updated recoverable resources, writes a

DB2A DB2B

DB2C
Server

DB2D
Server

DB2E
Server

AS1

AS2

IMS/
CICS

Figure 48. Illustration of multi-site unit of work

Time
line

Prepare

Forget

Forget

Forget

Request
Commit

Commit

Coordinator

Phase 1 Phase 2

Participant 2

Participant 1

2 4 51 3

Figure 49. Illustration of multi-site update

540 Administration Guide



log record. It then sends a request-commit message to the coordinator
and waits for the final decision (commit or roll back) from the
coordinator. The logical unit of work at the participant is now in the
prepared state.
If a participant (Participant 2) has not updated recoverable resources, it
sends a forget message to the coordinator, releases its locks, and forgets
about the logical unit of work. A read-only participant writes no log
records. The disposition (commit or rollback) of the logical unit of work
is irrelevant to the participant.
If a participant wants to have the logical unit of work rolled back, it
writes a log record and sends a message to the coordinator. Because a
message to roll back acts like a veto, the participant in this case knows
that the logical unit of work is to be rolled back by the coordinator. The
participant does not need any more information from the coordinator
and therefore rolls back the logical unit of work, releases its locks, and
forgets about the logical unit of work. (This case is not illustrated in the
figure.)

Phase 2

1. After the coordinator receives request-commit or forget messages from
all its participants, it starts the second phase of the commit process. If
at least one of the responses is request-commit, the coordinator writes a
log record and sends committed messages to all the participants who
responded to the prepare message with request-commit. If neither the
participants nor the coordinator have updated any recoverable
resources, no second phase occurs, and no log records are written by
the coordinator.

2. Each participant, after receiving a committed message, writes a log
record, sends a response to the coordinator, and then commits the
logical unit of work.
If any participant responds with a roll back message, the coordinator
writes a log record and sends a roll back message to all participants.
Each participant, after receiving a roll back message writes a log record,
sends an acknowledgment to the coordinator, and then rolls back the
logical unit of work. (This case is not illustrated in the figure.)

3. The coordinator, after receiving the responses from all the participants
that were sent a message in the second phase, writes an ’end’ record
and forgets the logical unit of work.

Important: If you try to resolve any indoubt threads manually, you need to know
whether the participants committed or rolled back their units of work. With this
information, you can make an appropriate decision regarding processing at your
site.

Termination for multiple systems
Termination for multiple systems is like termination for single systems, but with
some additional considerations.
v Using STOP DB2 MODE(FORCE) could create indoubt units of recovery for

threads that are between commit processing phases. These indoubt threads are
resolved after you reconnect to the coordinator.

v Data that is updated by an indoubt unit of recovery is locked and unavailable
for use by others. The unit could be indoubt when DB2 was stopped, or it could
be indoubt from an earlier termination that is not yet resolved.

Chapter 18. Maintaining consistency across multiple systems 541



v A DB2 system failure can leave a unit of recovery in an indoubt state if the
failure occurs between phase 1 and phase 2 of the commit process.

Consistency after termination or failure
If a DB2 failure occurs while DB2 acts as a coordinator, DB2 has the information to
determine whether to commit or roll back after restart. However, if a DB2 failure
occurs while DB2 acts as the participant, DB2 must determine after restart whether
to commit or roll back units of recovery that were active at the time of the failure.

For certain units of recovery, DB2 has enough information to make the decision.
For others, DB2 must get information from the coordinator after the connection is
re-established.

The status of a unit of recovery after a termination or failure depends on the
moment when the incident occurred. The following figure shows possible statuses.

Status Description and Processing

Inflight
The participant or coordinator failed before finishing phase 1 (period a or
b); during restart, both systems back out the updates.

Indoubt
The participant failed after finishing phase 1 and before starting phase 2
(period c); only the coordinator knows whether the failure happened before
or after the commit (point 9). If it happened before, the participant must
back out its changes; if it happened afterward, it must make its changes

1       2    3         4      5     6          7     8      9      10   11       12    13

Coordinator

Old point of
consistency

Application
synchronization
point

Instant of
Commit

New point of
consistency

Phase 1

Commit
process begins

Phase 2

Time
line

Participant

Phase 1

Begin unit of
recovery

New point of
consistency

End unit of
recovery

Period b

Data is
backed out
at restart

Period a

Data is
backed out
at restart

Period c

Data is
indoubt at
restart and
either backed
out or
committed

Period d

Data is
committed
at restart

Phase 2

Old point of
consistency

Figure 50. Time line illustrating a commit that is coordinated with another subsystem

542 Administration Guide



and commit them. After restart, the participant waits for information from
the coordinator before processing this unit of recovery.

In-commit
The participant failed after it began its own phase 2 processing (period d);
it makes committed changes.

In-abort
The participant or coordinator failed after a unit of recovery began to be
rolled back but before the process was complete (not shown in the figure).
The operational system rolls back the changes; the failed system continues
to back out the changes after restart.

postponed-abort
If the LIMIT BACKOUT installation option is set to YES or AUTO, any
backout not completed during restart is postponed. The status of the
incomplete URs is changed from inflight or in-abort to postponed-abort.

Normal restart and recovery for multiple systems
When DB2 acts together with another system, the recovery log contains
information about units of recovery that are inflight, indoubt, in-abort,
postponed-abort, or in-commit.

The phases of restart and recovery deal with that information as follows:

Phase 1: Log initialization
This phase proceeds as described in “Phase 1: Log initialization” on page
525.

Phase 2: Current status rebuild
While reading the log, DB2 identifies:
v The coordinator and all participants for every unit of recovery.
v All units of recovery that are outstanding and their statuses (indoubt,

in-commit, in-abort, or inflight, as described under “Consistency after
termination or failure” on page 542).

Phase 3: Forward log recovery
DB2 makes all database changes for each indoubt unit of recovery and
locks the data to prevent access to it after restart. Later, when an indoubt
unit of recovery is resolved, processing is completed in one of these ways:
v For the ABORT option of the RECOVER INDOUBT command, DB2

reads and processes the log, reversing all changes.
v For the COMMIT option of the RECOVER INDOUBT command, DB2

reads the log but does not process the records because all changes have
been made.

At the end of this phase, indoubt activity is reflected in the database as
though the decision was made to commit the activity, but the activity is
not yet committed. The data is locked and cannot be used until DB2
recognizes and acts on the indoubt decision. (For a description of indoubt
units of recovery, see “Resolving indoubt units of recovery” on page 544.)

Phase 4: Backward log recovery
This phase reverses changes that are performed for inflight or in-abort
units of recovery. At the end of this phase, interrupted inflight and in-abort
changes are removed from the database (the data is consistent and can be
used) or removal of the changes is postponed (the data is inconsistent and
unavailable).

Chapter 18. Maintaining consistency across multiple systems 543



If removal of the changes is postponed, the units of recovery become
known as postponed-abort units of recovery. The data with pending backout
work is in a restrictive state (restart pending) which makes the data
unavailable. The data becomes available at completion of backout work or
at cold start or conditional restart of DB2.

If the LIMIT BACKOUT system parameter is AUTO, completion of the
backout work begins automatically by DB2 when the system accepts new
work. If the LIMIT BACKOUT system parameter is YES, completion of the
backout work begins when the RECOVER POSTPONED command is
issued.

Multiple-system restart with conditions
In some circumstances, you might need to perform a multiple-system conditional
restart.

If conditional restart is performed when DB2 is acting together with other systems,
the following actions occur:
1. All information about another coordinator and other participants that are

known to DB2 is displayed by messages DSNL438I and DSNL439I.
2. This information is purged. Therefore the RECOVER INDOUBT command must

be used at the local DB2 when the local location is a participant, and at another
DB2 subsystem when the local location is the coordinator.

3. Indoubt database access threads continue to appear as indoubt, and no
resynchronization with either a coordinator or a participant is allowed.

Related tasks

“Resolving inconsistencies resulting from a conditional restart” on page 679

Heuristic decisions about whether to commit or abort an
indoubt thread

From the perspective of DB2, a decision to commit or roll back an indoubt unit of
recovery by any means but the normal resynchronization process is a heuristic
decision.

If you commit or roll back a unit of work and your decision is different than the
other system’s decision, data inconsistency occurs. This type of damage is called
heuristic damage.

If this situation should occur, and your system then updates any data that is
involved with the previous unit of work, your data is corrupted and is extremely
difficult to correct.

In order to make a correct decision, you must be absolutely sure that the action
you take on indoubt units of recovery is the same as the action that the
coordinator takes. Validate your decision with the administrator of the other
systems that are involved with the logical unit of work.

Resolving indoubt units of recovery
If DB2 loses its connection to another system, it attempts to recover all inconsistent
objects after restart. The information that is needed to resolve indoubt units of
recovery must come from the coordinating system.

544 Administration Guide



Check the console for message DSNR036I for unresolved units of recovery
encountered during a checkpoint. This message might occur to remind operators of
existing indoubt threads.

Important: If the TCP/IP address that is associated with a DRDA server is subject
to change, the domain name of each DRDA server must be defined in the CDB.
This allows DB2 to recover from situations where the server’s IP address changes
prior to successful resynchronization.
Related information

DSNR036I (DB2 Messages)

Resolution of IMS indoubt units of recovery
The resolution of indoubt units of recovery in IMS has no effect on DL/I resources.
Because IMS is in control of recovery coordination, DL/I resources are never
indoubt.

When IMS restarts, it automatically commits or backs out incomplete DL/I work,
based on whether the commit decision was recorded on the IMS log. The existence
of indoubt units of recovery does not imply that DL/I records are locked until DB2
connects.

During the current status rebuild phase of DB2 restart, the DB2 participant makes
a list of indoubt units of recovery. IMS builds its own list of residual recovery
entries (RREs). The RREs are logged at IMS checkpoints until all entries are
resolved.

When indoubt units of recovery are recovered, the following steps occur:
1. IMS either passes an RRE to the IMS attachment facility to resolve the entry or

informs the attachment facility of a cold start. The attachment facility passes the
required information to DB2.

2. If DB2 recognizes that an entry is marked by DB2 for commit and by IMS for
roll back, it issues message DSNM005I. DB2 issues this message for
inconsistencies of this type between DB2 and IMS.

3. The IMS attachment facility passes a return code to IMS, indicating that it
should either destroy the RRE (if it was resolved) or keep it (if it was not
resolved). The procedure is repeated for each RRE.

4. Finally, if DB2 has any remaining indoubt units of recovery, the attachment
facility issues message DSNM004I.

The IMS attachment facility writes all the records that are involved in indoubt
processing to the IMS log tape as type X’5501FE’.

For all resolved units of recovery, DB2 updates databases as necessary and releases
the corresponding locks. For threads that access offline databases, the resolution is
logged and acted on when the database is started.

DB2 maintains locks on indoubt work that was not resolved. This can create a
backlog for the system if important locks are being held. You can use the DISPLAY
DATABASE LOCKS command to find out which tables and table spaces are locked
by indoubt units of recovery. The connection remains active so that you can clean
up the IMS RREs. You can then recover the indoubt threads.

Chapter 18. Maintaining consistency across multiple systems 545

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnr036i.htm#dsnr036i


Resolve all indoubt units of work unless software or operating problems occur,
such as with an IMS cold start. Resolution of indoubt units of recovery from IMS
can cause delays in SQL processing. Indoubt resolution by the IMS control region
takes place at two times:
v At the start of the connection to DB2, during which resolution is done

synchronously
v When a program fails, during which the resolution is done asynchronously

In the first case, SQL processing is prevented in all dependent regions until the
indoubt resolution is completed. IMS does not allow connections between IMS
dependent regions and DB2 before the indoubt units of recovery are resolved.
Related tasks

“Controlling IMS connections” on page 461

Resolution of CICS indoubt units of recovery
The resolution of indoubt units of recovery has no effect on CICS resources.

CICS is in control of recovery coordination and, when it restarts, CICS
automatically commits or backs out each unit of recovery, depending on whether
an end-of-unit-of-work log record exists. The existence of indoubt work does not
lock CICS resources until DB2 connects.

A process to resolve indoubt units of recovery is initiated during startup of the
attachment facility. During this process:
v The attachment facility receives a list of indoubt units of recovery for this

connection ID from the DB2 participant and passes them to CICS for resolution.
v CICS compares entries from this list with entries in its own list. CICS determines

from its own list what action it took for the indoubt unit of recovery.
v For each entry in the list, CICS creates a task for the attachment facility,

specifying the final commit or abort direction for the unit of recovery.
v If DB2 does not have any indoubt unit of recovery, a dummy list is passed. CICS

then purges unresolved units of recovery from previous connections, if any exist.

If the units of recovery cannot be resolved because of conditions described in
messages DSNC001I, DSNC034I, DSNC035I, or DSNC036I, CICS enables the
connection to DB2. For other conditions, it sends message DSNC016I and
terminates the connection.

For all resolved units of recovery, DB2 updates databases as necessary and releases
the corresponding locks. For threads that access offline databases, the resolution is
logged and acted on when the database is started. Unresolved units of work can
remain after restart; you can then resolve them.
Related information

“Recovering CICS indoubt units of recovery” on page 632

Resolution of RRS indoubt units of recovery
Sometimes a DB2 unit of recovery (for a thread that uses RRSAF) or an RRS unit
of recovery (for a stored procedure) enters the indoubt state.

This is a state where a failure occurs when the participant (DB2 for a thread that
uses RRSAF or RRS for a stored procedure) has completed phase 1 of commit

546 Administration Guide



processing and is waiting for the decision from the commit coordinator. This
failure could be a DB2 abnormal termination, an RRS abnormal termination, or
both.

Normally, automatic resolution of indoubt units of recovery occurs when DB2 and
RRS re-establish communication with each other. If something prevents this, you
can manually resolve an indoubt unit of recovery. This process is not
recommended because it might lead to inconsistencies in recoverable resources.

The following errors make manual recovery necessary:
v An RRS cold start where the RRS log is lost.

If DB2 is a participant and has one or more indoubt threads, these indoubt
threads must be manually resolved in order to commit or abort the database
changes and to release database locks. If DB2 is a coordinator for an RRS unit of
recovery, DB2 knows the commit or abort decision but cannot communicate this
information to the RRS-compliant resource manager that has an indoubt unit of
recovery.

v If DB2 performs a conditional restart and loses information from its log,
inconsistent DB2 managed data might exist.

v In a Sysplex, if DB2 is restarted on a z/OS system where RRS is not installed,
DB2 might have indoubt threads.
This is a user error because RRS must be started on all processors in a Sysplex
on which RRS work is to be performed.

Both DB2 and RRS can display information about indoubt units of recovery. Both
also provide techniques for manually resolving these indoubt units of recovery.

In DB2, the DISPLAY THREAD command provides information about indoubt DB2
thread. The display output includes RRS unit of recovery IDs for those DB2
threads that have RRS either as a coordinator or as a participant. If DB2 is a
participant, you can use the RRS unit of recovery ID that is displayed to determine
the outcome of the RRS unit of recovery. If DB2 is the coordinator, you can
determine the outcome of the unit of recovery from the DISPLAY THREAD output.

In DB2, the RECOVER INDOUBT command lets you manually resolve a DB2
indoubt thread. You can use RECOVER INDOUBT to commit or roll back a unit of
recovery after you determine what the correct decision is.

RRS provides an ISPF interface that provides a similar capability.

Resolving WebSphere Application Server indoubt units of
recovery

A global transaction is a unit of work that involves operations on multiple resource
managers, such as DB2. All of the operations that comprise a global transaction are
managed by a transaction manager, such as WebSphere Application Server.

When the transaction manager receives transactionally demarcated requests from
an application, it translates the requests into a series of transaction control
commands, which it directs to the participating resource managers.

Example: An application requests updates to multiple databases. The transaction
manager translates these update requests into transaction control commands that
are passed to several resource managers. Each resource manager then performs its
own set of operations on a database. When the application issues a COMMIT, the

Chapter 18. Maintaining consistency across multiple systems 547



transaction manager coordinates the commit of the distributed transaction across
all participating resource managers by using the two-phase commit protocol. If any
resource manager is unable to complete its portion of the global transaction, the
transaction manager directs all participating resource managers to roll back the
operations that they performed on behalf of the global transaction.

If a communication failure occurs between the first phase (prepare) and the second
phase (commit decision) of a commit, an indoubt transaction is created on the
resource manager that experienced the failure. When an indoubt transaction is
created, a message like this is displayed on the console of the resource manager:
DSNL405I = THREAD
G91E1E35.GFA7.00F962CC4611.0001=217
PLACED IN INDOUBT STATE BECAUSE OF
COMMUNICATION FAILURE WITH COORDINATOR ::FFFF:9.30.30.53.
INFORMATION RECORDED IN TRACE RECORD WITH IFCID=209
AND IFCID SEQUENCE NUMBER=00000001

After a failure, WebSphere Application Server is responsible for resolving indoubt
transactions and for handling any failure recovery. To perform these functions, the
server must be restarted and the recovery process initiated by an operator. You can
also manually resolve indoubt transactions with the RECOVER INDOUBT
command.

Recommendation: Let WebSphere Application Server resolve the indoubt
transactions. Manually recover indoubt transactions only as a last resort to start
DB2 and to release locks.

To manually resolve indoubt transactions:
1. Issue the command -DISPLAY THREAD(*) T(I) DETAIL to display indoubt

threads from the resource manager console.
This command produces output like this example:

=dis thd(*) t(i) detail
DSNV401I = DISPLAY THREAD REPORT FOLLOWS -
DSNV406I = INDOUBT THREADS -
COORDINATOR STATUS RESET URID AUTHID

�1� ::FFFF:9.30.30.53..4007 INDOUBT 0000111F049A ADMF002
V437-WORKSTATION=jaijeetsvl, USERID=admf002,

APPLICATION NAME=db2jccmain
�2� V440-XID=7C7146CE 00000014 00000021 F6EF6F8B

F36873BE A37AC6BC 256F295D 04BE7EE0
8DFEF680 D1A6EFD5 8C0E6343 67679239
CC15A350 65BFB8EA 670CEBF4 E85938E0
06

�2� V467-HAS LUWID G91E1E35.GFA7.00F962CC4611.0001=217
V466-THREAD HAS BEEN INDOUBT FOR 00:00:17
DISPLAY INDOUBT REPORT COMPLETE

Key Description

�1� Note that in this example, only one indoubt thread exists.

�2� A transaction is identified by a transaction identifier, called an XID. The
first 4 bytes of the XID (in this case, 7C7146CE) identify the transaction
manager. Each XID is associated with a logical unit of work ID
(LUWID) at the DB2 server. Note the LUWID that is associated with
each transaction, for use in the recovery step.

2. Query the transaction manager to determine whether a commit or abort
decision was made for each transaction.

548 Administration Guide

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



3. Based on the decision that is recorded by the transaction manager, recover each
indoubt thread from the resource manager console by either committing or
aborting the transaction. Specify the LUWID from the DISPLAY THREAD
command in step 1. Use either of the following commands:
v -RECOVER INDOUBT ACTION(COMMIT) LUWID(217)

v -RECOVER INDOUBT ACTION(ABORT) LUWID(217)

Either command produces output like this example:
=RECOVER INDOUBT ACTION(COMMIT) LUWID(217)
DSNV414I = THREAD
LUWID=G91E1E35.GFA7.00F962CC4611.0001=217 COMMIT
SCHEDULED
DSN9022I = DSNVRI '-RECOVER INDOUBT' NORMAL COMPLETION

4. Display indoubt threads again from the resource manager console by issuing
the -DISPLAY THREAD(*) T(I) DETAIL command.
This command produces output like this example:

=dis thd(*) t(i) detail
DSNV401I = DISPLAY THREAD REPORT FOLLOWS -
DSNV406I = INDOUBT THREADS -
COORDINATOR STATUS RESET URID AUTHID

�1� ::FFFF:9.30.30.53..4007 COMMITTED-H 0000111F049A ADMF002
V437-WORKSTATION=jaijeetsvl, USERID=admf002,

APPLICATION NAME=db2jccmain
V440-XID=7C7146CE 00000014 00000021 F6EF6F8B

F36873BE A37AC6BC 256F295D 04BE7EE0
8DFEF680 D1A6EFD5 8C0E6343 67679239
CC15A350 65BFB8EA 670CEBF4 E85938E0
06

V467-HAS LUWID G91E1E35.GFA7.00F962CC4611.0001=217
- DISPLAY INDOUBT REPORT COMPLETE

Key Description

�1� Notice that the transaction now appears as a heuristically committed
transaction (COMMITTED=H).

5. If the transaction manager does not recover the indoubt transactions in a timely
manner, reset the transactions from the resource manager console to purge the
indoubt thread information. Specify the IP address and port from the DISPLAY
THREAD command in step 1 by issuing the -RESET INDOUBT
IPADDR(::FFFF:9.30.30.53..4007)FORCE command.
This command produces output like this example:
=RESET INDOUBT IPADDR(::FFFF:9.30.30.53..4007)FORCE
DSNL455I = DB2 HAS NO INFORMATION RELATED TO
IPADDR 9.30.30.53:4007
DSNL454I = QUALIFYING INDOUBT INFORMATION FOR
IPADDR 9.30.30.53:4007 HAS BEEN PURGED

Resolving remote DBMS indoubt units of recovery
When communicating with a remote DBMS, indoubt units of recovery can result
from failure with either the participant or coordinator. Failure also can result with
the communication link between the participant and coordinator, even if the
systems themselves have not failed.

Normally, if your subsystem fails while communicating with a remote system, you
should wait until both systems and their communication link become operational.
Your system then automatically recovers its indoubt units of recovery and

Chapter 18. Maintaining consistency across multiple systems 549

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|



continues normal operation. When DB2 restarts while any unit of recovery is
indoubt, the data that is required for that unit of recovery remains locked until the
unit of recovery is resolved.

If automatic recovery is not possible, DB2 alerts you to any indoubt units of
recovery that you need to resolve. If releasing locked resources and bypassing the
normal recovery process is imperative, you can resolve indoubt situations
manually.

Important: In a manual recovery situation, you must determine whether the
coordinator decided to commit or abort and ensure that the same decision is made
at the participant. In the recovery process, DB2 attempts to automatically
resynchronize with its participants. If you decide incorrectly what the recovery
action of the coordinator is, data is inconsistent at the coordinator and participant.

If you choose to resolve units of recovery manually, you must:
v Commit changes that were made by logical units of work that were committed

by the other system.
v Roll back changes that were made by logical units of work that were rolled back

by the other system.

Determining the coordinator’s commit or abort decision
You can use several methods to ascertain the status of indoubt units of work at
other systems.
v Use a NetView program. Write a program that analyzes NetView alerts for each

involved system, and returns the results through the NetView system.
v Use an automated z/OS console to ascertain the status of the indoubt threads at

the other involved systems.

v Use the command DISPLAY THREAD TYPE(INDOUBT) LUWID(luwid).
If the coordinator DB2 system is started and no DB2 cold start was performed,
you can issue a DISPLAY THREAD TYPE(INDOUBT) command. If the decision
was to commit, the display thread indoubt report includes the LUWID of the

indoubt thread. If the decision was to abort, the thread is not displayed.
v Read the recovery log by using DSN1LOGP.

If the coordinator DB2 cannot be started, DSN1LOGP can determine the commit
decision. If the coordinator DB2 performed a cold start (or any type of
conditional restart), the system log should contain messages DSNL438I or
DSNL439I, which describe the status of the unit of recovery (LUWID).

Recovering indoubt threads
After you determine whether you need to commit or roll back an indoubt thread,
recover the thread by using the RECOVER INDOUBT command.

This command does not erase the indoubt status of the thread. The status
still appears as an indoubt thread until the systems go through the normal
resynchronization process. An indoubt thread can be identified by its LUWID,
LUNAME, or IP address. You can also use the LUWID token with the command.

Use the ACTION(ABORT|COMMIT) option of the RECOVER INDOUBT command
to commit or roll back a logical unit of work. If your system is the coordinator of

550 Administration Guide



one or more other systems that are involved with the logical unit of work, your
action propagates to the other system that are associated with the LUW.

Example: Assume that you need to recover two indoubt threads. The first has
LUWID=DB2NET.LUNSITE0.A11A7D7B2057.0002, and the second has a token of
442. To commit the LUWs, enter:
-RECOVER INDOUBT ACTION(COMMIT) LUWID(DB2NET.LUNSITE0.A11A7D7B2057.0002,442)

Related concepts

“Scenarios for resolving problems with indoubt threads” on page 733

Resetting the status of an indoubt thread
After manual recovery of an indoubt thread, allow the systems to resynchronize
automatically. Automatic resynchronization resets the status of the indoubt thread.
However, if heuristic damage or a protocol error occurs, use the RESET INDOUBT
command to delete indoubt thread information for a thread whose reset status is
set to YES.

DB2 maintains this information until normal automatic recovery. You can purge
information about threads where DB2 is either the coordinator or participant. If the
thread is an allied thread that is connected to IMS or CICS, the command applies
only to coordinator information about downstream participants. Information that is
purged does not appear in the next display thread report and is erased from the
DB2 logs.

Example: Assume that you need to purge information about two indoubt
threads. The first has an LUWID=DB2NET.LUNSITE0.A11A7D7B2057.0002 and a
resync port number of 123, and the second has a token of 442. To purge the
information, enter:
-RESET INDOUBT LUWID(DB2NET.LUNSITE0.A11A7D7B2057.0002:123,442)

You can also use a LUNAME or IP address with the RESET INDOUBT command.
You can use the keyword IPADDR in place of LUNAME or LUW keywords, when
the partner uses TCP/IP instead of SNA. The resync port number of the parameter
is required when using the IP address. The DISPLAY THREAD output lists the
resync port number. This allows you to specify a location, instead of a particular
thread. You can reset all the threads that are associated with that location by using
the (*) option.

Chapter 18. Maintaining consistency across multiple systems 551



552 Administration Guide



Chapter 19. Backing up and recovering your data

DB2 supports recovering data to its current state or to an earlier state. You can
recover table spaces, indexes, index spaces, partitions, data sets, and the entire
system.

For all commands and utility statements, the complete syntax and parameter
descriptions can be found in DB2 Command Reference and DB2 Utility Guide and
Reference.

In this information, the term page set can be a table space, index space, or any
combination of these.

Plans for backup and recovery
Development of backup and recovery procedures at your site is critical in order to
avoid costly and time-consuming losses of data.

You should develop procedures to:
v Create a point of consistency
v Recover system and data objects to a point of consistency
v Back up the DB2 catalog and directory and your data
v Recover the DB2 catalog and directory and your data
v Recover from out-of-space conditions
v Recover from a hardware or power failure
v Recover from a z/OS component failure
v Recover from a disaster off-site

If you convert to new function mode and if the installation decides to have archive
logs striped or compressed, any recovery actions that involve those archive logs
must be done on a DB2 Version 9.1 system that is running in new function mode.

Recommendation: To improve recovery capability in the event of a disk failure,
use dual active logging, and place the copies of the active log data sets and the
bootstrap data sets on different disk volumes.

The principal tools for DB2 recovery are the QUIESCE, REPORT, COPY,
RECOVER, MERGECOPY, BACKUP SYSTEM, and RESTORE SYSTEM utilities.
This section also gives an overview of these utilities to help you with your backup
and recovery planning.
Related concepts

“How the initial DB2 logging environment is established” on page 501
Related reference

“Implications of moving data sets after a system-level backup” on page 581

Plans for recovery of distributed data
In a distributed data environment, each unit of work is processed as a whole at the
target system, regardless of where a unit of work originates. Therefore, a unit of
work is recovered as a whole at the target system.

© Copyright IBM Corp. 1982, 2009 553

|
|
|

|
|
|

|
|
|
|



At a DB2 server, the entire unit is either committed or rolled back. It is not
processed if it violates referential constraints that are defined within the target
system. Whatever changes it makes to data are logged. A set of related table spaces
can be quiesced at the same point in the log, and image copies can be made of
them simultaneously. If that is done, and if the log is intact, any data can be
recovered after a failure and be internally consistent.

However, DB2 provides no special means to coordinate recovery between different
subsystems even if an application accesses data in several systems. To guarantee
consistency of data between systems, applications should be written so that all
related updates are done within one unit of work.

Point-in-time recovery (to the last image copy or to a relative byte address (RBA))
presents other challenges. You cannot control a utility in one subsystem from
another subsystem. In practice, you cannot quiesce two sets of table spaces, or
make image copies of them, in two different subsystems at exactly the same
instant. Neither can you recover them to exactly the same instant, because two
different logs are involved, and a RBA does not mean the same thing for both of
them.

In planning, the best approach is to consider carefully what the QUIESCE, COPY,
and RECOVER utilities do for you, and then plan not to place data that must be
closely coordinated on separate subsystems. After that, recovery planning is a
matter of agreement among database administrators at separate locations.

DB2 is responsible for recovering DB2 data only; it does not recover non-DB2 data.
Non-DB2 systems do not always provide equivalent recovery capabilities.

Plans for extended recovery facility toleration
DB2 can be used in an extended recovery facility (XRF) recovery environment with
CICS or IMS.

All DB2-owned data sets (executable code, the DB2 catalog, and user databases)
must be on a disk that is shared between the primary and alternate XRF
processors. In the event of an XRF recovery, DB2 must be stopped on the primary
processor and started on the alternate. For CICS, that can be done automatically, by
using the facilities provided by CICS, or manually, by the system operator. For
IMS, that is a manual operation and must be done after the coordinating IMS
system has completed the processor switch. In that way, any work that includes
SQL can be moved to the alternate processor with the remaining non-SQL work.
Other DB2 work (interactive or batch SQL and DB2 utilities) must be completed or
terminated before DB2 can be switched to the alternate processor. Consider the
effect of this potential interruption carefully when planning your XRF recovery
scenarios.

Plan carefully to prevent DB2 from being started on the alternate processor until
the DB2 system on the active, failing processor terminates. A premature start can
cause severe integrity problems in data, the catalog, and the log. The use of global
resource serialization (GRS) helps avoid the integrity problems by preventing
simultaneous use of DB2 on the two systems. The bootstrap data set (BSDS) must
be included as a protected resource, and the primary and alternate XRF processors
must be included in the GRS ring.

554 Administration Guide



Plans for recovery of indexes
You can use the REBUILD INDEX utility or the RECOVER utility to recover DB2
indexes to currency.

The REBUILD INDEX utility reconstructs the indexes by reading the appropriate
rows in the table space, extracting the index keys, sorting the keys, and then
loading the index keys into the index. The RECOVER utility recovers indexes by
restoring an image copy or system-level backup and then applying the log. It can
also recover indexes to a prior point in time.

You can use the REBUILD INDEX utility to recover any index, and you do not
need to prepare image copies or system-level backups of those indexes.

To use the RECOVER utility to recover indexes, you must include the following
actions in your normal database operation:

v Create or alter indexes by using the SQL statement ALTER INDEX with
the option COPY YES before you backup and recover them using image copies

or system-level backups.
v Create image copies of all indexes that you plan to recover or take system-level

backups by using the BACKUP SYSTEM utility.

The COPY utility makes full image copies or concurrent copies of indexes.
Incremental copies of indexes are not supported. If full image copies of the index
are taken at timely intervals, recovering a large index might be faster than
rebuilding the index.

Tip: You can recover indexes and table spaces in a single list when you use the
RECOVER utility. If you use a single list of objects in one RECOVER utility control
statement, the logs for all of the indexes and table spaces are processed in one
pass.

Preparation for recovery: a scenario
You can use the RECOVER utility to recover table spaces or index spaces.

DB2 can recover a page set by using an image copy or system-level backup, the
recovery log, or both. The DB2 recovery log contains a record of all changes that
are made to the page set. If DB2 fails, it can recover the page set by restoring the
image copy or system-level backup and applying the log changes to it from the
point of the image copy or system-level backup.

The DB2 catalog and directory page sets must be copied at least as frequently as
the most critical user page sets. Moreover, you are responsible for periodically
copying the tables in the communications database (CDB), the application
registration table, the object registration table, and the resource limit facility
(governor), or for maintaining the information that is necessary to re-create them.
Plan your backup strategy accordingly.

The following backup scenario suggests how DB2 utilities might be used when
taking object level backups with the COPY utility:

Imagine that you are the database administrator for DBASE1. Table space TSPACE1
in DBASE1 has been available all week. On Friday, a disk write operation for
TSPACE1 fails. You need to recover the table space to the last consistent point

Chapter 19. Backing up and recovering your data 555

|
|
|
|
|

|
|

|
|

|

|
|
|
|
|

|
|
|



before the failure occurred. You can do that because you have regularly followed a
cycle of preparations for recovery. The most recent cycle began on Monday
morning:

Monday morning

You start the DBASE1 database and make a full image copy of TSPACE1
and all indexes immediately. That gives you a starting point from which to
recover. Use the COPY utility with the SHRLEVEL CHANGE option to
improve availability.

Tuesday morning

You run the COPY utility again. This time you make an incremental image
copy to record only the changes that have been made since the last full
image copy that you took on Monday. You also make a full index copy.

TSPACE1 can be accessed and updated while the image copy is being
made. For maximum efficiency, however, you schedule the image copies
when online use is minimal.

Wednesday morning

You make another incremental image copy, and then create a full image
copy by using the MERGECOPY utility to merge the incremental image
copy with the full image copy.

Thursday and Friday mornings

You make another incremental image copy and a full index copy each
morning.

Friday afternoon

An unsuccessful write operation occurs and you need to recover the table
space. You run the RECOVER utility. The utility restores the table space
from the full image copy that was made by MERGECOPY on Wednesday
and the incremental image copies that were made on Thursday and Friday,
and includes all changes that are made to the recovery log since Friday
morning.

Later Friday afternoon

The RECOVER utility issues a message announcing that it has successfully
recovered TSPACE1 to the current point in time.

This scenario is somewhat simplistic. You might not have taken daily incremental
image copies on just the table space that failed. You might not ordinarily recover
an entire table space. However, it illustrates this important point: with proper
preparation, recovery from a failure is greatly simplified.
Related reference

RECOVER (DB2 Utilities)

COPY (DB2 Utilities)

Events that occur during recovery
During recovery, several events occur, such as reading the log and running utilities
that rely on image copies of the data.

Figure 52 on page 558 shows an overview of the recovery process. To recover a
page set, the RECOVER utility typically uses these items:

556 Administration Guide

|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_recover.htm#db2z_utl_recover
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_copy.htm#db2z_utl_copy


v A backup that is a full image copy or a system-level backup.
v For table spaces only, when the COPY utility is used, any later incremental

image copies; each incremental image copy summarizes all the changes that
were made to the table space from the time that the previous image copy was
made.

v All log records for the page set that were created since the image copy. If the log
has been damaged or discarded, or if data has been changed erroneously and
then committed, you can recover to a particular point in time by limiting the
range of log records that are to be applied by the RECOVER utility.

In the example shown in Figure 52 on page 558:
v Where the COPY utility is used, the RECOVER utility uses information in the

SYSIBM.SYSCOPY catalog table to:
– Restore the page set with the data in the full image copy (appearing, in

Figure 52 on page 558, at X’38000’).
– For table spaces only, apply all the changes that are summarized in any later

incremental image copies. (Two copies appear in Figure 52 on page 558:
X’80020’ and X’C0040’.)

– Apply all changes to the page set that are registered in the log, beginning at
the log RBA of the most recent image copy. (In Figure 52 on page 558,
X’C0040’, that address is also stored in the SYSIBM.SYSCOPY catalog table.)

v Where the BACKUP SYSTEM utility is used, the RECOVER utility uses
information in the BSDS and in the SYSIBM.SYSCOPY catalog table to:
– Restore the page set from the most recent backup, in this case, it is a

system-level backup (appearing, in Figure 52 on page 558 at X’80000’).
– Apply all changes to the page set that are registered in the log, beginning at

the log RBA of the most recent system-level backup.

Figure 51. Overview of DB2 recovery from COPY utility. The figure shows one complete cycle of image copies. The
SYSIBM.SYSCOPY catalog table can record many complete cycles.

Chapter 19. Backing up and recovering your data 557

|

|
|
|

|

|
|
|
|

|



Complete recovery cycles
In planning for recovery, you determine how often to take image copies or
system-level backups and how many complete cycles to keep. Those values tell
how long you must keep log records and image copies or system-level backups for
database recovery.

In deciding how often to take image copies or system-level backups, consider the
time needed to recover a table space. The time is determined by all of the
following factors:
v The amount of log to traverse
v The time that it takes an operator to mount and remove archive tape volumes
v The time that it takes to read the part of the log that is needed for recovery
v The time that is needed to reprocess changed pages

In general, the more often you make image copies or system-level backups, the less
time recovery takes, but the more time is spent making copies. If you use LOG NO
without the COPYDDN keyword when you run the LOAD or REORG utilities,
DB2 places the table space in COPY pending status. You must remove the COPY
pending status of the table space by making an image copy before making further
changes to the data. However, if you run REORG or LOAD REPLACE with the
COPYDDN keyword, DB2 creates a full image copy of a table space during
execution of the utility, so DB2 does not place the table space in COPY pending
status. Inline copies of indexes during LOAD and REORG are not supported.

If you use LOG YES and log all updates for table spaces, an image copy of the
table space is not required for data integrity. However, taking an image copy
makes the recovery process more efficient. The process is even more efficient if you
use MERGECOPY to merge incremental image copies with the latest full image
copy. You can schedule the MERGECOPY operation at your own convenience,
whereas the need for a recovery can arise unexpectedly. The MERGECOPY
operation does not apply to indexes.

Even if the BACKUP SYSTEM is used, it is important to take full image copies
(inline copies) during REORG and LOAD to avoid the copy pending state on the
table space.

Recommendation: Copy your indexes after the associated utility has run. Indexes
are placed in informational COPY pending (ICOPY) status after running LOAD

Figure 52. Overview of DB2 recovery from BACKUP SYSTEM utility. The figure shows one
complete cycle of image copies. The SYSIBM.SYSCOPY catalog table can record many
complete cycles.

558 Administration Guide

|

|
|
|
|

|
|
|
|

|
|
|

|
|
|



TABLESPACE, REORG TABLESPACE, REBUILD INDEX, or REORG INDEX
utilities. Only structural modifications of the index are logged when these utilities
are run, so the log does not have enough information to recover the index.

Use the CHANGELIMIT option of the COPY utility to let DB2 determine when an
image copy should be performed on a table space and whether a full or
incremental copy should be taken. Use the CHANGELIMIT and REPORTONLY
options together to let DB2 recommend what types of image copies to make. When
you specify both CHANGELIMIT and REPORTONLY, DB2 makes no image copies.
The CHANGELIMIT option does not apply to indexes.

In determining how many complete copy and log cycles to keep, you are guarding
against damage to a volume that contains an important image copy or a log data
set. A retention period of at least two full cycles is recommended. For enhanced
security, keep records for three or more copy cycles.

A recovery cycle example when using image copies
Log management for a user group involves using image copies. You need to
determine how often to make image copies.

Table 101 suggests how often a user group with 10 locally defined table spaces
(one table per table space) might take image copies, based on frequency of
updating. Their least-frequently copied table is EMPSALS, which contains
employee salary data. If the group chooses to keep two complete image copy
cycles on hand, each time EMPSALS is copied, records prior to its previous copy
or copies, made two months ago, can be deleted. They will always have on hand
between two months and four months of log records.

In the example, the most critical tables are copied daily. The DB2 catalog and
directory are also copied daily.

Table 101. DB2 log management example

Table space name Content Update activity
Full image copy
period

ORDERINF Invoice line: part and
quantity ordered

Heavy Daily

SALESINF Invoice description Heavy Daily

SALESQTA Quota information for
each sales person

Moderate Weekly

SALESDSC Customer
descriptions

Moderate Weekly

PARTSINV Parts inventory Moderate Weekly

PARTSINF Parts suppliers Light Monthly

PARTS Parts descriptions Light Monthly

SALESCOM Commission rates Light Monthly

EMPLOYEE Employee descriptive
data

Light Monthly

EMPSALS Employee salaries Light Bimonthly

If you are using the BACKUP SYSTEM utility, you should schedule the frequency
of system-level backups based on your most critical data.

Chapter 19. Backing up and recovering your data 559

|
|



If you do a full recovery, you do not need to recover the indexes unless they are
damaged. If you recover to a prior point in time, you do need to recover the
indexes. See “Plans for recovery of indexes” on page 555 for information about
indexes.

How DFSMShsm affects your recovery environment
The Data Facility Hierarchical Storage Manager (DFSMShsm) can automatically
manage space and data availability among storage devices in your system. If you
use DFSMShsm, you need to know that it automatically moves data to and from
the DB2 databases.

Restriction: Because DFSMShsm can migrate data sets to different disk volumes,
you cannot use DFSMShsm in conjunction with the BACKUP SYSTEM utility. The
RECOVER utility requires that the data sets reside on the volumes where they had
been at the time of the system-level backup.

DFSMShsm manages your disk space efficiently by moving data sets that have not
been used recently to less-expensive storage. It also makes your data available for
recovery by automatically copying new or changed data sets to tape or disk. It can
delete data sets or move them to another device. Its operations occur daily, at a
specified time, and they allow for keeping a data set for a predetermined period
before deleting or moving it.

All DFSMShsm operations can also be performed manually. z/OS DFSMShsm
Managing Your Own Data tells how to use the DFSMShsm commands.

DFSMShsm:
v Uses cataloged data sets
v Operates on user tables, image copies, and logs
v Supports VSAM data sets

If a volume has a DB2 storage group specified, the volume should be recalled only
to like devices of the same VOLSER as defined by CREATE or ALTER STOGROUP.

DB2 can recall user page sets that have been migrated. Whether DFSMShsm recall
occurs automatically is determined by the values of the RECALL DATABASE and
RECALL DELAY fields of installation panel DSNTIPO. If the value of the RECALL
DATABASE field is NO, automatic recall is not performed and the page set is
considered an unavailable resource. It must be recalled explicitly before it can be
used by DB2. If the value of the RECALL DATABASE field is YES, DFSMShsm is
invoked to recall the page sets automatically. The program waits for the recall for
the amount of time that is specified by the RECALL DELAY parameter. If the recall
is not completed within that time, the program receives an error message
indicating that the page set is unavailable but that recall was initiated.

The deletion of DFSMShsm migrated data sets and the DB2 log retention period
must be coordinated with use of the MODIFY utility. If not, you could need
recovery image copies or logs that have been deleted.

560 Administration Guide

|
|
|
|



Related tasks

“Discarding archive log records” on page 516

Tips for maximizing data availability during backup and
recovery

You need to develop a plan for backup and recovery, and you need to become
familiar enough with that plan so that when an outage occurs, you can get back in
operation as quickly as possible.

Consider the following factors when you develop and implement your plan:
v “Decide on the level of availability you need”
v “Practice for recovery”
v “Minimize preventable outages” on page 562
v “Determine the required backup frequency” on page 562
v “Minimize the elapsed time of RECOVER jobs” on page 562
v “Minimize the elapsed time for COPY jobs” on page 562
v “Determine the right characteristics for your logs” on page 562
v “Minimize DB2 restart time” on page 563
Related concepts

Determining the maximum number of open data sets (DB2 Performance)
Related tasks

“Deferring restart processing” on page 532
“Dynamically changing the checkpoint frequency” on page 511

Setting the size of active log data sets (DB2 Performance)
Related reference

-SET LOG (DB2) (DB2 Command Reference)

Decide on the level of availability you need
Start by determining the primary types of outages you are likely to experience.
Then, for each of those types of outages, decide on the maximum amount of time
that you can spend on recovery. Consider the trade-off between cost and
availability. Recovery plans for continuous availability are very costly, so you need
to think about what percentage of the time your systems really need to be
available.

The availability of data is affected by the availability of related objects. For
example, if there is an availability issue with one object in a related set, the
availability of the others may be impacted as well. The related object set includes
base table spaces and indexes, objects related by referential constraints, LOB table
space and indexes, and XML table spaces and indexes.

Practice for recovery
You cannot know whether a backup and recovery plan is workable unless you
practice it. In addition, the pressure of a recovery situation can cause mistakes. The
best way to minimize mistakes is to practice your recovery scenario until you
know it well. The best time to practice is outside of regular working hours, when
fewer key applications are running.

Chapter 19. Backing up and recovering your data 561

|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.perf/db2z_determinemaxopensets.htm#db2z_determinemaxopensets
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.perf/db2z_setactivelogsize.htm#db2z_setactivelogsize
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_setlog.htm#db2z_cmd_setlog


Minimize preventable outages
One aspect of your backup and recovery plan should be eliminating the need to
recover whenever possible. One way to do that is to prevent outages caused by
errors in DB2. Be sure to check available maintenance often, and apply fixes for
problems that are likely to cause outages.

Determine the required backup frequency
Use your recovery criteria to decide how often to make copies of your databases.

For example, if you use image copies and if the maximum acceptable recovery
time after you lose a volume of data is two hours, your volumes typically hold
about 4 GB of data, and you can read about 2 GB of data per hour, you should
make copies after every 4 GB of data that is written. You can use the COPY option
SHRLEVEL CHANGE or DFSMSdss concurrent copy to make copies while
transactions and batch jobs are running. You should also make a copy after
running jobs that make large numbers of changes. In addition to copying your
table spaces, you should also consider copying your indexes.

You can take system-level backups using the BACKUP SYSTEM utility. Because the
FlashCopy technology is used, the entire system is backed up very quickly with
virtually no data unavailability.

You can make additional backup image copies from a primary image copy by
using the COPYTOCOPY utility. This capability is especially useful when the
backup image is copied to a remote site that is to be used as a disaster recovery
site for the local site. Applications can run concurrently with the COPYTOCOPY
utility. Only utilities that write to the SYSCOPY catalog table cannot run
concurrently with COPYTOCOPY.

Minimize the elapsed time of RECOVER jobs
When recovering system-level backups from disk, the RECOVER utility restores
data sets serially by the main task. When recovering system-level backups from
tape, the RECOVER utility creates multiple subtasks to restore the image copies
and system-level backups for the objects.

If you are using system-level backups, be sure to have recent system-level backups
on disk to reduce the recovery time.

For point-in-time recoveries, recovering to quiesce points and SHRLEVEL
REFERENCE copies can be faster than recovering to other points in time. If you
are recovering to a non quiesce point, the following factors can have an impact on
performance:
v The duration of URs that were active at the point of recovery.
v The number of DB2 members that have active URs to be rolled back.

Minimize the elapsed time for COPY jobs
You can use the COPY utility to make image copies of a list of objects in parallel.
Image copies can be made to either disk or tape.

Determine the right characteristics for your logs
v If you have enough disk space, use more and larger active logs. Recovery from

active logs is quicker than from archive logs.
v To speed recovery from archive logs, consider archiving to disk.

562 Administration Guide

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|



v If you archive to tape, be sure that you have enough tape drives so that DB2
does not have to wait for an available drive on which to mount an archive tape
during recovery.

v Make the buffer pools and the log buffers large enough to be efficient.

Minimize DB2 restart time
Many recovery processes involve restart of DB2. You need to minimize the time
that DB2 shutdown and startup take.

You can limit the backout activity during DB2 system restart. You can postpone the
backout of long-running units of recovery until after the DB2 system is operational.
Use the installation options LIMIT BACKOUT and BACKOUT DURATION to
determine what backout work will be delayed during restart processing.

These are some major factors that influence the speed of DB2 shutdown:
v Number of open DB2 data sets

During shutdown, DB2 must close and deallocate all data sets it uses if the fast
shutdown feature has been disabled. The default is to use the fast shutdown
feature. Contact IBM Software Support for information about enabling and
disabling the fast shutdown feature. The maximum number of concurrently open
data sets is determined by the DB2 subsystem parameter DSMAX. Closing and
deallocation of data sets generally takes .1 to .3 seconds per data set.
Be aware that z/OS global resource serialization (GRS) can increase the time to
close DB2 data sets. If your DB2 data sets are not shared among more than one
z/OS system, set the GRS RESMIL parameter value to OFF, or place the DB2
data sets in the SYSTEMS exclusion RNL. See z/OS MVS Planning: Global
Resource Serialization for details.

v Active threads

DB2 cannot shut down until all threads have terminated. Issue the DB2
command DISPLAY THREAD to determine if any threads are active while DB2

is shutting down. If possible, cancel those threads.
v Processing of SMF data

At DB2 shutdown, z/OS does SMF processing for all DB2 data sets that were
opened since DB2 startup. You can reduce the time that this processing takes by
setting the z/OS parameter DDCONS(NO).

These major factors influence the speed of DB2 startup:
v DB2 checkpoint interval

The DB2 checkpoint interval indicates the number of log records that DB2 writes
between successive checkpoints. This value is controlled by the DB2 subsystem
parameter CHKFREQ. The default of 50000 results in the fastest DB2 startup
time in most cases.

You can use the LOGLOAD or CHKTIME option of the SET LOG
command to modify the CHKFREQ value dynamically without recycling DB2.

The value that you specify depends on your restart requirements.
v Long-running units of work

DB2 rolls back uncommitted work during startup. The amount of time for this
activity is approximately double the time that the unit of work was running
before DB2 shut down. For example, if a unit of work runs for two hours before

Chapter 19. Backing up and recovering your data 563

|
|
|
|



a DB2 abend, it takes at least four hours to restart DB2. Decide how long you
can afford for startup, and avoid units of work that run for more than half that
long.
You can use accounting traces to detect long-running units of work. For tasks
that modify tables, divide the elapsed time by the number of commit operations
to get the average time between commit operations. Add commit operations to
applications for which this time is unacceptable.

Recommendation: To detect long-running units of recovery, enable the UR
CHECK FREQ option of installation panel DSNTIPL. If long-running units of
recovery are unavoidable, consider enabling the LIMIT BACKOUT option on
installation panel DSNTIPL.

v Size of active logs
If you archive to tape, you can avoid unnecessary startup delays by making each
active log big enough to hold the log records for a typical unit of work. This
lessens the probability that DB2 will need to wait for tape mounts during
startup.

Where to find recovery information
Information that is needed for recovery is contained in several locations.

SYSIBM.SYSCOPY
SYSIBM.SYSCOPY is a catalog table that contains information about full
and incremental image copies. If concurrent updates were allowed when
making the copy, the log RBA corresponds to the image copy start time;
otherwise, it corresponds to the end time. The RECOVER utility uses the
log RBA to look for log information after restoring the image copy. The
SYSCOPY catalog table also contains information that is recorded by the
COPYTOCOPY utility.

SYSCOPY also contains entries with the same kinds of log RBAs that are
recorded by the utilities QUIESCE, REORG, LOAD, REBUILD INDEX,
RECOVER TOCOPY, and RECOVER TOLOGPOINT.

When the REORG utility is used, the time at which DB2 writes the log
RBA to SYSIBM.SYSCOPY depends on the value of the SHRLEVEL
parameter:
v For SHRLEVEL NONE, the log RBA is written at the end of the reload

phase.
If a failure occurs before the end of the reload phase, the RBA is not
written to SYSCOPY.
If a failure occurs after the reload phase is complete (and thus, after the
log RBA is written to SYSCOPY), the RBA is not backed out of
SYSCOPY.

v For SHRLEVEL REFERENCE and SHRLEVEL CHANGE, the log RBA is
written at the end of the switch phase.
If a failure occurs before the end of the switch phase, the RBA is not
written to SYSCOPY.
If a failure occurs after the switch phase is complete (and thus, after the
log RBA is written to SYSCOPY), the RBA is not backed out of
SYSCOPY.

The log RBA is put in SYSCOPY regardless of whether the LOG option is
YES or NO, or whether the UNLOAD PAUSE option is specified.

564 Administration Guide



When DSNDB01.DBD01, DSNDB01.SYSUTILX, and DSNDB06.SYSCOPY
are quiesced or copied, a SYSCOPY record is created for each table space
and any associated index that has the COPY YES attribute. For recovery
reasons, the SYSCOPY records for these three objects are placed in the log.

SYSIBM.SYSLGRNX
SYSIBM.SYSLGRNX is a directory table that contains records of the log
RBA ranges that are used during each period of time that any recoverable
page set is open for update. Those records speed recovery by limiting the
scan of the log for changes that must be applied.

If you discard obsolete image copies, you should consider removing their
records from SYSIBM.SYSCOPY and the obsolete log ranges from
SYSIBM.SYSLGRNX.

BSDS (bootstrap data set)
The BSDS contains information about system-level backups, and the DB2
archive log data sets. The RECOVER utility uses the recovery base log
point RBA or LRSN value associated with the system-level backup to look
for the log information after restoring the object from the system-level
backup.

In a data-sharing environment, each DB2 member keeps track of the
system-level backups taken on that particular member in its BSDS.

DFSMShsm
The RECOVER utility queries DFSMShsm for information about whether a
system-level backup resides on disk or tape.

Related reference

DB2 catalog tables (SQL Reference)

How to report recovery information
You can use the REPORT utility when you plan for recovery.

The REPORT utility provides information necessary for recovering a page set.
REPORT displays:
v Recovery information from the SYSIBM.SYSCOPY catalog table
v Log ranges of the table space from the SYSIBM.SYSLGRNX directory
v Archive log data sets from the bootstrap data set
v The names of all members of a table space set

You can also use REPORT to obtain recovery information about the catalog and
directory.

Use the output from the DFSMShsm LIST COPYPOOL command with the
ALLVALS option, in conjunction with the DB2 system-level backup information in
the PRINT LOG MAP (DSNJU004) utility output, to determine whether the
system-level backups of your database copy pool still reside on DASD or if they
have been dumped to tape. For a data sharing system, the print log map utility
should be run with the MEMBER * option to obtain system-level backup
information from all members. For information on how to issue the LIST
COPY-POOL command, see the DFSMShsm Storage Administration Reference.

Chapter 19. Backing up and recovering your data 565

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_catalogtablesintro.htm#db2z_catalogtablesintro


Related concepts

Review of REPORT output (DB2 Utilities)

How to discard SYSCOPY and SYSLGRNX records
Use the MODIFY utility to delete obsolete records from SYSIBM.SYSCOPY and
SYSIBM.SYSLGRNX.

To keep a table space and its indexes synchronized, the MODIFY utility deletes the
SYSCOPY and SYSLGRNX records for the table space and its indexes that are
defined with the COPY YES option.
1. Complete the first three steps of the procedure that is presented in “Locating

archive log data sets” on page 516. In the third step, note the date of the
earliest image copy that you intend to keep.

Important: The earliest image copies and log data sets that you need for
recovery to the present date are not necessarily the earliest ones that you want
to keep. If you foresee resetting the DB2 subsystem to its status at any earlier
date, you also need the image copies and log data sets that allow you to
recover to that date.
If the most recent image copy of an object is damaged, the RECOVER utility
seeks a backup copy. If no backup copy is available, or if the backup is lost or
damaged, RECOVER uses a previous image copy. It continues searching until it
finds an undamaged image copy or no more image copies exist. The process
has important implications for keeping archive log data sets. At the very least,
you need all log records since the most recent image copy; to protect against
loss of data from damage to that copy, you need log records as far back as the
earliest image copy that you keep.

2. Run the MODIFY RECOVERY utility to clean up obsolete entries in
SYSIBM.SYSCOPY and SYSIBM.SYSLGRNX.
Pick one of the following MODIFY strategies, based on keyword options, that is
consistent with your overall backup and recovery plan:

DELETE DATE
With the DELETE DATE keyword, you can specify date of the earliest
entry you want to keep.

DELETE AGE
With the DELETE AGE keyword, you can specify the age of the earliest
entry you want to keep.

RETAIN® LAST
With the RETAIN LAST keyword, you can specify the number of image
copy entries you want to keep.

RETAIN GDGLIMIT
If GDG data sets are used for your image copies, you can specify
RETAIN GDGLIMIT keyword to keep the number of image copies
matching your GDG definition.

RETAIN LOGLIMIT
With the RETAIN LOGLIMIT keyword, you can clean up all of the
obsolete entries that are older than the oldest archive log in your BOOT
STRAP DATA SET (BSDS).

For example, you could enter one of the following commands:
The DELETE DATE option removes records that were written earlier than the
given date. You can also specify the DELETE AGE option to remove records

566 Administration Guide

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|

|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_reviewreportoutput.htm#db2z_reviewreportoutput


that are older than a specified number of days or the DELETE RETAIN option
to specify a minimum number of image copies to keep.
MODIFY RECOVERY TABLESPACE dbname.tsname

DELETE DATE date

MODIFY RECOVERY TABLESPACE dbname.tsname
RETAIN LAST( n )

The RETAIN LAST( n ) option keeps the n recent records and removes the
older one.
You can delete SYSCOPY records for a single partition by naming it with the
DSNUM keyword. That option does not delete SYSLGRNX records and does
not delete SYSCOPY records that are later than the earliest point to which you
can recover the entire table space. Thus, you can still recover by partition after
that point.
The MODIFY utility discards SYSLGRNX records that meet the deletion criteria
when the AGE or DATE options are specified, even if no SYSCOPY records
were deleted.
You cannot run the MODIFY utility on a table space that is in
RECOVER-pending status.
Even if you take system-level backups, use the MODIFY utility to delete
obsolete records from SYSIBM.SYSCOPY and SYSIBM.SYSLGRNX. You do not
need to delete the system-level backup information in the bootstrap data set
(BSDS) because only the last 50 system-level backups are kept.
For all options of the MODIFY utility, see Part 2 of the DB2 Utility Guide and
Reference.

Preparations for disaster recovery
If a DB2 computing center is totally lost, you can recover on another DB2
subsystem at a recovery site. To do this, you must regularly back up the data sets
and the log for the recovery subsystem. As with all data recovery operations, the
objectives of disaster recovery are to minimize the loss of data, workload
processing (updates), and time.

You can provide shorter restart times after system failures by using the installation
options LIMIT BACKOUT and BACKOUT DURATION. These options postpone
the backout processing of long-running URs during DB2 restart.

For data sharing environments, you can use the LIGHT(YES) or
LIGHT(NOINDOUBTS) parameter to quickly bring up a DB2 member to recover
retained locks. This option is not recommended for refreshing a single subsystem
and is intended only for a cross-system restart for a system that has inadequate
capacity to sustain the DB2 IRLM pair. Restart light can be used for normal restart
and recovery.

For data sharing, you need to consider whether you want the DB2 group to use
light mode at the recovery site. A light start might be desirable if you have
configured only minimal resources at the remote site. If this is the case, you might
run a subset of the members permanently at the remote site. The other members
are restarted and then directly shutdown.

To perform a light start at the remote site:
1. Start the members that run permanently with the LIGHT(NO) option. This is

the default.

Chapter 19. Backing up and recovering your data 567

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|



2. Start other members in light mode. The members started in light mode use a
smaller storage footprint. After their restart processing completes, they
automatically shut down. If ARM is in use, ARM does not automatically restart
the members in light mode again.

3. Members started with LIGHT(NO) remain active and are available to run new
work.

Several levels of preparation for disaster recovery exist:
v Prepare the recovery site to recover to a fixed point in time.

For example, you could copy everything weekly with a DFSMSdss volume
dump (logical), manually send it to the recovery site, and then restore the data
there.

v For recovery through the last archive, copy and send the following objects to the
recovery site as you produce them:
– Image copies of all catalog, directory, and user page sets
– Archive logs
– Integrated catalog facility catalog EXPORT and list
– BSDS lists

With this approach you can determine how often you want to make copies of
essential recovery elements and send them to the recovery site.

After you establish your copy procedure and have it operating, you must
prepare to recover your data at the recovery site. See “Performing remote-site
disaster recovery” on page 703 for step-by-step instructions on the disaster
recovery process.

v Use the log capture exit routine to capture log data in real time and send it to
the recovery site. See “Reading log records with the log capture exit routine”
and “Log capture routines.”

Related concepts

Restart light (DB2 Data Sharing Planning and Administration)
Related reference

Active log data set parameters: DSNTIPL (DB2 Installation and Migration)

System-wide points of consistency
In any disaster recovery scenario, system-wide points of consistency are necessary
for maintaining data integrity and preventing a loss of data. A direct relationship
exists between the frequency at which you make and send copies to the recovery
site and the amount of data that you can potentially lose.

The following figure is an overview of the process of preparing to start DB2 at a
recovery site.

568 Administration Guide

|
|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.dshare/db2z_restartlightds.htm#db2z_restartlightds
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipl.htm#db2z_dsntipl


Recommendations for more effective recovery from
inconsistency

Data inconsistency problems can often be resolved by using the RECOVER utility.
However, if the RECOVER utility requires data from the recovery log or image
copy data sets, and that data is damaged or unavailable, you might need to resolve
the problem manually.

Actions to take to aid in successful recovery of inconsistent data
Take steps well in advance to prepare for successful recovery of inconsistent data.
v During the installation of, or migration to, Version 9.1, make a full image copy

of the DB2 directory and catalog using installation job DSNTIJIC.
If you did not do this during installation or migration, use the COPY utility to
make a full image copy of the DB2 catalog and directory. If you do not do this
and you subsequently have a problem with inconsistent data in the DB2 catalog
or directory, you cannot use the RECOVER utility to resolve the problem.
This is recommended even if you take system-level backups.

v Periodically make an image copy of the catalog, directory, and user databases.
This minimizes the time that the RECOVER utility requires to perform recovery.
In addition, this increases the probability that the necessary archive log data sets
will still be available. You should keep two copies of each level of image copy
data set. This reduces the risk involved if one image copy data set is lost or
damaged.
This is recommended even if you take system-level backups.

v Use dual logging for your active log, archive log, and bootstrap data sets.
This increases the probability that you can recover from unexpected problems.
Dual logging is especially useful in resolving data inconsistency problems.

v Before using RECOVER, rename your data sets.

Restriction: Do not rename your data sets if you take system-level backups.
If the image copy or log data sets are damaged, you can compound your
problem by using the RECOVER utility. Therefore, before using RECOVER,
rename your data sets by using one of the following methods:
– Rename the data sets that contain the page sets that you want to recover.
– Copy your data sets using DSN1COPY.

*Local site time line

Recovery site time line

Disaster

Full copy
archive log

Archive
log

Archive
log

Incremental
copy

archive log

Archive
log

Take tapes
to the

recovery site

Data range
lost with
first level

of recovery

Start
DB2

Recover
DB2

Figure 53. Preparing for disaster recovery. The information that you need to recover is
contained in the copies of data (including the DB2 catalog and directory) and the archive log
data sets.

Chapter 19. Backing up and recovering your data 569

|

|

|



– For user-defined data sets, use access method services to define a new data
set with the original name.

The RECOVER utility applies log records to the new data set with the old name.
Then, if a problem occurs during RECOVER utility processing, you have a copy
(under a different name) of the data set that you want to recover.

v Keep back-level copies of your data.
If you make an image copy or system-level backup of a page set that contains
inconsistent data, the RECOVER utility cannot resolve the data inconsistency
problem. However, you can use RECOVER TOCOPY or TOLOGPOINT to
resolve the inconsistency if you have an older image copy or system-level
backup of the page set that was taken before the problem occurred. You can also
resolve the inconsistency problem by using the RESTOREBEFORE recovery
option to avoid using the most recent image copy.

v Maintain consistency between related objects.
A referential structure is a set of tables including indexes and their relationships.
It must include at least one table, and for every table in the set, include all of the
relationships in which the table participates, as well as all the tables to which it
is related. To help maintain referential consistency, keep the number of table
spaces in a table space set to a minimum, and avoid tables of different
referential structures in the same table space. The TABLESPACESET option of
the REPORT utility reports all members of a table space set that are defined by
referential constraints.
A referential structure must be kept consistent with respect to point-in-time
recovery. Use the QUIESCE utility to establish a point of consistency for a table
space set, to which the table space set can later be recovered without introducing
referential constraint violations.
A base table space must be kept consistent with its associated LOB or XML table
spaces with respect to point-in-time recovery. Use the TABLESPACESET option
of the REPORT utility to identify related objects which may include objects
related by RI or auxiliary relationships to one or more LOB or XML table spaces
and their indexes. Run CHECK INDEX to validate the consistency of indexes
with their associated table data. Run CHECK DATA to validate the consistency
of base table space data with LOB, XML, and referentially related table spaces. If
LOB columns exist, run CHECK LOB on any related LOB table spaces to
validate the integrity of each LOB table space within itself.

Related concepts

“How the initial DB2 logging environment is established” on page 501
Related tasks

Installation step 19: Back up the directory and catalog: DSNTIJIC (DB2
Installation and Migration)
Related reference

COPY (DB2 Utilities)

Actions to avoid in recovery of inconsistent data
To minimize problems when recovering inconsistent data, you can avoid doing
certain actions.
v Do not discard archive logs that you might need.

The RECOVER utility might need an archive log to recover from an inconsistent
data problem. If you have discarded it, you cannot use the RECOVER utility and
must resolve the problem manually.

v Do not make an image copy of a page set that contains inconsistent data.

570 Administration Guide

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntijic.htm#db2z_dsntijic
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntijic.htm#db2z_dsntijic
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_copy.htm#db2z_utl_copy


If you use the COPY utility to make an image copy of a page set that contains
inconsistent data, the RECOVER utility cannot recover a problem that involves
that page set unless you have an older image copy of that page set that was
taken before the problem occurred. You can run DSN1COPY with the CHECK
option to determine whether intra-page data inconsistency problems exist on
page sets before making image copies of them. You can also specify the
CHECKPAGE parameter on the COPY utility which will cause the image copy
to fail if an inconsistent page is detected. If you are taking a copy of a catalog or
directory page set, you can run DSN1CHKR, which verifies the integrity of the
links, and the CHECK DATA utility, which checks the DB2 catalog (DSNDB06).

v Do not use the TERM UTILITY command on utility jobs that you want to
restart.
If an error occurs while a utility is running, the data on which the utility was
operating might continue to be written beyond the commit point. If the utility is
restarted later, processing resumes at the commit point or at the beginning of the
current phase, depending on the restart parameter that was specified. If the
utility stops while it has exclusive access to data, other applications cannot
access that data. In this case, you might want to issue the TERM UTILITY
command to terminate the utility and make the data available to other
applications. However, use the TERM UTILITY command only if you cannot
restart or do not need to restart the utility job.
When you issue the TERM UTILITY command, two different situations can
occur:
– If the utility is active, it terminates at its next commit point.
– If the utility is stopped, it terminates immediately.
If you use the TERM UTILITY command to terminate a utility, the objects on
which the utility was operating are left in an indeterminate state. Often, the
same utility job cannot be rerun. The specific considerations vary for each utility,
depending on the phase in process when you issue the command.

Related tasks

“Discarding archive log records” on page 516
Related reference

COPY (DB2 Utilities)

CHECK DATA (DB2 Utilities)

-TERM UTILITY (DB2) (DB2 Command Reference)

How to recover multiple objects in parallel
To recover multiple objects in parallel, you can either use the RECOVER utility
with the PARALLEL keyword or schedule concurrent RECOVER jobs.

You can use the PARALLEL keyword on the RECOVER utility to support the
recovery of a list of objects in parallel. For those objects in the list that can be
processed independently, multiple subtasks are created to restore the image copies
for the objects. The parallel function can be used for either disk or tape.

If an image copy on tape was taken at the tablespace level and not on partition or
dataset level, the PARALLEL keyword cannot enable RECOVER utility on different
parts (RECOVER TABLESPACE name DSNUM 1 TABLESPACE name DSNUM 2
etc.) to restore the parts in parallel. RECOVER must read the appropriate part of
the dataset for every DSNUM specification. This means that for a tablespace level
copy on tape, the tape is always read from the beginning. It is recommended for

Chapter 19. Backing up and recovering your data 571

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_copy.htm#db2z_utl_copy
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_checkdata.htm#db2z_utl_checkdata
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_termutility.htm#db2z_cmd_termutility


image copies to tape, that a partitioned tablespace should be copied at the partition
level and if practical, to different tape stacks. You can use LISTDEF with
PARTLEVEL to simplify your work.

When you use one utility statement to recover indexes and table spaces, the logs
for all indexes and tables spaces are processed in one pass. This approach results
in a significant performance advantage, especially when the required archive log
data is on tape, or the fast log apply function is enabled, or if both of these
conditions occur.

This parallel log processing for fast log apply is not dependent whether you
specify RECOVER TABLESPACE name DSNUM 1 TABLESPACE name DSNUM 2
etc. or only RECOVER TABLESPACE name, because the log apply is always done
at the partition level. You should also note that if you have copies at the partition
level, you cannot specify RECOVER TABLESPACE dbname.tsname, you must
specify RECOVER TABLESPACE dbname.tsname DSNUM 1 TABLESPACE
dbname.tsname DSNUM 2 etc.. You can simplify this specification by using
LISTDEF with PARTLEVEL if all parts must be recovered.

You can schedule concurrent RECOVER jobs that process different partitions. The
degree of parallelism in this case is limited by contention for both the image copies
and the required log data.

Log data is read by concurrent jobs as follows:
v Active logs and archive logs are read entirely in parallel.
v A data set that is controlled by DFSMShsm is first recalled. It then resides on

disk and is read in parallel.
Related reference

″Syntax and options of the RECOVER control statement″ (DB2 Utility Guide and
Reference)
″DSNU512I″ (DB2 Messages)

Automatic fast log apply during RECOVER
The RECOVER utility automatically uses the fast log apply process during the
LOGAPPLY phase if fast log apply has been enabled on the DB2 subsystem.

For detailed information about defining storage for the sort used in fast log apply
processing, see the Log Apply Storage field on panel DSNTIPL in DB2 Installation
Guide.

Recovery of page sets and data sets
You can recover objects in several ways, if the objects have the LOGGED attribute.
v If you made backup copies of table spaces by using the COPY utility, the

COPYTOCOPY utility, or the inline copy feature of the LOAD or REORG utility,
use the RECOVER utility to recover the table spaces to the current or a previous
state.

v If you made backup copies of indexes by using the DB2 COPY utility, use the
RECOVER utility to recover the indexes to the current or a previous state.
Backing up indexes is optional.

v If you made system-level backups using the BACKUP SYSTEM utility, use the
RECOVER utility to recover the objects to the current or a previous state.

v If you have z/OS Version 1.8 and have made backup copies using a method
outside of DB2 control, such as with DSN1COPY or the DFSMSdss concurrent

572 Administration Guide

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_recoversyntax.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_recoversyntax.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnu512i.htm


copy function, use the same method to restore the objects to a prior point in
time. Then, if you want to restore the objects to currency, run the RECOVER
utility with the LOGONLY option.

The RECOVER utility performs these actions:
v Restores the most current backup, which can be either a full image copy,

concurrent copy, or system-level backup.
v Applies changes recorded in later incremental image copies of table spaces, if

applicable, and applies later changes from the archive or active log.

RECOVER can act on:
v A table space, or list of table spaces
v An index, or list of indexes
v A specific partition or data set within a table space
v A specific partition within an index space
v A mixed list of table spaces, indexes, partitions, and data sets
v A single page
v A page range within a table space that DB2 finds in error
v The catalog and directory

Typically, RECOVER restores an object to its current state by applying all image
copies or a system-level backup and log records. It can also restore the object to a
prior state, which is one of the following points in time:
v A specified point on the log (use the TOLOGPOINT or TORBA keyword)
v A particular image copy (use the TOCOPY, TOLASTCOPY, or

TOLASTFULLCOPY keywords)

With z/OS Version 1.8, the RECOVER utility can use system-level backups for
object level recovery. The RECOVER utility chooses the most recent backup of
either an image copy, concurrent copy, or system-level backup to restore. The most
recent backup determination is based on the point of recovery (current or prior
point in time) for the table spaces or indexes (with the COPY YES attribute) being
recovered.

The RECOVER utility can use image copies for the local site or the recovery site,
regardless of where you invoke the utility. The RECOVER utility locates all full
and incremental image copies.

The RECOVER utility first attempts to use the primary image copy data set. If an
error is encountered (allocation, open, or I/O), RECOVER attempts to use the
backup image copy. If DB2 encounters an error in the backup image copy or no
backup image copy exists, RECOVER falls back to an earlier full copy and
attempts to apply incremental copies and log records. If an earlier full copy in not
available, RECOVER attempts to apply log records only.

Not every recovery operation requires RECOVER; see also:
“Recovering error ranges for a work file table space” on page 590
“Recovery of the work file database” on page 574
“Recovery of data to a prior point in time” on page 578

Important: Be very careful when using disk dump and restore for recovering a
data set. Disk dump and restore can make one data set inconsistent with DB2
subsystem tables in some other data set. Use disk dump and restore only to restore
the entire subsystem to a previous point of consistency, and prepare that point as
described in the alternative in step 2 on page 587 under “Preparing to recover to a
prior point of consistency” on page 585.

Chapter 19. Backing up and recovering your data 573

|
|
|

|
|

|
|
|

|
|
|
|
|
|



Related reference

“Implications of moving data sets after a system-level backup” on page 581

RECOVER (DB2 Utilities)

REBUILD INDEX (DB2 Utilities)

Recovery of the work file database
The work file database (called DSNDB07, except in a data sharing environment) is
used for temporary space for certain SQL operations, such as join and ORDER BY.

If DSNDB01.DBD01 is stopped or otherwise inaccessible when DB2 is started, the
descriptor for the work file database is not loaded into main storage, and the work
file database is not allocated. To recover from this condition after DSNDB01.DBD01
has been made available, stop and then start the work file database again.

You cannot use RECOVER with the work file database.

Page set and data set copies
You can use the COPY utility to copy data from a page set to a z/OS sequential
data set on disk or tape. The COPY utility makes a full or incremental image copy,
depending on what you specify. You also can use the COPY utility to make copies
that can be used for local or off-site recovery operations.

Use the COPYTOCOPY utility to make additional image copies from a primary
image copy that you made with the COPY utility.

A full image copy is required for indexes.

You can use the CONCURRENT option of the COPY utility to make a copy, with
DFSMSdss concurrent copy, that is recorded in the DB2 catalog.

Use the MERGECOPY utility to merge several image copies. MERGECOPY does
not apply to indexes.

The CHANGELIMIT option of the COPY utility causes DB2 to make an image
copy automatically when a table space has changed past a default limit or a limit
that you specify. DB2 determines whether to make a full or incremental image
copy based on the values specified for the CHANGELIMIT option.
v If the percent of changed pages is greater than the low CHANGELIMIT value

and less than the high CHANGELIMIT value, then DB2 makes an incremental
image copy.

v If the percentage of changed pages is greater than or equal to the high
CHANGELIMIT value, then DB2 makes a full image copy.

v If the ANY keyword is used with the CHANGELIMIT option is used, then DB2
makes a full image copy.

The CHANGELIMIT option does not apply to indexes.

If you want DB2 to recommend what image copies should be made but not to
make the image copies, use the CHANGELIMIT and REPORTONLY options of the
COPY utility. If you specify the parameter DSNUM(ALL) with CHANGELIMIT
and REPORTONLY, DB2 reports information for each partition of a partitioned
table space or each piece of a nonpartitioned table space. For partitioned objects, if
you only want the partitions in COPY-pending status or informational
COPY-pending status to be copied, then you must specify a list of partitions. You

574 Administration Guide

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_recover.htm#db2z_utl_recover
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_rebuildindex.htm#db2z_utl_rebuildindex


can do this by invoking COPY on a LISTDEF list built with the PARTLEVEL
option. An output image copy dataset is created for each partition that is in
COPY-pending or informational COPY-pending status.

If you want to copy objects that are in copy pending (COPY) or informational copy
pending (ICOPY), you can use the SCOPE PENDING option of the COPY utility. If
you specify the parameter DSNUM(ALL) with SCOPE PENDING for partitioned
objects, and if one or more of the partitions are in COPY or ICOPY, the copy will
be taken of the entire table or index space.

You can add conditional code to your jobs so that an incremental, full image copy,
or some other step is performed depending on how much the table space has
changed. When you use the COPY utility with the CHANGELIMIT option to
display image copy statistics, the COPY utility uses the following return codes to
indicate the degree that a table space or list of table spaces has changed:

Code Meaning

1 Successful; no CHANGELIMIT value is met. No image copy is
recommended or taken.

2 Successful; the percentage of changed pages is greater than the low
CHANGELIMIT value and less than the high CHANGELIMIT value. An
incremental image copy is recommended or taken.

3 Successful; the percentage of changed pages is greater than or equal to the
high CHANGELIMIT value. A full image copy is recommended or taken.

When you use generation data groups (GDGs) and need to make an incremental
image copy, you can take the following steps to prevent an empty image copy
output data set from being created if no pages have been changed. You can
perform either of the following actions:
v Make a copy of your image copy step, but add the REPORTONLY and

CHANGELIMIT options to the new COPY utility statement. The REPORTONLY
keyword specifies that you want only image copy information to be displayed.
Change the SYSCOPY DD card to DD DUMMY so that no output data set is
allocated. Run this step to visually determine the change status of your table
space.

v Add step 1 before your existing image copy step, and add a JCL conditional
statement to examine the return code and execute the image copy step if the
table space changes meet either of the CHANGELIMIT values.

You can use the COPY utility with the CHANGELIMIT option to determine
whether any space map pages are broken. You can also use the COPY utility to
identify any other problems that might prevent an image copy from being taken,
such as the object being in RECOVER-pending status. You need to correct these
problems before you run the image copy job.

You can also make a full image copy when you run the LOAD or REORG utility.
This technique is better than running the COPY utility after the LOAD or REORG
utility because it decreases the time that your table spaces are unavailable.
However, only the COPY utility makes image copies of indexes.

Chapter 19. Backing up and recovering your data 575

|
|
|

|
|
|
|
|



Related concepts

“Plans for recovery of indexes” on page 555
Related reference

COPY (DB2 Utilities)

MERGECOPY (DB2 Utilities)

How to make concurrent copies using DFSMS:

The concurrent copy function of the Data Facility Storage Management Subsystem
(DFSMS) can copy a data set at the same time that other processes access the data.
Using DFSMS does not significantly impact application performance.

The two ways to use the concurrent copy function of DFSMS are:
v Run the COPY utility with the CONCURRENT option. DB2 records the resulting

image copies in SYSIBM.SYSCOPY. To recover with these DFSMS copies, you
can run the RECOVER utility to restore those image copies and apply the
necessary log records to them to complete recovery.

v Make copies using DFSMS outside of DB2 control. To recover with these copies,
you must manually restore the data sets, and then run RECOVER with the
LOGONLY option to apply the necessary log records.

Backing up with RVA storage control or Enterprise Storage Server:

You can use the IBM RAMAC® Virtual Array (RVA) storage control with the
peer-to-peer remote copy (PPRC) function or Enterprise Storage Server® DB2 to
recover subsystems at a remote site in the event of a disaster at the local site. Both
of these methods provide a faster way to recover subsystems.

You can use RVAs, PPRC, and the RVA fast copy function, SnapShot, to create
entire DB2 subsystem backups to a point in time on a hot stand-by remote site
without interruption of any application process. Another option is to use the
Enterprise Storage Server FlashCopy function to create point-in-time backups of
entire DB2 subsystems.

Using RVA SnapShot or Enterprise Storage Server FlashCopy for a DB2 backup
requires a method of suspending all update activity for a DB2 subsystem. This is
done to allow a remote copy of the entire subsystem to be made without quiescing
the update activity at the primary site. Use the SUSPEND option on the SET LOG
command to suspend all logging activity at the primary site, which also prevents
any database updates.

After the remote copy is created, use the RESUME option on the SET LOG
command to return to normal logging activities. See the DB2 Command Reference for
more details on using the SET LOG command.

For more information about RVA, see IBM RAMAC Virtual Array. For more
information about using PPRC, see RAMAC Virtual Array: Implementing Peer-to-Peer
Remote Copy. For more information about Enterprise Storage Server and the
FlashCopy function, see Enterprise Storage Server Introduction and Planning.

System-level backups for object-level recoveries
If a system-level backup is chosen as a recovery base for an object, DFSMShsm is
invoked by the RECOVER utility. This process restores the data sets for the object
from the system-level backup of the database copy pool.

576 Administration Guide

|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_copy.htm#db2z_utl_copy
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_mergecopy.htm#db2z_utl_mergecopy


Restriction: You can take advantage of certain backup and restore features only if
you have z/OS V1.8. These features include:
v The DUMP, DUMPONLY, and FORCE keywords of the BACKUP SYSTEM

utility.
v The FROMDUMP and TAPEUNITS keywords of the RESTORE SYSTEM utility.
v The FROMDUMP and TAPEUNITS keywords of the RECOVER utility.
v The ability to restore objects from a system-level backup with the RECOVER

utility.

You need to set subsystem parameter SYSTEM_LEVEL_BACKUPS to YES so that
the RECOVER utility will consider system-level backups.
v If the system-level backup resides on DASD, it is used for the restore of the

object.
v If the system-level backup no longer resides on DASD, and has been dumped to

tape, then the dumped copy is used for the restore of the object if FROMDUMP
was specified.

Message DSNU1520I is issued to indicate that a system-level backup was used as
the recovery base.

If DFSMShsm cannot restore the data sets, message DSNU1522I with RC8 is issued.
If OPTIONS EVENT(ITEMERROR,SKIP) was specified, then the object is skipped
and the recovery proceeds on the rest of the objects, otherwise the RECOVER
Utility will terminate.

If you specify YES for the RESTORE/RECOVER FROM DUMP install option on
installation panel DSNTIP6 or if you specify the FROMDUMP option on the
RECOVER utility statement, then only dumps on tape of the database copy pool
are used for the restore of the data sets. In addition, if you specify a dump class
name on installation panel DSNTIP6 or if you specify the DUMPCLASS option on
the RECOVER utility statement, then the data sets will be restored from the
system-level backup that was dumped to that particular DFSMShsm dump class. If
you do not specify a dump class name on installation panel DSNTIP6 or on the
RECOVER utility statement, then the RESTORE SYSTEM utility issues the
DFSMShsm LIST COPYPOOL command and uses the first dump class listed in the
output. For more information on DFSMShsm dump classes, see the z/OS
DFSMShsm Storage Administration Guide.

Use the output from LISTCOPY POOL and PRINT LOG MAP to see the
system-level backup information.

Use the output from the REPORT RECOVERY utility to determine whether the
objects to be recovered have image copies, concurrent copies, or a utility LOG YES
event that can be used as a recovery base.

You can take system-level backups using the BACKUP SYSTEM utility. However, if
any of the following utilities were run since the system-level backup that was
chosen as the recovery base, then the use of the system-level backup is prohibited
for object level recoveries to a prior point in time:
v REORG TABLESPACE
v REORG INDEX
v REBUILD INDEX
v LOAD REPLACE

Chapter 19. Backing up and recovering your data 577

|
|

|
|

|

|

|
|

|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|

|

|

|



v RECOVER from image copy or concurrent copy

In the following illustration, RECOVER TOLOGPOINT receives message
DSNU1582I with return code 8, indicating that the recovery has failed.

In this example, use RECOVER with RESTOREBEFORE X’A0000’ to use inline
image recovery copy taken at X’90000’ as a recovery base.
Related concepts

“How to report recovery information” on page 565

Recovery of data to a prior point in time
You can restore data to the state at which it existed at a prior point in time.

To restore data to a prior point in time, use the methods that are described in the
following topics:
v “Options for restoring data to a prior point in time” on page 605
v “Restoring data by using DSN1COPY” on page 597
v “Backing up and restoring data with non-DB2 dump and restore” on page 598

The following terms apply to the subject of recovery to a prior point in time:

Term Meaning

DBID Database identifier

OBID Data object identifier

PSID Table space identifier

Point-in-time recovery with system-level backups
System-level backups are fast replication backups that are created using the BACKUP
SYSTEM utility.

The BACKUP SYSTEM utility invokes z/OS Version 1 Release 5 or later
DFSMShsm services to take volume copies of the data in a sharing DB2 system. All
DB2 data sets that are to be copied (and then recovered) must be managed by
SMS.

The BACKUP SYSTEM utility requires z/OS Version 1 Release 5 or later data
structures called copy pools. Because these data structures are implemented in
z/OS, DB2 cannot generate copy pools automatically. Before you invoke the

Figure 54. Failed recovery

578 Administration Guide

|

|
|
|

|

|
|
|

|
|

|

|

|
|

|

|

|

|
|
|

|
|
|
|

|
|
|



BACKUP SYSTEM utility, copy pools must be allocated in z/OS. For information
about how to allocate a copy pool in z/OS, see z/OS DFSMSdfp Storage
Administration Reference.

The BACKUP SYSTEM utility invokes the DFSMShsm fast replication function to
take volume level backups using FlashCopy.

You can use the BACKUP SYSTEM utility to ease the task of managing data
recovery. Choose either DATA ONLY or FULL, depending on your recovery needs.
Choose FULL if you want to backup both your DB2 data and your DB2 logs.

Because the BACKUP SYSTEM utility does not quiesce transactions, the
system-level backup is a fuzzy copy, which might not contain committed data and
might contain uncommitted data. The RESTORE SYSTEM utility uses these
backups to restore databases to a given point in time. The DB2 data is made
consistent by DB2 restart processing and the RESTORE SYSTEM utility. DB2 restart
processing determines which transactions were active at the given recovery point,
and writes the compensation log records for any uncommitted work that needs to
be backed out. The RESTORE SYSTEM utility restores the database copy pool, and
then applies the log records to bring the DB2 data to consistency. During the
LOGAPPLY phase of the RESTORE SYSTEM utility, log records are applied to redo
the committed work that is missing from the system-level backup, and log records
are applied to undo the uncommitted work that might have been contained in the
system-level backup.

Data-only system backups
The BACKUP SYSTEM DATA ONLY utility control statement creates
system-level backups that contain only databases.

The RESTORE SYSTEM utility uses these backups to restore databases to a
given point in time. In this type of recovery, you lose only a few seconds
of data, or none, based on the given recovery point. However, recovery
time varies and might be extended due to the processing of the DB2 logs
during DB2 restart and during the LOGAPPLY phase of the RESTORE
SYSTEM utility. The number of logs to process depends on the amount of
activity on your DB2 system between the time of the system-level backup
and the given recovery point.

Full system backups
The BACKUP SYSTEM FULL utility control statement creates system-level
backups that contain both logs and databases. With these backups, you can
recover your DB2 system to the point in time of a backup by using normal
DB2 restart recovery, or to a given point in time by using the RESTORE
SYSTEM utility.

To recover your DB2 system to the point in time of a backup by using
normal DB2 restart recovery, stop DB2, and then restore both the database
and log copy pools outside of DB2 by using DFSMShsm FRRECOV
COPYPOOL (cpname) GENERATION (gen). After you successfully restart
DB2, your DB2 system has been recovered to a point of consistency based
on the time of the backup.

The RESTORE SYSTEM utility uses full system backup copies as input, but
the utility does not restore the volumes in the log copy pool. If your
situation requires that the volumes in the log copy pool be restored, you
must restore the log copy pool before restarting DB2. For example, you
should restore the log copy pool when you are using a full system-level
backup at your remote site for disaster recovery.

Chapter 19. Backing up and recovering your data 579

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|



When you recover your DB2 system to the point in time of a full system
backup, you could lose a few hours of data, because you are restoring your
DB2 data and logs to the time of the backup. However, recovery time is
brief, because DB2 restart processing and the RESTORE SYSTEM utility
need to process a minimal number of logs.

If you choose not to restore the log copy pool prior to running the
RESTORE SYSTEM utility, the recovery is equivalent to the recovery of a
system with data-only backups. In this type of recovery, you lose only a
few seconds of data, or none, based on the given recovery point. However,
recovery time varies and might be extended due to the processing of the
DB2 logs during DB2 restart and during the LOGAPPLY phase of the
RESTORE SYSTEM utility. The number of logs to process depends on the
amount of activity on your DB2 system between the time of the
system-level backup and the given recovery point.

You can use the BACKUP SYSTEM utility to manage system-level backups on tape.
Choose either DUMP or DUMPONLY to dump to tape.

Restriction: The DUMP and DUMPONLY options require z/OS Version 1.8.

Use the DUMP and DUMPONLY options for:
v Managing the available DASD space.
v Retaining the system-level backups for the long term.
v Providing a means of recovery after a media failure.
v Remote site recovery procedure.
Related concepts

“Considerations for using the BACKUP SYSTEM utility and DFSMShsm” on page
30
Related tasks

“Recovering your DB2 system to a given point in time by using the RESTORE
SYSTEM utility” on page 604
“Recovering a DB2 subsystem to a prior point in time” on page 685
Related reference

“Implications of moving data sets after a system-level backup” on page 581

BACKUP SYSTEM (DB2 Utilities)

RESTORE SYSTEM (DB2 Utilities)

Point-in-time recovery using the RECOVER utility
You can take system-level backups by using the BACKUP SYSTEM utility. Within
certain limitations, the RECOVER utility can use these system-level backups for
object-level recoveries.

Restriction: Recovery of system-level backups requires z/OS Version 1.8 or later.

If any of the following utilities were run since the system-level backup that was
chosen as the recovery base, the use of the system-level backup by the RECOVER
utility is prohibited:
v REORG TABLESPACE
v REORG INDEX
v REBUILD INDEX
v LOAD REPLACE

580 Administration Guide

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|

|

|

|
|
|

|

|
|
|

|

|

|

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_backupsystem.htm#db2z_utl_backupsystem
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_restoresystem.htm#db2z_utl_restoresystem


v RECOVER from image copy or concurrent copy
Related concepts

“Data restore of an entire system” on page 619
Related reference

“Implications of moving data sets after a system-level backup”

Implications of moving data sets after a system-level backup
The movement of data sets after the creation of a system-level backup can affect
the ability to do recovery to a prior point in time.

You can still recover the objects if you have an object-level backup such as an
image copy or concurrent copy. Take object-level backups to augment system-level
backups, or take new system-level backups whenever a data set is moved.

You can force the RECOVER utility to ignore system-level backups and use the
latest applicable object-level backup by setting the SYSTEM-LEVEL-BACKUPS
parameter on installation panel DSNTIP6 to NO. This subsystem parameter can be
updated online.

Activities that can affect the ability to recover an object to a prior point in time
from a system-level backup include:
v Migrating to new disk storage or redistributing data sets for performance

reasons
The movement of data sets for disk management should be restricted or limited
when system-level backups are taken. When movement of data sets does occur,
a new system-level backup or object-level backup should immediately be taken.

v Using the DFSMShsm migrate and recall feature
Do not use the DFSMShsm migrate and recall feature if you take system-level
backups.

v Using REORG TABLESPACE or LOAD REPLACE
To minimize the impact of REORG TABLESPACE and LOAD REPLACE on
recoverability, you should always take an inline copy of the underlying table
space. You can then use this copy to recover at the object level.

v Using REORG INDEX or REBUILD INDEX
If a REORG INDEX or REBUILD INDEX is preventing the use of the
system-level backup during recovery of an index, you can use the REBUILD
INDEX utility to rebuild rather than recover the index.

v Using RECOVER from an image copy or concurrent copy

These activities prevent the recovery at the object level to a point in time that
would use the system-level backup because the current volume allocation
information in the ICF catalog for the data set (or data sets) differs from the
volume allocation at the time of the system-level backup.

Consider the following restrictions when planning your backup strategy:
v Data sets can move within a single volume, for example because the volume has

been defragmented. In this case, the ability to restore the data is not affected.
Recovery of data is not affected if the data set is extended to another volume
after it has been copied.
In the case where the data set originally spanned multiple volumes, the data set
would need to be reallocated with extents on each of the same volumes before it

Chapter 19. Backing up and recovering your data 581

|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|

|

|
|

|

|
|
|

|

|
|
|

|

|
|
|
|

|

|
|
|
|

|
|



could be recovered successfully. The amount of space for the data set extents at
the time of the backup can differ from the amount of space that is available at
recovery time.

v The RECOVER utility cannot use the copy pool backup as the source for a
recovery if the data set has been moved to different volumes.

v The movement of one data set in a system-level backup does not prevent the
object-level recovery of other objects from the backup.

v The movement of data sets does not prevent the use of the RESTORE SYSTEM
utility.

Note: For z/OS Version 1 Release 11 and later, to recover data sets from a
system-level backup, the data sets do not need to reside on the same volume as
they were on when the backup was made. The RECOVER utility has been
modified so that you can use system-level backups, even if a data set has moved
since the backup was created.

Recovery of table spaces
The way that you recover DB2 table spaces depends on several factors, including
the type of table space that needs recovery.

When you recover table spaces to a prior point of consistency, you need to
consider:
v How partitioned table spaces, segmented table spaces, LOB table spaces, XML

table spaces, and table space sets can restrict recovery.
v If you take system-level backups, how certain utility events can prohibit

recovery to a prior point in time.
Related reference

“Implications of moving data sets after a system-level backup” on page 581

Recovery of partitioned table spaces:

You cannot recover a table space to a point in time that is prior to rotating
partitions. After you rotate a partition, you cannot recover the contents of that
partition.

If you recover to a point in time that is prior to the addition of a partition, DB2
cannot roll back the definition of the partition. In such a recovery, DB2 clears all
data from the partition, and the partition remains part of the database.

If you recover a table space partition to a point in time that is before the table
space partitions were rebalanced, you must include all partitions that are affected
by that rebalance in your recovery list.

Recovery of segmented table spaces:

You can restore data on a segmented table space to a prior point in time. When
you do this, information in the database descriptor (DBD) for the table space might
not match the restored table space.

If you use the DB2 RECOVER utility, the DBD is updated dynamically to match
the restored table space on the next non-index access of the table. The table space
must be in write access mode.

582 Administration Guide

|
|
|

|
|

|
|

|
|

|
|
|
|
|

|

|
|

|
|

|
|



If you use a method outside of DB2 control, such as DSN1COPY to restore a table
space to a prior point in time, run the REPAIR utility with the LEVELID option to
force DB2 to accept the down-level data. Then, run the REORG utility on the table
space to correct the DBD.

Recovery of LOB table spaces:

When you recover tables with LOB columns, recover the entire set of objects. The
entire set of objects includes the base table space, the LOB table spaces, and index
spaces for the auxiliary indexes.

If you use the RECOVER utility to recover a LOB table space to a prior point of
consistency, the RECOVER utility might place the table space in a pending state.
Related concepts

“Options for restoring data to a prior point in time” on page 605

Recovery of XML table spaces:

At times, recovering database objects to a prior point in time is necessary. When
this type of recovery is needed, all related objects (including XML objects) must be
recovered to a consistent point in time.

The RECOVER utility performs consistency checking of the recovery points of
these related objects during point-in-time recoveries. Use the REPORT utility with
the TABLESPACESET keyword to obtain a list of these related objects. Use the
QUIESCE utility with the TABLESPACESET keyword if you need to quiesce all
objects in the related set.

Recovery of table space sets:

If you restore a page set to a prior state, restore all related tables and indexes to
the same point to avoid inconsistencies.

The table spaces that contain referentially related tables, related LOB tables, and
related XML tables are called a table space set. For example, in the DB2 sample
application, a column in the EMPLOYEE table identifies the department to which
each employee belongs. The departments are described by records in the
DEPARTMENT table, which is in a different table space. If only that table space is
restored to a prior state, a row in the unrestored EMPLOYEE table might then
identify a department that does not exist in the restored DEPARTMENT table. Run
CHECK INDEX to validate the consistency of indexes with their associated table
data. Run CHECK DATA to validate the consistency of base table space data with
LOB, XML, and referentially related table spaces. If LOB columns exist, run
CHECK LOB on any related LOB table spaces to validate the integrity of each LOB
table space within itself.

You can use the REPORT TABLESPACESET utility to determine all the page sets
that belong to a single table space set and then restore those page sets that are
related. However, if page sets are logically related outside of DB2 in application
programs, you are responsible for identifying all the page sets on your own.

To determine a valid quiesce point for the table space set, determine a RECOVER
TOLOGPOINT value.

Chapter 19. Backing up and recovering your data 583

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|



Related reference

RECOVER (DB2 Utilities)

Recovery of partition-by-growth table spaces:

The RECOVER utility supports both table space-level and partition-level recovery
on a partition-by-growth table space.

If an image copy was made on the partition level, the table space can only be
recovered at the partition level. A violation of this rule causes message DSNU512I
to be issued.

Because the number of partitions is defined on demand, the total number of
partitions in an image copy may not be consistent with the number of partitions
that reside in the current table space. In such a case, when recovering the table
space back to a point in time with an image copy that has less partitions, the
excess partitions in the table space will be empty because the recover process has
reset the partitions.

Recovery of indexes
When you recover indexes to a prior point of consistency, some rules apply.

In general, the following rules apply:
v If image copies exists for an indexes, use the RECOVER utility.
v If you take system-level backups, use the RECOVER utility. (This use requires

z/OS Version 1.8.)
v If indexes do not have image copies or system-level backups, use REBUILD

INDEX to re-create the indexes after the data has been recovered.

More specifically, you must consider how indexes on altered tables and indexes on
tables in partitioned table spaces can restrict recovery.

Before attempting recovery, analyze the recovery information.
Related concepts

“How to report recovery information” on page 565
Related reference

“Implications of moving data sets after a system-level backup” on page 581

Recovery of indexes on altered tables:

Using some ALTER statements interferes with the use of the RECOVER utility to
restore the index to a point in time before the ALTER statement was used.

You cannot use the RECOVER utility to recover an index to a point in time
that existed before you issued any of the following ALTER statements on that
index. These statements place the index in REBUILD-pending (RBDP) status:
v ALTER INDEX PADDED
v ALTER INDEX NOT PADDED
v ALTER TABLE SET DATA TYPE on an indexed column for numeric data type

changes
v ALTER TABLE ADD COLUMN and ALTER INDEX ADD COLUMN that are not

issued in the same commit scope

584 Administration Guide

|

|
|

|
|

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_recover.htm#db2z_utl_recover


v ALTER INDEX REGENERATE

When you recover a table space to prior point in time and the table space uses
indexes that were set to RBDP at any time after the point of recovery, you must
use the REBUILD INDEX utility to rebuild these indexes.
Related reference

REBUILD INDEX (DB2 Utilities)

RECOVER (DB2 Utilities)

-DISPLAY DATABASE (DB2) (DB2 Command Reference)

Recovery of indexes on tables in partitioned table spaces:

The partitioning of secondary indexes allows you to copy and recover indexes at
the entire index level or individual partition level. Certain restrictions apply to
using the COPY and RECOVER utilities on the index level and partition level.

If you use the COPY utility at the partition level, you need to use the RECOVER
utility at the partition level, too. If you use the COPY utility at the partition level
and then try to the RECOVER utility the index, an error occurs. If the COPY utility
is used at the index level, you can use the RECOVER utility at either the index
level or the partition level.

You cannot recover an index space to a point in time that is prior to rotating
partitions. After you rotate a partition, you cannot recover the contents of that
partition to a point in time that is before the rotation.

If you recover to a point in time that is prior to the addition of a partition, DB2
cannot roll back the addition of that partition. In such a recovery, DB2 clears all
data from the partition, and it remains part of the database.

Preparing to recover to a prior point of consistency
DB2 begins recovery with the image copy or system-level backup that you made
and reads the log only up to the point of consistency. At that point, no indoubt
units of recovery hinder restarting DB2.

For a partition-by-growth table space, if the number of physical partitions on the
copy is not the same as the number of physical partitions on the current table
space, you should delete the extra partition data before or after recovery. This will
ensure that the data on the current table space matches the data that is on the
copy.
Related reference

“Implications of moving data sets after a system-level backup” on page 581

Identifying objects to recover:

You must recover base table spaces that contain tables with referential constraints,
LOB columns, or XML columns to the same point in time.

To identify the objects that must be recovered to the same point in time:

Use the REPORT TABLESPACESET utility.

Resetting exception status:

Chapter 19. Backing up and recovering your data 585

|

|
|
|

|
|
|
|
|

|

|
|

|

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_rebuildindex.htm#db2z_utl_rebuildindex
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_recover.htm#db2z_utl_recover
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.comref/db2z_cmd_displaydatabase.htm#db2z_cmd_displaydatabase


You can use the DISPLAY DATABASE RESTRICT command to determine whether
the data is in an exception status. You can then release the data from any exception
status.

Copying the data:

You can use the COPY utility to copy the data, taking appropriate precautions
about concurrent activity.

In one operation, you can copy the data and establish a point of consistency for a
list of objects by using the COPY utility with the option SHRLEVEL REFERENCE.
That operation allows only read access to the data while it is copied. The data is
consistent at the time when copying starts and remains consistent until copying
ends. The advantage of this operation is that the data can be restarted at a point of
consistency by restoring the copy only, with no need to read log records. The
disadvantage is that updates cannot be made while the data is being copied.

You can use the CONCURRENT option of the COPY utility to make a backup,
with DFSMSdss concurrent copy, that is recorded in the DB2 catalog. For more
information about using this option, see DB2 Utility Guide and Reference.

Ideally, you should copy data without allowing updates. However, restricting
updates is not always possible. To allow updates while the data is being copied,
you can take either of the following actions:
v Use the COPY utility with the SHRLEVEL CHANGE option.
v Use an offline program to copy the data, such as DSN1COPY, DFSMShsm, or

disk dump.

If you allow updates while copying, step 3 is recommended. With concurrent
updates, the copy can include uncommitted changes. Those might be backed out
after copying ends. Thus, the copy does not necessarily contain consistent data,
and recovery cannot rely on the copy only. Recovery requires reading the log up to
a point of consistency, so you want to establish such a point as soon as possible.
Although RECOVER can recover your data to any point in time and ensure data
consistency, recovering to a quiesce point can be more efficient. Therefore, taking
periodic quiesce points is recommended, if possible.

You can copy all of the data in your system, including the DB2 catalog and
directory data by using the BACKUP SYSTEM utility. Since the BACKUP SYSTEM
utility allows updates to the data, the system-level backup can include
uncommitted data.

Establishing a point of consistency:

After copying the data, immediately establish a point when the data is consistent
and no unit of work is changing it.

Use the QUIESCE utility to establish a single point of consistency (a quiesce point)
for one or more page sets. Typically, you name all of the table spaces in a table
space set that you want recovered to the same point in time to avoid referential
integrity violations. Alternatively, you can use the QUIESCE utility with the
TABLESPACESET keyword for referential integrity-related tables. The following
statement quiesces two table spaces in database DSN8D91A:
QUIESCE TABLESPACE DSN8D91A.DSN8S91E

TABLESPACE DSN8D91A.DSN8S91D

586 Administration Guide

|
|
|

|

|
|

|
|
|
|
|
|
|
|

|
|
|
|



QUIESCE writes changed pages from the page set to disk. The SYSIBM.SYSCOPY
catalog table records the current RBA and the timestamp of the quiesce point. At
that point, neither page set contains any uncommitted data. A row with ICTYPE Q
is inserted into SYSCOPY for each table space that is quiesced. Page sets
DSNDB06.SYSCOPY, DSNDB01.DBD01, and DSNDB01.SYSUTILX are an exception.
Their information is written to the log. Indexes are quiesced automatically when
you specify WRITE(YES) on the QUIESCE statement. A SYSIBM.SYSCOPY row
with ICTYPE Q is inserted for indexes that have the COPY YES attribute.

QUIESCE allows concurrency with many other utilities; however, it does not allow
concurrent updates until it has quiesced all specified page sets and depending on
the amount of activity, that can take considerable time. Try to run QUIESCE when
system activity is low.

Also, consider using the MODE(QUIESCE) option of the ARCHIVE LOG command
when planning for off-site recovery. It creates a system-wide point of consistency,
which can minimize the number of data inconsistencies when the archive log is
used with the most current image copy during recovery.
Related tasks

“Archiving the log” on page 510

Preparing to recover an entire DB2 subsystem to a prior point
in time using image copies or object-level backups

Under certain circumstances, you might want to reset the entire DB2 subsystem to
a point of consistency.

To prepare a point of consistency:
1. Display and resolve any indoubt units of recovery.
2. Use the COPY utility to make image copies of all data, including user data,

DB2 catalog and directory table spaces, and optionally indexes. Copy
SYSLGRNX and SYSCOPY last.
Install job DSNTIJIC creates image copies of the DB2 catalog and directory
table spaces. If you decide to copy your directory and catalog indexes, modify
job DSNTIJIC to include those indexes.

Alternate method: Alternatively, you can use an off-line method to copy the
data. In that case, stop DB2 first; that is, do the next step before doing this step.
If you do not stop DB2 before copying, you might have trouble restarting after
restoring the system. If you do a volume restore, verify that the restored data is
cataloged in the integrated catalog facility catalog. Use the access method
services LISTCAT command to get a listing of the integrated catalog.

3. Stop DB2 with the command STOP DB2 MODE (QUIESCE).

Important: Be sure to use MODE (QUIESCE); otherwise, I/O errors can occur
when you fall back before a DB2 restart.
DB2 does not actually stop until all currently executing programs have
completed processing.

4. When DB2 has stopped, use access method services EXPORT to copy all BSDS
and active log data sets. If you have dual BSDSs or dual active log data sets,
export both copies of the BSDS and the logs.

5. Save all the data that has been copied or dumped, and protect it and the
archive log data sets from damage.

Chapter 19. Backing up and recovering your data 587



Related tasks

Installation step 19: Back up the directory and catalog: DSNTIJIC (DB2
Installation and Migration)

Creating essential disaster recovery elements
You must take steps to create essential disaster recovery elements. For example,
you must determine how often to make copies and send them to the recovery site.
1. Make image copies:

a. Make copies of your data sets and DB2 catalogs and directories.
Use the COPY utility to make copies for the local subsystem and additional
copies for disaster recovery. You can also use the COPYTOCOPY utility to
make additional image copies from the primary image copy made by the
COPY utility. Install your local subsystem with the LOCALSITE option of
the SITE TYPE field on installation panel DSNTIPO. Use the
RECOVERYDDN option when you run COPY to make additional copies for
disaster recovery. You can use those copies on any DB2 subsystem that you
have installed using the RECOVERYSITE option.

Tip: You can also use these copies on a subsystem that is installed with the
LOCALSITE option if you run RECOVER with the RECOVERYSITE option.
Alternatively, you can use copies that are prepared for the local site on a
recovery site if you run RECOVER with the option LOCALSITE.

Important: Do not produce copies by invoking COPY twice.
b. Optional: Catalog the image copies if you want to track them.
c. Create a QMF report or use SPUFI to issue a SELECT statement to list the

contents of SYSCOPY.
d. Send the image copies, and report to the recovery site.
e. Record this activity at the recovery site when the image copies and the

report are received.
All table spaces should have valid image copies. Indexes can have valid
image copies or they can be rebuilt from the table spaces.

2. Make copies of the archive logs for the recovery site:
a. Use the ARCHIVE LOG command to archive all current DB2 active log data

sets. For more ARCHIVE LOG command information see “Archiving the
log” on page 510.

Recommendation: When using dual logging, keep both copies of the
archive log at the local site in case the first copy becomes unreadable. If the
first copy is unreadable, DB2 requests the second copy. If the second copy is
not available, the read fails.

However, if you take precautions when using dual logging, such as making
another copy of the first archive log, you can send the second copy to the
recovery site. If recovery is necessary at the recovery site, specify YES for
the READ COPY2 ARCHIVE field on installation panel DSNTIPO. Using
this option causes DB2 to request the second archive log first.

b. Optional: Catalog the archive logs if you want to track them.
You will probably need some way to track the volume serial numbers and
data set names. One way of doing this is to catalog the archive logs to
create a record of the necessary information. You can also create your own
tracking method and do it manually.

588 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntijic.htm#db2z_dsntijic
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntijic.htm#db2z_dsntijic


c. Use the print log map utility to create a BSDS report.
d. Send the archive copy, the BSDS report, and any additional information

about the archive log to the recovery site.
e. Record this activity at the recovery site when the archive copy and the

report are received.
3. Choose consistent system time:

Important: After you establish a consistent system time, do not alter the
system clock. Any manual change in the system time (forward or backward)
can affect how DB2 writes and processes image copies and log records.
a. Choose a consistent system time for all DB2 subsystems.

DB2 utilities, including the RECOVER utility, require system clocks that are
consistent across all members of a DB2 data-sharing group. To prevent
inconsistencies during data recovery, ensure that all system times are
consistent with the system time at the failing site.

b. Ensure that the system clock remains consistent.
4. Back up integrated catalog facility catalogs:

a. Back up all DB2-related integrated catalog facility catalogs with the VSAM
EXPORT command on a daily basis.

b. Synchronize the backups with the cataloging of image copies and archives.
c. Use the VSAM LISTCAT command to create a list of the DB2 entries.
d. Send the EXPORT backup and list to the recovery site.
e. Record this activity at the recovery site when the EXPORT backup and list

are received.
5. Back up DB2 libraries:

a. Back up DB2 libraries to tape when they are changed. Include the SMP/E,
load, distribution, and target libraries, as well as the most recent user
applications and DBRMs.

b. Back up the DSNTIJUZ job that builds the ZPARM and DECP modules.
c. Back up the data set allocations for the BSDS, logs, directory, and catalogs.
d. Document your backups.
e. Send backups and corresponding documentation to the recovery site.
f. Record activity at the recovery site when the library backup and

documentation are received.

For disaster recovery to be successful, all copies and reports must be updated and
sent to the recovery site regularly. Data is up to date through the last archive that
is sent. For disaster recovery start up procedures, see “Performing remote-site
disaster recovery” on page 703.
Related concepts

Multiple image copies (DB2 Utilities)

Resolving problems with a user-defined work file data set
You can resolve problems on a volume of a user-defined data set for the work file
database.

To resolve problems:
1. Issue the following DB2 command:

-STOP DATABASE (DSNDB07)

Chapter 19. Backing up and recovering your data 589

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_multipleimagecopies.htm#db2z_multipleimagecopies


2. Use the DELETE and DEFINE functions of access method services to redefine a
user work file on a different volume, and reconnect it to DB2.

3. Issue the following DB2 command:
-START DATABASE (DSNDB07)

Resolving problems with DB2-managed work file data sets
You can resolve problems on a volume in a DB2 storage group for the work file
database, such as a system I/O problem.

1. Enter the following SQL statement to remove the problem volume from the
DB2 storage group:
ALTER STOGROUP stogroup-name
REMOVE VOLUMES (xxxxxx);

2. Issue the following DB2 command:
-STOP DATABASE (DSNDB07)

3. Enter the following SQL statement to drop the table space with the problem:
DROP TABLESPACE DSNDB07.tsname:

4. Re-create the table space. You can use the same storage group, because the
problem volume has been removed, or you can use an alternate.
CREATE TABLESPACE tsname

IN DSNDB07
USING STOGROUP stogroup-name;

5. Issue the following command:
-START DATABASE (DSNDB07)

Recovering error ranges for a work file table space
Page error ranges operate for work file table spaces in the same way as for other
DB2 table spaces, except for the process that you use to recover them. You cannot
reset error ranges in a work file table space by using the ERROR RANGE option of
the RECOVER utility.

To recover error ranges for a work file table space:
1. Stop the work file table space.
2. Correct the disk error, using the ICKDSF service utility or access method

services to delete and redefine the data set.
3. Start the work file table space. When the work file table space is started, DB2

automatically resets the error range.

Recovery of error ranges for a work file table space
DB2 always resets any error ranges when the work file table space is initialized,
regardless of whether the disk error has really been corrected.

Work file table spaces are initialized when:
v The work file table space is stopped and then started.
v The work file database is stopped and then started, and the work file table space

was not previously stopped.
v DB2 is started and the work file table space was not previously stopped.

590 Administration Guide



If the error range is reset while the disk error still exists, and if DB2 has an I/O
error when using the work file table space again, DB2 sets the error range again.

Recovering after a conditional restart of DB2
After a DB2 conditional restart in which a log record range is specified, a portion
of the DB2 recovery log is no longer available.

If the unavailable portion includes information that is needed for internal DB2
processing, an attempt to use the RECOVER utility to restore directory table spaces
DSNDBD01 or SYSUTILX, or catalog table space SYSCOPY fails with ABEND04E
RC00E40119.

Instead of using the RECOVER utility, use the following procedure to recover those
table spaces and their indexes:
1. Run DSN1COPY to restore the table spaces from an image copy.
2. Run the RECOVER utility with the LOGONLY option to apply updates from

the log records to the recovered table spaces.
3. Rebuild the indexes.
4. Make a full image copy of the table spaces, and optionally the indexes, to make

the table spaces and indexes recoverable.

Recovery of the catalog and directory
Catalog and directory objects must be recovered in a particular order.

Sometimes the recovery of some catalog and directory objects depends on
information that is derived from other catalog and directory objects. You must
recover some of these objects in separate RECOVER utility control statements.

However, you can use the same RECOVER control statement to recover a catalog
or directory table space along with its corresponding IBM-defined indexes. After
these logically dependent objects are restored to an undamaged state, you can
recover the remaining catalog and directory objects in a single RECOVER utility
control statement. These restrictions apply regardless of the type of recovery that
you perform on the catalog.

You can use the REPORT utility to report on recovery information about the
catalog and directory.

To avoid restart processing of any page sets before attempts are made to recover
any of the members of the list of catalog and directory objects, you must set
subsystem parameters DEFER and ALL. You can do this by setting the values
DEFER in field 1 and ALL in field 2 of installation panel DSNTIPS.

Important: Recovering the DB2 catalog and directory to a prior point in time is
strongly discouraged.

Chapter 19. Backing up and recovering your data 591

|
|

|
|
|
|

|
|

|
|

|
|



Related concepts

“How to report recovery information” on page 565
Related tasks

“Deferring restart processing” on page 532
Related reference

RECOVER (DB2 Utilities)

Regenerating missing identity column values
You can regenerate missing identity column values.

To regenerate missing identity column values:

1. Choose a starting value for the identity column with the following
ALTER TABLE statement:
ALTER TABLE table-name
ALTER COLUMN identity-column-name

RESTART WITH starting-identity-value

2. Run the REORG utility to regenerate lost sequence values.
If you do not choose a starting value in step 1, the REORG utility generates a
sequence of identity column values that starts with the next value that DB2
would have assigned before the recovery.

Recovery of tables that contain identity columns
When you recover a table that contains an identity column, consider the point in
time to which you recover. Your recovery procedure can depend on whether that
identity column existed, or was not yet defined, at the point in time to which you
recover.

The following considerations apply for each of these two cases.

Identity column already defined

If you recover to a point in time at which the identity column existed, you might
create a gap in the sequence of identity column values. When you insert a row
after this recovery, DB2 produces an identity value for the row as if all previously
added rows still exist.

For example, assume that at time T1 an identity column that is incremented by 1
contains the identity column values 1 through 100. At T2, the same identity
column contains the values 1 through 1000. Now, assume that the table space is
recovered back to time T1. When you insert a row after the recovery, DB2
generates an identity value of 1001. This value leaves a gap from 101 to 1000 in the
values of the identity column.

To prevent a gap in identity column values, use the following ALTER
TABLE statement to modify the attributes of the identity column before you insert
rows after the recovery:
ALTER TABLE table-name
ALTER COLUMN identity-column-name

RESTART WITH next-identity-value

592 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_recover.htm#db2z_utl_recover


Tip: To determine the last value in an identity column, issue the MAX column
function for ascending sequences of identity column values, or the MIN column
function for descending sequences of identity column values. This method works
only if the identity column does not use CYCLE.

Identity column not yet defined

If you recover to a point in time at which the identity column was not yet defined,
that identity column remains part of the table. The resulting identity column no
longer contains values.

A table space that contains an identity column is set to REORG-pending (REORP)
status if you recover the table space to a point in time that is before the identity
column was defined. To access the recovered table, you need to remove this status.
Related concepts

“Data consistency for point-in-time recoveries” on page 607

Recovering a table space and all of its indexes
You can recover a table space and all of its indexes (or a table space set and all
related indexes). Use a single RECOVER utility statement that specifies the
TOLOGPOINT option.

For the log point, you can identify a quiesce point or a common SHRLEVEL
REFERENCE copy point. This action avoids placing indexes in the
CHECK-pending or RECOVER-pending status. If the log point is not a common
quiesce point or SHRLEVEL REFERENCE copy point for all objects, use the
following procedure, which ensures that the table spaces and indexes are
synchronized and eliminates the need to run the CHECK INDEX utility.

With recovery to a point in time with consistency, which is the default recovery
type, you do not need to identify a quiesce point or a common SHRLEVEL
REFERENCE copy point. This recovery might be faster because inconsistencies do
not have to be resolved.

To recover to a log point:
1. Use the RECOVER utility to recover table spaces to the log point.
2. Use concurrent REBUILD INDEX jobs to rebuild the indexes for each table

space.

Recovery implications for objects that are not logged
You can use the RECOVER utility on objects that have the NOT LOGGED
attribute. The NOT LOGGED attribute does not mean that the contents of an object
are not recoverable. However, the modifications to the object that is not logged are
not recoverable.

Objects that are not logged include the table space, the index, and the index space.
Recovery can be to any recoverable point. A recoverable point is established when:
v A table space is altered from logged to not logged.
v When an image copy is taken against an object that is not logged.
v An ALTER TABLE statement is issued with the ADD PARTITION clause, against

a table in a table space that has the NOT LOGGED attribute.

Chapter 19. Backing up and recovering your data 593

|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|

|
|

|

|

|
|



v DB2 adds a new partition in response to insertion of data into a
partition-by-growth table space.

The TORBA or TOLOGPOINT keywords can also be used for a point-in-time
recovery on an object that is not logged, but the RBA or LRSN must correspond to
a recoverable point or message DSNU1504I is issued.

If a base table space is altered so that it is not logged, and its associated LOB table
spaces already have the NOT LOGGED attribute, then the point where the table
space is altered is not a recoverable point.

If DB2 restart recovery determines that a table space that is not logged might have
been in the process of being updated at the time of the failure, then the table space
or partition is placed in the LPL and is marked RECOVER-pending.
Related reference

CREATE TABLESPACE (SQL Reference)

ALTER TABLESPACE (SQL Reference)

Clearing the informational COPY-pending status (ICOPY):

If you update a table space that is defined with the NOT LOGGED attribute, the
table space is put in informational COPY-pending status (ICOPY).

You can use the DISPLAY DATABASE ADVISORY command to display the ICOPY
status for table spaces. For example:
DSNT36I1 - * DISPLAY DATABASE SUMMARY

* ADVISORY
DSNT360I - *************************************
DSNT362I - DATABASE = DBIQUA01 STATUS = RW

DBD LENGTH = 8066
DSNT397I -
NAME TYPE PART STATUS HYERRLO PHYERRHI CATALOG PIECE
-------- ---- ---- ------------ ------- -------- ------- -----
TPIQUQ01 TS 001 RW,AUXW
TPIQUQ01 TS 002 RW,AUXW
TPIQUQ01 TS 003 RW,AUXW
TPIQUQ01 TS 004 RW,ICOPY

To clear the ICOPY status, you must take a full image copy of the table space.

The LOG option of the LOAD or REORG utilities:

The LOG option that you specify when you run the LOAD and REORG utilities
has different results depending on the logging attribute of the table space that is
being logged.

The following tables show how the logging attribute of the utility and the logging
attribute of the table space interact:

594 Administration Guide

|
|

|
|
|

|
|
|

|
|
|

|

|

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_createtablespace.htm#db2z_sql_createtablespace
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_altertablespace.htm#db2z_sql_altertablespace


Table 102. Attribute interaction for LOB table spaces

LOAD or REORG
keyword

Table space logging
attribute What is logged

Table space status
after completion

LOG YES LOGGED Control records and
LOB data redo
information. LOB
data undo
information is never
logged for LOB table
spaces.

No pending status

LOG YES NOT LOGGED Control information. No pending status

LOG NO LOGGED Nothing. COPY-pending

LOG NO NOT LOGGED Nothing. No pending status

Table 103. Attribute interaction for non-LOB table spaces

LOAD or REORG
keyword

Table space logging
attribute What is logged

Table space status
after completion

LOG YES LOGGED Control records and
data.

No pending status

LOG YES NOT LOGGED LOG YES is changed
to LOG NO.

See Table 104

LOG NO LOGGED Nothing. COPY-pending

LOG NO NOT LOGGED Nothing. See Table 104

The following table shows the possible table space statuses for non-LOB tables
spaces that are not logged:

Table 104. Status of non-LOB table spaces that are not logged, after LOAD or REORG with
LOG NO keyword

Inline copy Records discarded Table space status

Yes No No pending status

Yes Yes ICOPY-pending

No not applicable ICOPY-pending

Clearing the RECOVER-pending status:

If DB2 needs to undo work that has not been logged (as when a rollback occurs),
the table space has lost its data integrity and is marked RECOVER-pending. To
prevent access to corrupt data, DB2 places the pages in the logical page list (LPL).

Tip: Application programmers should commit frequently and try to avoid
duplicate key or referential integrity violations when modifying a table in a NOT
LOGGED table space.

If DB2 restart recovery determines that a not logged table space may have been in
the process of being updated at the time of the failure, then the table space or
partition is placed in the LPL and is marked RECOVER-pending. You have several
options for removing a table space from the LPL and resetting the
RECOVER-pending status:
v Dropping and re-creating the table space and repopulating the table

Chapter 19. Backing up and recovering your data 595

||

|
|
|
||
|
|

|||
|
|
|
|
|
|

|

||||

||||

||||
|

||

|
|
|
||
|
|

|||
|
|

|||
|
|

||||

||||
|

|
|

||
|

|||

|||

|||

|||
|

|

|
|
|

|
|
|

|
|
|
|
|

|



v “Using a REFRESH TABLE statement”
v “Using the RECOVER utility”
v “Using the LOAD REPLACE utility”
v “Using a DELETE statement without a WHERE clause”
v “Using a TRUNCATE TABLE statement” on page 597

When a job fails and a rollback begins, the undo records are not available for table
spaces that are not logged during the back-out. Therefore, the rows that are in the
table space after recovery might not be the correct rows. You can issue the
appropriate SQL statements to re-create the intended rows.

Using a REFRESH TABLE statement:

Use the REFRESH TABLE statement to repopulate a materialized query
table, but only if the materialized query table is alone in its table space. If the table
is not alone in its table space, a utility must be used to reset the table space and

remove it from RECOVER-pending status.

Using the RECOVER utility:

Use the RECOVER utility to recover to a recoverable point.

You can run the RECOVER utility against a table space with the NOT LOGGED
logging attribute. To do so, the current logging attribute of the table space must
match the logging attribute of the recovery base (that is, the logging attribute of
the table space when the image copy was taken). If no changes have been made to
the table space since the last point of recovery, the utility completes successfully. If
changes have been made, the utility completes with message DSNU1504I.

You can use RECOVER with the TOCOPY, TOLASTFULLCOPY, or TOLASTCOPY
keyword to identify which image copy to use. You can also use TORBA or
TOLOGPOINT, but the RBA or LRSN must correspond to a recoverable point.

You cannot use RECOVER with the LOGONLY keyword.

Using the LOAD REPLACE utility:

Use the LOAD REPLACE utility or the LOAD REPLACE PART utility in the
following situations:
v With an input data set to empty the table space and repopulate the table.
v Without an input data set to empty the table space to prepare for one or more

INSERT statements to repopulate the table.

Using a DELETE statement without a WHERE clause:

Use the DELETE statement without a WHERE clause to empty the table,
when the table space is segmented or universal, the table is alone in its table space
and the table does not have:
v A VALIDPROC
v Referential constraints
v Delete Triggers

596 Administration Guide

|

|

|

|

|

|
|
|
|

|

|
|
|

|

|

|

|
|
|
|
|
|

|
|
|

|

|

|
|

|

|
|

|

|
|
|

|

|

|



v A SECURITY LABEL column (or it does have such a column, but multilevel

security with row level granularity is not in effect)

Using a TRUNCATE TABLE statement:

Use the TRUNCATE TABLE statement to empty the table, when the table
space is segmented and the table is alone in its table space and the table does not
have:
v A VALIDPROC
v Referential constraints
v A SECURITY LABEL column (or it does have such a column, but multilevel

security with row level granularity is not in effect)

Removing various pending states from LOB and XML table
spaces

You can remove various pending states from a LOB table space or an XML table
space by using a collection of utilities in a specific order.

To remove pending states from a LOB table space or an XML table space:
1. Use the REORG TABLESPACE utility to remove the REORP status.
2. If the table space status is auxiliary CHECK-pending status:

a. Use CHECK LOB for all associated LOB table spaces.
b. Use CHECK INDEX for all LOB indexes, as well as the document ID, node

ID, and XML indexes.
3. Use the CHECK DATA utility to remove the CHECK-pending status.

Restoring data by using DSN1COPY
You can use the DSN1COPY utility to restore data that was previously backed up
by the DSN1COPY utility or by the COPY utility. If you use the DSN1COPY utility
to restore data or move data, the data definitions for the target object must be
exactly the same as when the copy was created.

You cannot use the DSN1COPY utility to restore data that was backed up with the
DFSMSdss concurrent copy facility.

Be careful when creating backups with the DSN1COPY utility. You must ensure
that the data is consistent, or you might produce faulty backup copies. One
advantage of using COPY to create backups is that it does not allow you to copy
data that is in CHECK-pending or RECOVER-pending status. You can use COPY
to prepare an up-to-date image copy of a table space, either by making a full
image copy or by making an incremental image copy and merging that
incremental copy with the most recent full image copy.

Keep access method services LISTCAT listings of table space data sets that
correspond to each level of retained backup data.

Chapter 19. Backing up and recovering your data 597

|

|

|

|
|
|

|

|

|

|

|
|



Related reference

DSN1COPY (DB2 Utilities)

Backing up and restoring data with non-DB2 dump and
restore

You can use certain non-DB2 facilities to dump and restore data sets and volumes.
However, certain limitations exist.

Even though DB2 data sets are defined as VSAM data sets, DB2 data cannot be
read or written by VSAM record processing because it has a different internal
format. The data can be accessed by VSAM control interval (CI) processing. If you
manage your own data sets, you can define them as VSAM linear data sets (LDSs),
and access them through services that support data sets of that type.

Access method services for CI and LDS processing are available in z/OS. IMPORT
and EXPORT use CI processing; PRINT and REPRO do not, but they do support
LDSs.

DFSMS Data Set Services (DFSMSdss) is available on z/OS and provides dump
and restore services that can be used on DB2 data sets. Those services use VSAM
CI processing.

Recovering accidentally dropped objects
If a table or table space is inadvertently dropped, you can recover the object.

Recommendation: To prepare for recovery of an object, run regular catalog reports
that include a list of all OBIDs in the subsystem. In addition create catalog reports
that list dependencies on the table or (such as referential constraints, indexes, and
so on). After a table is dropped, this information disappears from the catalog.

If an OBID has been reused by DB2, you must run DSN1COPY to translate the
OBIDs of the objects in the data set. However, this event is unlikely; DB2 reuses
OBIDs only when no image copies exist that contain data from that table.

Important: When you recover a dropped object, you essentially recover a table
space to a point in time. If you want to use log records to perform forward
recovery on the table space, you need the IBM DB2 Log Analysis Tool for z/OS.

How to avoid accidentally dropping objects
To avoid the problem of accidentally dropping tables, you can create a table with
the clause WITH RESTRICT ON DROP.

When a table has been created with the clause WITH RESTRICT ON
DROP, then nobody can drop the table, or the table space or database that contains
the table, until the restriction on the table is removed. The ALTER TABLE
statement includes a clause to remove the restriction, as well as one to impose it.

Recovering an accidentally dropped table
To drop tables in a partitioned table space, you need to drop the table space itself.

To recover a dropped table, you need a full image copy or a DSN1COPY file that
contains the data from the dropped table.

598 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1copy.htm#db2z_utl_dsn1copy


For segmented or universal table spaces, the image copy or DSN1COPY file must
contain the table when it was active (that is, created). Because of the way space is
reused for segmented table spaces, this procedure cannot be used if the table was
not active when the image copy or DSN1COPY was made. For nonsegmented table
spaces, the image copy or DSN1COPY file can contain the table when it was active
or not active.

To recover a dropped table:
1. If you know the DBID, the PSID, the original OBID of the dropped table, and

the OBIDs of all other tables in the table space, go to step 2.
If you do not know all of the preceding items, use the following steps to find
them. For later use with DSN1COPY, record the DBID, the PSID, and the
OBIDs of all the tables in the table space, not just the dropped table.
a. For the data set that contains the dropped table, run DSN1PRNT with the

FORMAT and NODATA options. Record the HPGOBID field in the header
page and the PGSOBD field from the data records in the data pages.
For the auxiliary table of a LOB table space, record the HPGROID field in
the header page instead of the PGSOBD field in the data pages.
v Field HPGOBID is 4 bytes long and contains the DBID in the first 2

bytes and the PSID in the last 2 bytes.
v Field HPGROID (for LOB table spaces) contains the OBID of the table. A

LOB table space can contain only one table.
v Field PGSOBD (for non-LOB table spaces) is 2 bytes long and contains

the OBID of the table. If your table space contains more than one table,
check for all OBIDs. By searching for all different PGSOBD fields. You
need to specify all OBIDs from the data set as input for the DSN1COPY
utility.

b. Convert the hex values in the identifier fields to decimal so that they can
be used as input for the DSN1COPY utility.

2. Use the SQL CREATE statement to re-create the table and any indexes

on the table.
3. To allow DSN1COPY to access the DB2 data set, stop the table space using the

following command:
-STOP DATABASE(database-name) SPACENAM(tablespace-name)

Stopping the table space is necessary to ensure that all changes are written out
and that no data updates occur during this procedure.

4. PSPI Find the OBID for the table that you created in step 2 by querying the
SYSIBM.SYSTABLES catalog table.
The following statement returns the object ID (OBID) for the table:
SELECT NAME, OBID FROM SYSIBM.SYSTABLES

WHERE NAME='table_name'
AND CREATOR='creator_name';

This value is returned in decimal format, which is the format that you need

for DSN1COPY. PSPI

5. Run DSN1COPY with the OBIDXLAT and RESET options to perform the
OBID translation and to copy data from the dropped table into the original
data set. You must specify a previous full image copy data set, inline copy
data set, or DSN1COPY file as the input data set SYSUT1 in the control
statement. Specify each of the input records in the following order in the
SYSXLAT file to perform OBID translations:

Chapter 19. Backing up and recovering your data 599



a. The DBID that you recorded in step 1 on page 599 as both the translation
source and the translation target

b. The PSID that you recorded in step 1 on page 599 as both the translation
source and the translation target

c. The original OBID that you recorded in step 1 on page 599 for the dropped
table as the translation source and the OBID that you recorded in step 4 on
page 599 as the translation target

d. OBIDs of all other tables in the table space that you recorded in step 2 on
page 599 as both the translation sources and translation targets

Be sure that you have named the VSAM data sets correctly by checking
messages DSN1998I and DSN1997I after DSN1COPY completes.

6. Use DSN1COPY with the OBIDXLAT and RESET options to apply any
incremental image copies. You must apply these incremental copies in
sequence, and specify the same SYSXLAT records that step 5 on page 599
specifies.

Important: After you complete this step, you have essentially recovered the
table space to the point in time of the last image copy. If you want to use log
records to perform forward recovery on the table space, you must use the IBM
DB2 Log Analysis Tool for z/OS at this point in the recovery procedure.

7. Start the table space for normal use by using the following command:
-START DATABASE(database-name) SPACENAM(tablespace-name)

8. Rebuild all indexes on the table space.
9. Execute SELECT statements on the previously dropped table to verify that

you can access the table. Include all LOB columns in these queries.
10. Make a full image copy of the table space.
11. Re-create the objects that are dependent on the recovered table.

When a table is dropped, objects that are dependent on that table (synonyms,
views, indexes, referential constraints, and so on) are dropped. (Aliases are not
dropped.) Privileges that are granted for that table are also dropped. Catalog
reports or a copy of the catalog taken prior to the DROP TABLE can make this
task easier.

Related concepts

“Recovery of data to a prior point in time” on page 578
“Page set and data set copies” on page 574
“Implications of dropping a table” on page 121
Related tasks

“Recovering an accidentally dropped table space”
Related reference

DSN1COPY (DB2 Utilities)

Recovering an accidentally dropped table space
If you accidentally drop a table space, including LOB table spaces, you can recover
that table space.

You might accidentally drop a table space, for example, when all tables in an
implicitly created table space are dropped, or if someone unintentionally executes a
DROP TABLESPACE statement for a particular table space.

600 Administration Guide

|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1copy.htm#db2z_utl_dsn1copy


When a table space is dropped, DB2 loses all information about the image copies
of that table space. Although the image copy data set is not lost, locating it might
require examination of image copy job listings or manually recorded information
about the image copies.

The recovery procedures for user-managed data sets and for DB2-managed data
sets are slightly different.

Recovering accidentally dropped DB2-managed data sets:

If a consistent full image copy or DSN1COPY file is available, you can use
DSN1COPY to recover a dropped table space that is part of the catalog.

To recover a dropped table space, complete the following procedure:
1. Find the original DBID for the database, the PSID for the table space, and the

OBIDs of all tables that are contained in the dropped table space. For
information about how to do this, see step 1 on page 599 of “Recovering an
accidentally dropped table” on page 598.

2. Re-create the table space and all tables. This re-creation can be difficult when
any of the following conditions is true:
v A table definition is not available.
v A table is no longer required.
If you cannot re-create a table, you must use a dummy table to take its place.
A dummy table is a table with an arbitrary structure of columns that you delete
after you recover the dropped table space.
Attention: When you use a dummy table, you lose all data from the
dropped table that you do not re-create.

3. Re-create auxiliary tables and indexes if a LOB table space has been dropped.
4. To allow DSN1COPY to access the DB2 data set, stop the table space with the

following command:
-STOP DATABASE(database-name) SPACENAM(tablespace-name)

5. PSPI Find the new PSID and OBIDs by querying the
SYSIBM.SYSTABLESPACE and SYSIBM.SYSTABLES catalog tables.
The following statement returns the object ID for a table space; this is the
PSID.
SELECT DBID, PSID FROM SYSIBM.SYSTABLESPACE

WHERE NAME='tablespace_name' and DBNAME='database_name'
AND CREATOR='creator_name';

The following statement returns the object ID for a table:
SELECT NAME, OBID FROM SYSIBM.SYSTABLES

WHERE NAME='table_name'
AND CREATOR='creator_name';

These values are returned in decimal format, which is the format that you
need for DSN1COPY. (Find the OBID of the dummy table that you created in

step 2 if you could not re-create a table.) PSPI

6. Run DSN1COPY with the OBIDXLAT and RESET options to translate the
OBID and to copy data from a previous full image copy data set, inline copy
data set, or DSN1COPY file. Use one of these copies as the input data set
SYSUT1 in the control statement. Specify each of the input records in the
following order in the SYSXLAT file to perform OBID translations:
a. The DBID that you recorded in step 1 as both the translation source and

the translation target

Chapter 19. Backing up and recovering your data 601



b. The PSID that you recorded in step 1 on page 601 as the translation source
and the PSID that you recorded in step 5 on page 601 as the translation
target

c. The OBIDs that you recorded in step 1 on page 601 as the translation
sources and the OBIDs that you recorded in step 5 on page 601 as the
translation targets

Be sure that you name the VSAM data sets correctly by checking messages
DSN1998I and DSN1997I after DSN1COPY completes.

7. Use DSN1COPY with the OBIDXLAT and RESET options to apply any
incremental image copies to the recovered table space. You must apply these
incremental copies in sequence, and specify the same SYSXLAT records that
step 7 on page 603 specifies.

Important: After you complete this step, you have essentially recovered the
table space to the point in time of the last image copy. If you want to use log
records to perform forward recovery on the table space, you must use the IBM
DB2 UDB Log Analysis Tool for z/OS at this point in the recovery procedure.
For more information about point-in-time recovery, see “Recovery of data to a
prior point in time” on page 578.

8. Start the table space for normal use by using the following command:
-START DATABASE(database-name) SPACENAM(tablespace-name)

9. Drop all dummy tables. The row structure does not match the table definition.
This mismatch makes the data in these tables unusable.

10. Reorganize the table space to remove all rows from dropped tables.
11. Rebuild all indexes on the table space.
12. Execute SELECT statements on each table in the recovered table space to

verify the recovery. Include all LOB columns in these queries.
13. Make a full image copy of the table space.

See “Page set and data set copies” on page 574 for more information about
the COPY utility.

14. Re-create the objects that are dependent on the table.
See step 11 on page 600 of “Recovering an accidentally dropped table” on
page 598 for more information.

Related reference

DSN1COPY (DB2 Utilities)

Recovering accidentally dropped user-managed data sets:

You can recover dropped table spaces that are not part of the catalog. You need to
copy the data sets that contain the data from the dropped table space to redefined
data sets.

To copy the data sets, use the OBID-translate function of the DSN1COPY utility.

To recover a dropped data set:
1. Find the DBID for the database, the PSID for the dropped table space, and the

OBIDs for the tables that are contained in the dropped table space. For
information about how to do this, see step 1 on page 599 of “Recovering an
accidentally dropped table” on page 598.

602 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1copy.htm#db2z_utl_dsn1copy


2. Rename the data set that contains the dropped table space by using the
IDCAMS ALTER command. Rename both the CLUSTER and DATA portion of
the data set with a name that begins with the integrated catalog facility
catalog name or alias.

3. Redefine the original DB2 VSAM data sets.
Use the access method services LISTCAT command to obtain a list of data set
attributes. The data set attributes on the redefined data sets must be the same
as they were on the original data sets.

4. Use SQL CREATE statements to re-create the table space, tables, and any
indexes on the tables.

5. To allow the DSN1COPY utility to access the DB2 data sets, stop the table
space by using the following command:
-STOP DATABASE(database-name) SPACENAM(tablespace-name)

This step is necessary to prevent updates to the table space during this
procedure in the event that the table space has been left open.

6. PSPI Find the target identifiers of the objects that you created in step 4
(which consist of a PSID for the table space and the OBIDs for the tables
within that table space) by querying the SYSIBM.SYSTABLESPACE and
SYSIBM.SYSTABLES catalog tables.
The following statement returns the object ID for a table space; this is the
PSID.
SELECT DBID, PSID FROM SYSIBM.SYSTABLESPACE

WHERE NAME='tablespace_name' and DBNAME='database_name'
AND CREATOR='creator_name';

The following statement returns the object ID for a table:
SELECT NAME, OBID FROM SYSIBM.SYSTABLES

WHERE NAME='table_name'
AND CREATOR='creator_name';

These values are returned in decimal format, which is the format that you

need for the DSN1COPY utility. PSPI

7. Run DSN1COPY with the OBIDXLAT and RESET options to perform the
OBID translation and to copy the data from the renamed VSAM data set that
contains the dropped table space to the newly defined VSAM data set. Specify
the VSAM data set that contains data from the dropped table space as the
input data set SYSUT1 in the control statement. Specify each of the input
records in the following order in the SYSXLAT file to perform OBID
translations:
a. The DBID that you recorded in step 1 on page 602 as both the translation

source and the translation target
b. The PSID that you recorded in step 1 on page 602 as the translation source

and the PSID that you recorded in step 6 as the translation target
c. The original OBIDs that you recorded in step 1 on page 602 as the

translation sources and the OBIDs that you recorded in step 6 as the
translation targets

Be sure that you have named the VSAM data sets correctly by checking
messages DSN1998I and DSN1997I after DSN1COPY completes.

8. Use DSN1COPY with the OBIDXLAT and RESET options to apply any
incremental image copies to the recovered table space. You must apply these
incremental copies in sequence, and specify the same SYSXLAT records that
step 7 specifies.

Chapter 19. Backing up and recovering your data 603



Important: After you complete this step, you have essentially recovered the
table space to the point in time of the last image copy. If you want to use log
records to perform forward recovery on the table space, you must use the IBM
DB2 UDB Log Analysis Tool for z/OS.
For more information about point-in-time recovery, see “Recovery of data to a
prior point in time” on page 578.

9. Start the table space for normal use by using the following command:
-START DATABASE(database-name) SPACENAM(tablespace-name)

10. Rebuild all indexes on the table space.
11. Execute SELECT statements on each table in the recovered table space to

verify the recovery. Include all LOB columns in these queries.
12. Make a full image copy of the table space.

See “Page set and data set copies” on page 574 for more information about
the COPY utility.

13. Re-create the objects that are dependent on the table.
See step 11 on page 600 of “Recovering an accidentally dropped table” on
page 598 for more information.

Related reference

DSN1COPY (DB2 Utilities)

Recovering your DB2 system to a given point in time by using
the RESTORE SYSTEM utility

Use the RESTORE SYSTEM utility to recover your DB2 system to a given point in
time. Recovering to a given point in time minimizes the amount of data that you
lose when you recover.

The RESTORE SYSTEM utility uses system-level backups that contain only DB2
objects to restore your DB2 system to a given point in time.

Prerequisites:

v Before you can use the RESTORE SYSTEM utility, you must use the BACKUP
SYSTEM utility to create system-level backups. Choose either DATA ONLY or
FULL, depending on your recovery needs. Choose FULL if you want to backup
both your DB2 data and your DB2 logs.

v When a system-level backup on tape is the input for the RESTORE SYSTEM
utility, the user who submits the job must have the following two RACF
authorities:
– Operations authority, as in ATTRIBUTES=OPERATIONS
– DASDVOL authority, which you can set in the following way:

SETROPTS GENERIC(DASDVOL)
REDEFINE DASDVOL * UACC(ALTER)
SETROPTS CLASSACT(DASDVOL)
SETROPTS GENERIC(DASDVOL) REFRESH

You can restrict this authority to specific user IDs.

This RACF authority is required, because the RESTORE SYSTEM utility invokes
DFSMSdss when tape is the input. However, when you restore database copy
pools from a FlashCopy on disk, the RESTORE SYSTEM utility invokes
DFSMShsm, which does not require Operations or DASDVOL authority.

To recover data to a given point in time:

604 Administration Guide

|
|
|

|

|

|
|
|
|

|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1copy.htm#db2z_utl_dsn1copy


1. Issue the STOP DB2 command to stop your DB2 system. If your system is a
data sharing group, stop all members of the group.

2. If the backup is a full system backup, you might need to restore the log copy
pool outside of DB2 by using DFSMShsm FRRECOV COPYPOOL (cpname)
GENERATION (gen). For data-only system backups, skip this step.

3. Create a conditional restart record, where the SYSPITR option specifies the
given point in time that you want to recover to. Run DSNJU003 (the change log
inventory utility) with the CRESTART SYSPITR and SYSPITRT options, and
specify the log truncation point that corresponds to the point in time to which
you want to recover the system. For data sharing systems, run DSNJU003 on all
active members of the data-sharing group, and specify the same LRSN
truncation point for each member. If the point in time that you specify for
recovery is prior to the oldest system backup, you must manually restore the
volume backup from tape.

4. For data sharing systems, delete all CF structures that the data sharing group
owns.

5. Restore any logs on tape to disk.
6. Issue the START DB2 command to restart your DB2 system. For data sharing

systems, start all active members.
7. Run the RESTORE SYSTEM utility. If you manually restored the backup, use

the LOGONLY option of RESTORE SYSTEM to apply the current logs.
8. Stop and restart DB2 again to remove ACCESS(MAINT) status.

After the RESTORE SYSTEM utility completes successfully, your DB2 system has
been recovered to the given point in time with consistency.
Related concepts

“Backup and recovery involving clone tables” on page 619
Related tasks

“Recovering a DB2 subsystem to a prior point in time” on page 685
Related information

Tape Authorization for DB2 RESTORE SYSTEM Utility

Options for restoring data to a prior point in time
TOCOPY, TOLOGPOINT, TOLASTCOPY, TORBA, and TOLASTFULLCOPY are
options of the RECOVER utility. These RECOVER utility options recover data to a
prior time, not to the present time. Therefore, RECOVER utility jobs that use these
options result in what are referred to as point-in-time recoveries.

The TOCOPY, TOLASTCOPY, and TOLASTFULLCOPY options identify an image
copy as the point in time to which to recover. With these options, the RECOVER
utility restores objects to the value of a specified image copy and does not apply
subsequent changes from the log. If the image copy that is specified in one of these
options cannot be applied, the RECOVER utility uses an earlier full image copy
and applies the changes in the log up to the point-in-time at which the specified
image copy was taken.

If the image copy data set is cataloged when the image copy is made, the entry for
that copy in SYSIBM.SYSCOPY does not record the volume serial numbers of the
data set. You can identify that copy by its name by using TOCOPY data set name. If
the image copy data set was not cataloged when it was created, you can identify
the copy by its volume serial identifier by using TOVOLUME volser.

Chapter 19. Backing up and recovering your data 605

|
|
|
|

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10667


With TOLOGPOINT, the RECOVER utility restores the object from the most recent
of either a full image copy or system-level backup taken prior to the recovery
point. If a full image copy is restored, the most recent set of incremental copies
that occur before the specified log point are restored. The logged changes are
applied up to, and including, the record that contains the log point. If no full
image copy or system-level backup exists before the chosen log point, recovery is
attempted entirely from the log. The log is applied from the log point at which the
page set was created or the last LOAD or REORG TABLESPACE utility was run to
a log point that you specify. You can apply the log only if you have not used the
MODIFY RECOVERY utility to delete the SYSIBM.SYSLGRNX records for the log
range your recovery requires.

Uncommitted transactions running at the recover point-in-time are automatically
detected and the changes on the recovered objects are rolled back leaving them in
a transactionally consistent state.

You can use the TOLOGPOINT option in both data sharing and non-data-sharing
environments. In a non-data-sharing environment, TOLOGPOINT and TORBA are
interchangeable keywords that identify an RBA on the log at which recovery is to
stop. TORBA can be used in a data sharing environment only if the TORBA value
is before the point at which data sharing was enabled.

Recommendation: Use the TOLOGPOINT keyword instead of the TORBA
keyword. Although DB2 still supports the TORBA option, the TOLOGPOINT
option supports both data sharing and non-data-sharing environments and is used
for both of these environments throughout this information.

Plans for point-in-time recovery:

In some circumstances, you cannot recover to the current point in time. If you plan
for this possibility, you can establish a consistent point in time from which to
recover, if these circumstances occur.

TOCOPY is a viable alternative in many situations in which recovery to the current
point in time is not possible or is not desirable. When making copies of a single
object, use SHRLEVEL REFERENCE to establish consistent points for TOCOPY
recovery. Copies that are made with SHRLEVEL CHANGE do not copy data at a
single instant, because changes can occur as the copy is made. A subsequent
RECOVER TOCOPY operation can produce inconsistent data.

When copying a list of objects, use SHRLEVEL REFERENCE. If a subsequent
recovery to a point in time is necessary, you can use a single RECOVER utility
statement to list all of the objects, along with TOLOGPOINT, to identify the
common RBA or LRSN value.

An inline copy that is made during LOAD REPLACE can produce unpredictable
results if that copy is used later in a RECOVER TOCOPY operation. DB2 makes
the copy during the RELOAD phase of the LOAD operation. Therefore, the copy
does not contain corrections for unique index violations and referential constraint
violations because those corrections occur during the INDEXVAL and ENFORCE
phases.

You can use the QUIESCE utility to establish an RBA or LRSN to recover to. The
RBA or LRSN can be used in point-in-time recovery.

606 Administration Guide

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|



If you are working with partitioned table spaces, image copies or system-level
backups that were taken prior to resetting the REORG-pending status of any
partition of a partitioned table space cannot be used for recovery to a current point
in time. Avoid performing a point-in-time recovery for a partitioned table space to
a point in time that is after the REORG-pending status was set, but before a
rebalancing REORG was performed.

If you use the REORG TABLESPACE utility with the SHRLEVEL REFERENCE or
SHRLEVEL CHANGE option on only some partitions of a table space, you must
recover that table space at the partition level. When you take an image copy of
such a table space, the COPY utility issues the informational message DSNU429I.

You can take system-level backups using the BACKUP SYSTEM utility.

Recommendation: Restrict the use of the TOCOPY, TOLOGPOINT, TOLASTCOPY,
and TOLASTFULLCOPY options of the RECOVER utility to personnel with a
thorough knowledge of the DB2 recovery environment.
Related concepts

“Point-in-time recovery using the RECOVER utility” on page 580
Related reference

RECOVER (DB2 Utilities)

Data consistency for point-in-time recoveries:

The RECOVER utility can automatically detect uncommitted transactions that are
running at the recover point in time and roll back the changes on the recovered
objects. After recovery, the objects are left in their transactionally consistent state.

RECOVER TOLOGPOINT and RECOVER TORBA have the recover with
consistency as their default behavior. However, RECOVER TOCOPY,
TOLASTCOPY, and TOLASTFULLCOPY using SHRLEVEL CHANGE image copy
do not ensure data consistency.

RECOVER TOLOGPOINT and RECOVER TOCOPY can be used on a single:
v Partition of a partitioned table space
v Partition of a partitioning index space
v Data set of a simple table space

Tip: If you take SHRLEVEL CHANGE image copies and need to recover to a prior
point in time, then you can use the RBA or LRSN (the START_RBA syscopy
column value) associated with image copy as the TOLOGPOINT value.

All page sets must be restored to the same level; otherwise the data is inconsistent.

Point-in-time recovery can cause table spaces to be placed in CHECK-pending
status if they have table check constraints or referential constraints that are defined
on them. When recovering tables that are involved in a referential constraint, you
should recover all the table spaces that are involved in a constraint. This is the table
space set.

To avoid setting CHECK-pending status, you must perform both of the following
tasks:
v Recover the table space set to a quiesce point.

Chapter 19. Backing up and recovering your data 607

|
|
|
|

|

|
|
|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_recover.htm#db2z_utl_recover


If you do not recover each table space of the table space set to the same quiesce
point, and if any of the table spaces are part of a referential integrity structure:
– All dependent table spaces that are recovered are placed in CHECK-pending

status with the scope of the whole table space.
– All table spaces that are dependent on the table spaces that are recovered are

placed in CHECK-pending status with the scope of the specific dependent
tables.

v Establish a quiesce point or take an image copy after you add check constraints
or referential constraints to a table.
If you recover each table space of a table space set to the same quiesce point, but
referential constraints were defined after the quiesce point, the CHECK-pending
status is set for the table space that contains the table with the referential
constraint.

The RECOVER utility sets various states on table spaces. The following
point-in-time recoveries set various states on table spaces:
v When the RECOVER utility finds an invalid column during the LOGAPPLY

phase on a LOB table space, it sets the table space to auxiliary-warning (AUXW)
status.

v When you recover a LOB or XML table space to a point in time that is not a
quiesce point or to an image copy that is produced with SHRLEVEL CHANGE,
the LOB or XML table space is placed in CHECK-pending (CHKP) status.

v When you recover the LOB or XML table space, but not the base table space, to
any previous point in time, the base table space is placed in auxiliary
CHECK-pending (ACHKP) status, and the index space that contains an index on
the auxiliary table is placed in REBUILD-pending (RBDP) status.

v When you recover only the base table space to a point in time, the base table
space is placed in CHECK-pending (CHKP) status.

v When you recover only the index space that contains an index on the auxiliary
table to a point in time, the index space is placed in CHECK-pending (CHKP)
status.

v When you recover partitioned table spaces with the RECOVER utility to a point
in time that is prior to a partition rebalance, all partitions that were rebalanced
are placed in REORG-pending (REORP) status.

v When you recover a table space to point in time prior to when an identity
column was defined with the RECOVER utility, the table space is placed in
REORG-pending (REORP) status.

v If you do not recover all objects that are members of a referential set to a prior
point in time with the RECOVER utility, or if you recover a referential set to a
point in time that is not a point of consistency with the RECOVER utility, all
dependent table spaces are placed in CHECK-pending (CHKP) status.

v When you recover a table space to a point in time prior to the REORG or
LOAD REPLACE that first materializes the default value for the row change
timestamp column, the table space that contains the table with the row change
timestamp column is placed in REORG-pending (REORP) status.

Important: The RECOVER utility does not back out CREATE or ALTER
statements. After a recovery to a previous point in time, all previous alterations to
identity column attributes remain unchanged. Because these alterations are not
backed out, a recovery to a point in time might put identity column tables out of
sync with the SYSIBM.SYSSEQUENCES catalog table. You might need to modify
identity column attributes after a recovery to resynchronize identity columns with
the catalog table.

608 Administration Guide

|
|
|

|
|
|
|

|
|
|
|



A table space that is in reordered row format cannot be recovered to a prior point
in time in which the table space was in basic row format, or vice versa. If you need
to recover table spaces with different row formats, you need to recover the entire
table space.
Related concepts

Recovering a table space that contains LOB or XML data (DB2 Utilities)
Related information

“Recovering from referential constraint violation” on page 696

The RECOVER TOLOGPOINT option in a data sharing system:

You can use the RECOVER utility with the TOLOGPOINT option to recover a data
sharing DB2 subsystem.

The following figure shows a data sharing system with three DB2 members (A, B,
and C). Table space TS1 and TS2 are being recovered to time TR using the
RECOVER TOLOGPOINT option, they are listed in the same RECOVER job. UR1
was inflight at TR time running on member A, its start time was T1, at time T2 it
updated TS1, and at time T3 it updated TS2, T2 is earlier than T3. UR2 was
aborting at TR time running on member C, its start time was T4 and at time T5 it
updated TS2. There was no active UR on member B at time TR.

RECOVER utility job output messages

The RECOVER utility takes the following actions and provides the following
messages during recovery in a data sharing system.

Figure 55. Using the RECOVER TOLOGPOINT option in a data sharing system

Chapter 19. Backing up and recovering your data 609

|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_recovertablespacelobxmldata.htm#db2z_recovertablespacelobxmldata


LOGCSR phase
After the RECOVER LOGAPPLY phase, the RECOVER utility enters the
log analysis phase, known as the LOGCSR phase. The following messages
are issued during this phase:

DSNU1550I
Indicates the start of log analysis on member A.

DSNU1551I
Indicates the end of log analysis on member A.

DSNU1550I
Indicates the start of log analysis on member C.

DSNU1551I
Indicates the end of log analysis on member C.

DSNU1552I
Indicates the end of LOGCSR phase of RECOVER utility.

DSNU1553I
Issued after the end of the LOGCSR phase. The following
information is shown in the message:
v UR1 on member A modified TS1 at T2 time.
v UR1 on member A modified TS2 at T3 time.
v UR2 on member C modified TS2 at T5 time.

LOGUNDO phase
The RECOVER utility enters the LOGUNDO phase. The following
messages are issued during this phase:

DSNU1554I
Indicates the start of backout for member A.
v Backout is performed on TS2 and TS1 and log records are read

from time TR to T2.
v There maybe one or more DSNU1555I messages showing the

backout progress for member A.

DSNU1556I
Indicates the end of backout on member A.

DSNU1554I
Indicates the start of backout on member C.
v Backout is performed on TS2 and log records are read from time

TR to T5.
v There may be one or more DSNU1555I messages showing the

backout progress for member C.

DSNU1556I
Indicates the end of backout for member C.

DSNU1557I
Indicates the end of the LOGUNDO phase of the RECOVER utility.

A special type of compensation log record will be written during the
LOGUNDO phase of log apply, known as the pseudo compensation log
record in the following context. For each undo log record applied during
the LOGUNDO phase, there will be one pseudo compensation log record
written for it. This is a REDO-only log record and not units of recovery
(UR) related. It will only be used for future log apply in the case that you

610 Administration Guide

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|

|

|



first recover objects to a point in time with consistency and then recover
the same objects again to currency using the same image copy used by
previous recover job.

This type of log record will be skipped by DB2 restart and the RESTORE
SYSTEM utility LOGAPPLY. This type of log record will always be written
to the active log datasets of the DB2 member that is running the RECOVER
job, although it may compensate the log record which was originally from
another DB2 member. The member ID part of this log record will always
store the ID of the DB2 member that is running the RECOVER job.

During the LOGUNDO phase, if either of the following conditions exist:
v Applying the log record to a data page causes the data on the page

logically inconsistent.
v The UNDO log record has already been applied and the page is now

physically inconsistent.

The page is flagged as broken and the pseudo compensation log record of
the log record that is being backed out is written to the active log dataset.
All of the subsequent log apply processes on this data page are skipped,
but the pseudo compensation log records of the skipped log records are
written to the active log dataset. The log apply process continues for other
pages in the same table space and for other objects in the recover list. For
each error that is encountered, a DSNI012I message is issued. At the end,
the RECOVER utility completes with return code 8.

If an error occurs on the index during the LOGUNDO phase, the entire
index is marked as REBUILD-pending (RBDP) and no further log is
applied on this index. You have to rebuild this index after the RECOVER
utility completes with return code 8.

UTILTERM phase
The RECOVER utility enters the UTILTERM phase, which is an existing
phase of the RECOVER utility.

The RECOVER TOLOGPOINT option in a non-data sharing system:

You can use the RECOVER utility with the TOLOGPOINT option to recover a
non-data sharing DB2 subsystem.

Figure 56 on page 612 shows a non-data sharing system. Table spaces TS1 and TS2
are being recovered to time TR using the RECOVER TORBA option. TS1 and TS2
are listed in the same RECOVER job. UR1 was inflight at TR time, the start time
was T1, at time T2 it updated TS1, and at time T3 it updated TS2. T2 is earlier than
T3. UR2 was aborting at TR time, the start time was T4, and at time T5 it updated
TS2.

Chapter 19. Backing up and recovering your data 611



RECOVER utility job output messages

The RECOVER utility takes the following actions and provides the following
messages during recovery in a non-data sharing system.

LOGCSR phase
After the LOGAPPLY phase, the RECOVER utility enters the log analysis
phase, known as the LOGCSR phase. The following messages are issued
during this phase:

DSNU1550I
Indicates the start of log analysis.

DSNU1551I
Indicates the end of log analysis.

DSNU1552I
Indicates the end of the LOGCSR phase of the RECOVER utility.

DSNU1553I
Issued after the end of the LOGCSR phase. The following
information is shown in the message:
v UR1 modified TS1 at T2 time.
v UR1 modified TS2 at T3 time.
v UR2 modified TS2 at T5 time.

LOGUNDO phase
The RECOVER utility enters the LOGUNDO phase. The following
messages are issued during this phase:

DSNU1554I
Indicates the start of backout.
v Backout is performed on TS2 and TS1 and log records

are read from time TR to T2.
v There may be one or more DSNU1555I messages

showing the backout progress.

DSNU1556I
Indicates the end of backout.

Figure 56. Using the RECOVER TOLOGPOINT option in a non-data sharing system

612 Administration Guide



DSNU1557I
Indicates the end of LOGUNDO phase of the RECOVER
utility.

A special type of compensation log record will be written during
the LOGUNDO phase of log apply, known as the pseudo
compensation log record in the following context. For each undo
log record applied during the LOGUNDO phase, there will be one
pseudo compensation log record written for it. This is a
REDO-only log record and not units of recovery (UR) related. It
will only be used for future log apply in the case that you first
recover objects to a point in time with consistency and then recover
the same objects again to currency using the same image copy
used by previous recover job.

This type of log record will be skipped by DB2 restart and the
RESTORE SYSTEM utility LOGAPPLY. This type of log record will
always be written to the active log datasets of the DB2 member
that is running the RECOVER job, although it may compensate the
log record which was originally from another DB2 member. The
member ID part of this log record will always store the ID of the
DB2 member that is running the RECOVER job.

During the LOGUNDO phase, if either of the following conditions
exist:
v Applying the log record to a data page causes the data on the

page logically inconsistent.
v The UNDO log record has already been applied and the page is

now physically inconsistent.

The page is flagged as broken and the pseudo compensation log
record of the log record that is being backed out is written to the
active log dataset. All of the subsequent log apply processes on this
data page are skipped, but the pseudo compensation log records of
the skipped log records are written to the active log dataset. The
log apply process continues for other pages in the same table space
and for other objects in the recover list. For each error that is
encountered, a DSNI012I message is issued. At the end, the
RECOVER utility completes with return code 8.

If an error occurs on the index during the LOGUNDO phase, the
entire index is marked as REBUILD-pending (RBDP) and no
further log is applied on this index. You have to rebuild this index
after the RECOVER utility completes with return code 8.

UTILTERM phase
The RECOVER utility enters the UTILTERM phase, which is an
existing phase of the RECOVER utility.

Recommendations for recovery of compressed data:

Use care when recovering a single data set of a non-partitioned page set to a prior
point in time. If the data set that is recovered was compressed with a different
dictionary from the rest of the page set, you can no longer read the data.

The RECOVER utility does not reset the values that DB2 generates for identity
columns.

Chapter 19. Backing up and recovering your data 613



Related reference

LOAD (DB2 Utilities)

RECOVER (DB2 Utilities)

Recovering by using DB2 restart recovery
If you created a backup by using the BACKUP SYSTEM utility, you can recover
your DB2 subsystem to the point in time of the backup by using normal DB2
restart recovery.

To recover your DB2 system to the point in time of a backup:
1. Back up your system by issuing the BACKUP SYSTEM FULL command.

DFSMShsm maintains up to 85 versions of system backups on disk at any
given time.

2. Recover the system:
a. Stop the DB2 subsystem. For data sharing systems, stop all members of the

group.
b. Use the DFSMShsm command FRRECOV * COPYPOOL(cpname)

GENERATION(gen) to restore the database and log copy pools that the
BACKUP SYSTEM utility creates. In this command, cpname specifies the
name of the copy pool, and gen specifies which version of the copy pool is
to be restored.

c. For data sharing systems, delete all CF structures that are owned by this
group.

d. Restore any logs on tape to disk.
e. Start DB2. For data sharing systems, start all active members.
f. For data sharing systems, execute the GRECP and LPL recovery, which

recovers the changed data that was stored in the coupling facility at the time
of the backup.

Related concepts

“Point-in-time recovery with system-level backups” on page 578

Recovering by using FlashCopy backups
You can use FlashCopy backups to recover your DB2 system to the point in time of
a backup.

For more information about the FlashCopy function, see z/OS DFSMS Advanced
Copy Services.

To recover by using FlashCopy backups:
1. Back up your system:

a. Issue the DB2 command SET LOG SUSPEND to suspend logging and
update activity, and to quiesce 32 KB page writes and data set extensions.
For data sharing systems, issue the command to each member of the group.

b. Use the FlashCopy function to copy all DB2 volumes. Include any ICF
catalogs that are used by DB2, as well as active logs and BSDSs.

c. Issue the DB2 command SET LOG RESUME to resume normal DB2 update
activity. To save disk space, you can use DFSMSdss to dump the disk copies
that you just created to a lower-cost medium, such as tape.

2. Recover your system:

614 Administration Guide

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_load.htm#db2z_utl_load
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_recover.htm#db2z_utl_recover


a. Stop the DB2 subsystem. For data sharing systems, stop all members of the
group.

b. Use DFSMSdss RESTORE to restore the FlashCopy data sets to disk. See
z/OS DFSMSdss Storage Administration Reference for more information.

c. For data sharing systems, delete all CF structures that are owned by this
group.

d. Start DB2. For data sharing systems, start all active members.
e. For data sharing systems, execute the GRECP and LPL recovery, which

recovers the changed data that was stored in the coupling facility at the
time of the backup.

Making catalog definitions consistent with your data after
recovery to a prior point in time

Avoiding point-in-time recovery of the catalog is easier than attempting to correct
the inconsistencies that this kind of recovery causes.

If you choose to recover catalog and directory tables to a prior point in time, you
need to first shut down the DB2 system cleanly and then restart in
ACCESS(MAINT) mode before the recovery.

If you recover catalog tables to a prior point in time, you must perform the
following actions to make catalog definitions consistent with your data.
1. Run the DSN1PRNT utility with the PARM=(FORMAT, NODATA) option on all

data sets that might contain user table spaces. The NODATA option suppresses
all row data, which reduces the output volume that you receive. Data sets that
contain user tables are of the following form, where y can be either I or J:
catname.DSNDBC.dbname.tsname.y0001.A00n

2. PSPI Execute the following SELECT statements to find a list of table space
and table definitions in the DB2 catalog:
SELECT NAME, DBID, PSID FROM SYSIBM.SYSTABLESPACE;
SELECT NAME, TSNAME, DBID, OBID FROM SYSIBM.SYSTABLES;

PSPI

3. For each table space name in the catalog, look for a data set with a
corresponding name. If a data set exists, take the following additional actions:
a. Find the field HPGOBID in the header page section of the DSN1PRNT

output. This field contains the DBID and PSID for the table space. Check if
the corresponding table space name in the DB2 catalog has the same DBID
and PSID.

b. If the DBID and PSID do not match, execute DROP TABLESPACE and
CREATE TABLESPACE statements to replace the incorrect table space entry
in the DB2 catalog with a new entry. Be sure to make the new table space
definition exactly like the old one. If the table space is segmented, SEGSIZE
must be identical for the old and new definitions.
You can drop a LOB table space only if it is empty (that is, it does not
contain auxiliary tables). If a LOB table space is not empty, you must first
drop the auxiliary table before you drop the LOB table space. To drop
auxiliary tables, you can perform one of the following actions:
v Drop the base table.
v Delete all rows that reference LOBs from the base table, and then drop

the auxiliary table.

Chapter 19. Backing up and recovering your data 615

|
|

|
|
|

|
|



c. Find the PGSOBD fields in the data page sections of the DSN1PRNT output.
These fields contain the OBIDs for the tables in the table space. For each
OBID that you find in the DSN1PRNT output, search the DB2 catalog for a
table definition with the same OBID.

d. If any of the OBIDs in the table space do not have matching table
definitions, examine the DSN1PRNT output to determine the structure of
the tables that are associated with these OBIDs. If you find a table whose
structure matches a definition in the catalog, but the OBIDs differ, proceed
to the next step. The OBIDXLAT option of DSN1COPY corrects the
mismatch. If you find a table for which no table definition exists in the
catalog, re-create the table definition by using the CREATE TABLE
statement. To re-create a table definition for a table that has had columns
added, first use the original CREATE TABLE statement, and then use
ALTER TABLE to add columns, which makes the table definition match the
current structure of the table.

e. Use the DSN1COPY utility with the OBIDXLAT option to copy the existing
data to the new tables in the table space, and translate the DBID, PSID, and
OBIDs.

If a table space name in the DB2 catalog does not have a data set with a
corresponding name, one of the following events has probably occurred:
v The table space was dropped after the point in time to which you recovered.

In this case, you cannot recover the table space. Execute DROP TABLESPACE
to delete the entry from the DB2 catalog.

v The table space was defined with the DEFINE(NO) option. In this case, the
data set is allocated when you insert data into the table space.

4. For each data set in the DSN1PRNT output, look for a corresponding DB2
catalog entry. If no entry exists, follow the instructions in “Recovering an
accidentally dropped table space” on page 600 to re-create the entry in the DB2
catalog.

5. If you recover the catalog tables SYSSEQ and SYSSEQ2, identity columns and
sequence objects are inconsistent. To avoid duplicate identity column values,
recover all table spaces that contain tables that use identity columns to the
point in time to which you recovered SYSSEQ and SYSSEQ2. To eliminate gaps
between identity column values, use the ALTER TABLE statement. For
sequence objects, use the ALTER SEQUENCE statement to eliminate these gaps.

6. Ensure that the IPREFIX values of user table spaces and index spaces that were
reorganized match the IPREFIX value in the VSAM data set names that are
associated with each table space or partition. If the IPREFIX that is recorded in
the DB2 catalog and directory is different from the VSAM cluster names, you
cannot access your data. To ensure that these IPREFIX values match, complete
the following procedure:
a. Query the SYSIBM.SYSTABLEPART and SYSIBM.SYSINDEXPART catalog

tables to determine the IPREFIX value that is recorded in the catalog for
objects that were reorganized.

b. Compare this IPREFIX value to the IPREFIX value in the VSAM data set
name that is associated with the table space or index space.

c. When IPREFIX values do not match for an object, rename the VSAM data
set to specify the correct IPREFIX.

Important: For objects involved in cloning, rename the base and clone
objects at the same time.

Example: Assume that the catalog specifies an IPREFIX of J for an object but
the VSAM data set that corresponds to this object is .

616 Administration Guide



catname.DSNDBC.dbname.spname.I0001.A001

You must rename this data set to:
catname.DSNDBC.dbname.spname.J0001.A001

7. Delete the VSAM data sets that are associated with table spaces that were
created with the DEFINE NO option and that reverted to an unallocated state.
After you delete the VSAM data sets, you can insert or load rows into these
unallocated table spaces to allocate new VSAM data sets.

Related concepts

“Recovery of tables that contain identity columns” on page 592
Related reference

CREATE TABLESPACE (SQL Reference)

CREATE INDEX (SQL Reference)

DSN1COPY (DB2 Utilities)

DSN1PRNT (DB2 Utilities)

Recovery of catalog and directory tables
Recovering catalog and directory tables to a prior point in time is strongly
discouraged for several reasons.
v You must recover all table spaces that are associated with the catalog tables that

you recover to the same point in time. For example, if you recover any table
space in the DB2 catalog (DSNDB06) and directory (DSNDB01), all table spaces
(except SYSUTILX) must be recovered.
The catalog and directory contain definitions of all databases. When databases
DSNDB01 and DSNDB06 are restored to a prior point, information about later
definitions, authorizations, binds, and recoveries is lost. If you restore the catalog
and directory, you might need to restore user databases; if you restore user
databases, you might need to restore the catalog and directory.

v You might create catalog definitions that are inconsistent with your data. These
catalog and data inconsistencies are usually the result of one of the following
actions:
– A catalog table space was restored.
– SYSSEQ and SYSSEQ2 were recovered to a prior point in time.
– The definition of a table, table space, index, or index space was changed after

the data was last backed up.
v You can cause problems for user table spaces or index spaces that have been

reorganized with SHRLEVEL REFERENCE or SHRLEVEL CHANGE.
v You can cause a populated VSAM data set that was defined with DEFINE NO

option to revert back to the undefined state. To avoid errors, you must delete the
existing VSAM data sets before the table space or index can be accessed.

Performing remote site recovery from a disaster at a local site
After a disaster at your local site, you can recover at a remote site by using the
RESTORE SYSTEM utility.

You can use RESTORE SYSTEM to recover DB2 from the backups that the
BACKUP SYSTEM utility produces, or you can use RESTORE SYSTEM LOGONLY
to recover from backups that you produce in some other way. For DB2 remote-site
recovery procedures that do not use the RESTORE SYSTEM utility, see “Performing
remote-site disaster recovery” on page 703.

Chapter 19. Backing up and recovering your data 617

|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_createtablespace.htm#db2z_sql_createtablespace
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sql_createindex.htm#db2z_sql_createindex
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1copy.htm#db2z_utl_dsn1copy
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1prnt.htm#db2z_utl_dsn1prnt


Recovering with the BACKUP SYSTEM and RESTORE SYSTEM
utilities
You can use the BACKUP SYSTEM and RESTORE SYSTEM utilities to recover
your DB2 subsystem.

To recover your DB2 subsystem:
1. Prepare for recovery:

a. Use BACKUP SYSTEM FULL to take the system backup.
b. Transport the system backups to the remote site.

2. Recover:
a. Run the DSNJU003 utility using either of the following control statements:
v In this control statement, substitute log-truncation-point with the RBA or

LRSN of the point to which you want to recover
CRESTART CREATE, SYSPITR=log-truncation-point

where .
v In this control statement, substitute log-truncation-timestamp with the

timestamp of the point to which you want to recover.
CRESTART CREATE,SYSPITRT=log-truncation-timestamp

b. Start DB2.
c. Run the RESTORE SYSTEM utility by issuing the RESTORE SYSTEM control

statement.
This utility control statement performs a recovery to the current time (or to
the time of the last log transmission from the local site).

Recovering without using the BACKUP SYSTEM utility
You can recover your DB2 subsystem if you do not use the BACKUP SYSTEM
utility to produce backups.

To recover your DB2 subsystem without using the BACKUP SYSTEM utility:
1. Prepare for recovery.

a. Issue the DB2 command SET LOG SUSPEND to suspend logging and
update activity, and to quiesce 32 KB page writes and data set extensions.
For data sharing systems, issue the command to each member of the data
sharing group.

b. Use the FlashCopy function to copy all DB2 volumes. Include any ICF
catalogs that are used by DB2, as well as active logs and BSDSs.

c. Issue the DB2 command SET LOG RESUME to resume normal DB2 activity.
d. Use DFSMSdss to dump the disk copies that you just created to tape, and

then transport this tape to the remote site. You can also use other methods
to transmit the copies that you make to the remote site.

2. Recover your DB2 subsystem.
a. Use DFSMSdss to restore the FlashCopy data sets to disk.
b. Run the DSNJU003 utility by using the CRESTART CREATE,

SYSPITR=log-truncation-point control statement.
The log-truncation-point is the RBA or LRSN of the point to which you want
to recover.

c. Restore any logs on tape to disk.
d. Start DB2.

618 Administration Guide

|
|

|

|

|
|

|

|



e. Run the RESTORE SYSTEM utility using the RESTORE SYSTEM LOGONLY
control statement to recover to the current time (or to the time of the last
log transmission from the local site).

Backup and recovery involving clone tables
When you recover a clone table that has been exchanged, you can use an image
copy that was made prior to an exchange. However, no point-in-time recovery is
possible prior to the most recent exchange.

Clone tables spaces and index spaces are stored in separate physical data sets. You
must copy them and recover them separately. Output from the REPORT utility
includes information about clone tables, if they exist.

The QUIESCE command and the COPY and RECOVER utilities each use the
CLONE keyword to function on clone objects.
v Running QUIESCE with the CLONE keyword establishes a quiesce point for a

clone object.
v Running the COPY utility with the CLONE keyword takes a copy of a clone

object.
v Running the RECOVER utility with the CLONE keyword recovers a clone object.
Related concepts

Types of tables (Introduction to DB2 for z/OS)

Data restore of an entire system
The RESTORE SYSTEM utility invokes z/OS DFSMShsm services to recover a DB2
subsystem to a prior point in time.

The RESTORE SYSTEM utility restores the databases in the volume copies that the
BACKUP SYSTEM utility provided. After restoring the data, the RESTORE
SYSTEM utility can then recover a DB2 subsystem to a given point in time.

The SYSPITR option of DSNJU003 CRESTART allows you to create a conditional
restart control record (CRCR) to truncate logs for system point-in-time recovery in
preparation for running the RESTORE SYSTEM utility.

The SYSPITRT option of DSNJU003 CRESTART allows you to add a timestamp, in
the ENDTIME format, to truncate logs for system point-in-time recovery restart.

You can specify a value of ’FFFFFFFFFFFF’ to cause system point-in-time recovery
to occur without log truncation.
Related reference

RESTORE SYSTEM (DB2 Utilities)

DSNJU003 (change log inventory) (DB2 Utilities)

Chapter 19. Backing up and recovering your data 619

|

|
|
|

|
|
|

|
|

|
|

|
|

|

|

|

|

|
|

|
|
|

|
|
|

|
|

|
|

|

|

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.intro/db2z_typesoftables.htm#db2z_typesoftables
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_restoresystem.htm#db2z_utl_restoresystem
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnju003.htm#db2z_utl_dsnju003


620 Administration Guide



Chapter 20. Recovering from different DB2 for z/OS problems

When you use DB2, occasional problems might occur. You can troubleshoot and
recover from many problems on your own by using recovery procedures.

Recovering from IRLM failure
You can recover from an IRLM failure, regardless of whether the failure results in a
wait, loop, or abend.

Symptoms

The IRLM waits, loops, or abends. The following message might be issued:
DXR122E irlmnm ABEND UNDER IRLM TCB/SRB IN MODULE xxxxxxxx
ABEND CODE zzzz

Environment

If the IRLM abends, DB2 terminates. If the IRLM waits or loops, the IRLM
terminates, and DB2 terminates automatically.

Resolving the problem

Operator response:

1. Start the IRLM if you did not set it for automatic start when you installed DB2.
2. Start DB2.
3. Connect IMS to DB2, by issuing the following command, where ssid is the

subsystem ID:
/START SUBSYS ssid

4. Connect CICS to DB2 by issuing the following command:
DSNC STRT

Related tasks

“Starting the IRLM” on page 444
“Starting DB2” on page 375
“Connecting from CICS” on page 457

Recovering from z/OS or power failure
You can recover from a situation in which z/OS or your processor power fails.

Symptoms

No processing is occurring.

Resolving the problem

Operator response:

v If the power failure or z/OS failure has occurred:
1. IPL z/OS, and initialize the job entry subsystem (JES).
2. If you normally run VTAM with DB2, start VTAM at this point.

© Copyright IBM Corp. 1982, 2009 621



3. Start the IRLM if it was not set for automatic start during DB2 installation.
4. Start DB2.
5. Use the RECOVER POSTPONED command if postponed-abort units of

recovery were reported after restarting DB2, and if the AUTO option of the
LIMIT BACKOUT field on installation panel DSNTIPL was not specified.

6. Restart IMS or CICS.
– IMS automatically connects and resynchronizes when it is restarted.
– CICS automatically connects to DB2 if the CICS PLT contains an entry for

the attachment facility module DSNCCOM0. Alternatively, use the
command DSNC STRT to connect the CICS attachment facility to DB2.

v If you know that a power failure is imminent, issue a STOP DB2 MODE(FORCE)
command to allow DB2 to stop cleanly before the power is interrupted. If DB2 is
unable to stop completely before the power failure, the situation is no worse
than if DB2 were still operational.
Related concepts

“Connections to the IMS control region” on page 462
Related tasks

“Starting the IRLM” on page 444
“Starting DB2” on page 375
“Connecting from CICS” on page 457

Recovering from disk failure
When a disk hardware failure occurs and an entire unit is lost, you can recover
from this situation.

Symptoms

No I/O activity occurs for the affected disk address. Databases and tables that
reside on the affected unit are unavailable.

Resolving the problem

Operator response:

1. Assure that no incomplete I/O requests exist for the failing device. One way
to do this is to force the volume offline by issuing the following z/OS
command, where xxx is the unit address:
VARY xxx,OFFLINE,FORCE

To check disk status, issue the following command:
D U,DASD,ONLINE

The following console message is displayed after you force a volume offline:

UNIT TYPE STATUS VOLSER VOLSTATE
4B1 3390 O-BOX XTRA02 PRIV/RSDNT

The disk unit is now available for service.
If you previously set the I/O timing interval for the device class, the I/O
timing facility terminates all requests that are incomplete at the end of the
specified time interval, and you can proceed to the next step without varying
the volume offline. You can set the I/O timing interval either through the
IECIOSxx z/OS parameter library member or by issuing the following z/OS
command:

622 Administration Guide



SETIOS MIH,DEV=devnum,IOTIMING=mm:ss.

2. Issue (or request that an authorized operator issue) the following DB2
command to stop all databases and table spaces that reside on the affected
volume:
-STOP DATABASE(database-name) SPACENAM(space-name)

If the disk unit must be disconnected for repair, stop all databases and table
spaces on all volumes in the disk unit.

3. Select a spare disk pack, and use ICKDSF to initialize from scratch a disk unit
with a different unit address (yyy) and the same volume serial number
(VOLSER).

// Job
//ICKDSF EXEC PGM=ICKDSF
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

REVAL UNITADDRESS(yyy) VERIFY(volser)

If you initialize a 3380 or 3390 volume, use REVAL with the VERIFY
parameter to ensure that you initialize the intended volume, or to revalidate
the home address of the volume and record 0. Alternatively, use ISMF to
initialize the disk unit.

4. Issue the following z/OS console command, where yyy is the new unit
address:
VARY yyy,ONLINE

5. To check disk status, issue the following command:
D U,DASD,ONLINE

The following console message is displayed:
UNIT TYPE STATUS VOLSER VOLSTATE
7D4 3390 O XTRA02 PRIV/RSDNT

6. Issue the following DB2 command to start all the appropriate databases and
table spaces that were previously stopped:
-START DATABASE(database-name) SPACENAM(space-name)

7. Delete all table spaces (VSAM linear data sets) from the ICF catalog by issuing
the following access method services command for each one of them, where y
is either I or J:
DELETE catnam.DSNDBC.dbname.tsname.y0001.A00x CLUSTER NOSCRATCH

8. For user-managed table spaces, define the VSAM cluster and data components
for the new volume by issuing the access method services DEFINE CLUSTER
command with the same data set name as in the previous step, in the
following format: catnam.DSNDBC.dbname.tsname.y0001.A00x. The y is I or J,
and the x is C (for VSAM clusters) or D (for VSAM data components).

9. For a user-defined table space, define the new data set before an attempt to
recover it. You can recover table spaces that are defined in storage groups
without prior definition.

10. Recover the table spaces by using the DB2 RECOVER utility.
Related reference

″RECOVER″ (DB2 Utility Guide and Reference)
Related information

z/OS Internet Library

z/OS Internet Library

z/OS Internet Library

z/OS Internet Library

Chapter 20. Recovering from different DB2 for z/OS problems 623

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_recover.htm
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/


Recovering from application errors
You can recover from a problem in which an application program placed a
logically incorrect value in a table.

Symptoms

Unexpected data is returned from an SQL SELECT statement, even though the
SQLCODE that is associated with the statement is 0.

Causes

An SQLCODE of 0 indicates that DB2 and SQL did not cause the problem, so the
cause of the incorrect data in the table is the application.

Resolving the problem

System programmer response: You might be able to use the DB2 RECOVER utility
with the TOLOGPOINT option to restore the database to a point before the error
occurred. However, in many circumstances you must manually back out the
changes that were introduced by the application. Among those circumstances are:
v Other applications changed the database after the error occurred. If you recover

the table spaces that were modified by the bad application, all subsequent
changes that were made by the other applications are lost.

v DB2 checkpoints were taken after the error occurred. In this case, you can use
RECOVER TOLOGPOINT to restore the data up to the last checkpoint before the
error occurred. However, all subsequent changes to the database are lost.

If you have a situation for which using RECOVER TOLOGPOINT is appropriate,
you can use one of the following procedures as a basis for backing out the
incorrect changes that were made by the application. The procedure that you use
depends on whether you have established a quiesce point.

Backing out incorrect application changes (with a quiesce
point)

If you have an established quiesce point, you can back out incorrect changes that
your application made.

To back out the incorrect changes:
1. Run the REPORT utility twice, once using the RECOVERY option and once

using the TABLESPACESET option. On each run, specify the table space that
contains the inaccurate data. If you want to recover to the last quiesce point,
specify the option CURRENT when running REPORT RECOVERY.

2. Examine the REPORT output to determine the RBA of the quiesce point.
3. Run RECOVER TOLOGPOINT with the RBA that you found, specifying the

names of all related table spaces.

Recovering all related table spaces to the same quiesce point prevents violations of
referential constraints.

624 Administration Guide



Backing out incorrect application changes (without a quiesce
point)

Even if you do not have an established quiesce point, you can back out incorrect
changes that your application made. Be aware, however, that if you use this
procedure, you lose any updates to the database that occurred after the last
checkpoint and before the application error occurred.

To back out the incorrect changes:
1. Run the DSN1LOGP stand-alone utility on the log scope that is available at

DB2 restart, using the SUMMARY(ONLY) option.
2. Determine the RBA of the most recent checkpoint before the first bad update

occurred, from one of the following sources:
v Message DSNR003I on the operator’s console, which looks similar to this

message:
DSNR003I RESTART ..... PRIOR CHECKPOINT RBA=000007425468

The required RBA in this example is X’7425468’.
This technique works only if no checkpoints have been taken since the
application introduced the bad updates.

v Output from the print log map utility. You must know the time that the first
bad update occurred. Find the last BEGIN CHECKPOINT RBA before that time.

3. Run DSN1LOGP again, using SUMMARY(ONLY), and specify the checkpoint
RBA as the value of RBASTART. The output lists the work in the recovery log,
including information about the most recent complete checkpoint, a summary
of all processing, and an identification of the databases that are affected by each
active user.

4. Find the unit of recovery in which the error was made. One of the messages in
the output (identified as DSN1151I or DSN1162I) describes the unit of recovery
in which the error was made. To find the unit of recovery, use your knowledge
of the time that the program was run (START DATE= and TIME=), the
connection ID (CONNID=), authorization ID (AUTHID=), and plan name
(PLAN=). In that message, find the starting RBA as the value of START=.

5. Run the DB2 RECOVER utility with the TOLOGPOINT option, and specify the
starting RBA that you found in the previous step.

6. Recover any related table spaces or indexes to the same point in time.
Related concepts

“DSN1LOGP summary report” on page 660
Related reference

″DSN1LOGP″ (DB2 Utility Guide and Reference)

Recovering from IMS-related failures
When you work in a DB2-IMS environment and problems occur, you can recover
from those problems.

Symptoms

Problems that occur in a DB2-IMS environment can result in a variety of
symptoms:
v An IMS wait, loop, or abend is accompanied by a DB2 message that goes to the

IMS console. This symptom indicates an IMS control region failure.

Chapter 20. Recovering from different DB2 for z/OS problems 625

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1logp.htm


v When IMS connects to DB2, DB2 detects one or more units of recovery that are
indoubt.

v When IMS connects to DB2, DB2 detects that it has committed one or more units
of recovery that IMS indicates should be rolled back.

v Messages are issued to the IMS master terminal, to the logical terminal, or both
to indicate that some sort of IMS or DB2 abend has occurred.

Environment

DB2 can be used in an XRF (Extended Recovery Facility) recovery environment
with IMS.

To resolve IMS-related problems, follow the appropriate procedure.
Related concepts

“Plans for extended recovery facility toleration” on page 554

Recovering from IMS control region failure
You can recover from a problem in which the IMS control region fails.

Symptoms
v IMS waits, loops, or abends.
v DB2 attempts to send the following message to the IMS master terminal during

an abend:
DSNM002 IMS/TM xxxx DISCONNECTED FROM SUBSYSTEM yyyy RC=RC

This message cannot be sent if the failure prevents messages from being
displayed.

v DB2 does not send any messages for this problem to the z/OS console.

Environment
v DB2 detects that IMS has failed.
v DB2 either backs out or commits work that is in process.
v DB2 saves indoubt units of recovery, which need to be resolved at reconnection

time.

Resolving the problem

Operator response: Use normal IMS restart procedures, which include starting IMS
by issuing the z/OS START IMS command. The following results occur:
1. All DL/I and DB2 updates that have not been committed are backed out.
2. IMS is automatically reconnected to DB2.
3. IMS passes the recovery information for each entry to DB2 through the IMS

attachment facility. (IMS indicates whether to commit or roll back.)
4. DB2 resolves the entries according to IMS instructions.

Recovering from IMS indoubt units of recovery
When IMS connects to DB2, and DB2 has indoubt units of recovery that have not
been resolved, these units of recovery need to be resolved.

Symptoms

626 Administration Guide



If DB2 has indoubt units of recovery that IMS did not resolve, the following
message is issued at the IMS master terminal, where xxxx is the subsystem
identifier:
DSNM004I RESOLVE INDOUBT ENTRY(S) ARE OUTSTANDING FOR SUBSYSTEM xxxx

Causes

When this message is issued, IMS was either cold started, or it was started with an
incomplete log tape. Message DSNM004I might also be issued if DB2 or IMS
abnormally terminated in response to a software error or other subsystem failure.

Environment
v The connection remains active.
v IMS applications can still access DB2 databases.
v Some DB2 resources remain locked out.

If the indoubt thread is not resolved, the IMS message queues might start to back
up. If the IMS queues fill to capacity, IMS terminates. Be aware of this potential
difficulty, and monitor IMS until the indoubt units of work are fully resolved.

Resolving the problem

System programmer response:

1. Force the IMS log closed by using the /DBR FEOV command.
2. Archive the IMS log.
3. Issue the command DFSERA10 to print the records from the previous IMS log

tape for the last transaction that was processed in each dependent region.
Record the PSB and the commit status from the X’37’ log that contains the
recovery ID.

4. Run the DL/I batch job to back out each PSB that is involved that has not
reached a commit point. The process might be time-consuming because
transactions are still being processed. This process might also lock a number of
records, which could affect the rest of the processing and the rest of the
message queues.

5. Enter the DB2 command DISPLAY THREAD (imsid) TYPE (INDOUBT).
6. Compare the NIDs (IMSID + OASN in hexadecimal) that are displayed in the

DISPLAY THREAD output with the OASNs (4 bytes decimal) as shown in the
DFSERA10 output. Decide whether to commit or roll back.

7. Use DFSERA10 to print the X’5501FE’ records from the current IMS log tape.
Every unit of recovery that undergoes indoubt resolution processing is
recorded; each record with an ’IDBT’ code is still indoubt. Note the correlation
ID and the recovery ID, for use during the next step.

8. Enter the following DB2 command, choosing to commit or roll back,
and specify the correlation ID:
-RECOVER INDOUBT (imsid) ACTION(COMMIT|ABORT) NID (nid)

If the command is rejected because of associated network IDs, use the same
command again, substituting the recovery ID for the network ID.

Related concepts

“Duplicate IMS correlation IDs” on page 463

Chapter 20. Recovering from different DB2 for z/OS problems 627



Recovering IMS indoubt units of work that need to be rolled back
When units of recovery between IMS and DB2 are indoubt at restart time, DB2 and
IMS sometimes handle the indoubt units of recovery differently. When this
situation happens, you might need to roll back the changes.

Symptoms

The following messages are issued after a DB2 restart:
DSNM005I IMS/TM RESOVLE INDOUBT PROTOCOL PROBLEM WITH SUBSYSTEM xxxx

DFS3602I xxxx SUBSYSTEM RESOLVE-INDOUBT FAILURE,RC=yyyy

Causes

The reason that these messages are issued is that indoubt units of work exist for a
DB2-IMS application, and the way that DB2 and IMS handle these units of work
differs.

At restart time, DB2 attempts to resolve any units of work that are indoubt. DB2
might commit some units and roll back others. DB2 records the actions that it takes
for the indoubt units of work. At the next connect time, DB2 verifies that the
actions that it took are consistent with the IMS decisions. If the DB2 RECOVER
INDOUBT command is issued prior to an IMS attempt to reconnect, DB2 might
decide to commit the indoubt units of recovery, whereas IMS might decide to roll
back the units of recovery. This inconsistency results in the DSNM005I message
being issued. Because DB2 tells IMS to retain the inconsistent entries, the DFS3602I
message is issued when the attempt to resolve the indoubt units of recovery ends.

Environment
v The connection between DB2 and IMS remains active.
v DB2 and IMS continue processing.
v No DB2 locks are held.
v No units of work are in an incomplete state.

Resolving the problem

System programmer response: Do not use the DB2 RECOVER INDOUBT
command. The problem is that DB2 was not indoubt but should have been.
Database updates have probably been committed on one side (IMS or DB2) and
rolled back on the other side.
1. Enter the IMS command /DISPLAY OASN SUBSYS DB2 to display the IMS list

of units of recovery that need to be resolved. This command generates the list
of OASNs in a decimal format, not in a hexadecimal format.

2. Issue the IMS command /CHANGE SUBSYS DB2 RESET to reset all the entries
in the list. (No entries are passed to DB2.)

3. Use DFSERA10 to print the log records that were recorded at the time of failure
and during restart. Look at the X’37’, X’56’, and X’5501FE’ records at reconnect
time. Notify IBM Software Support about the problem.

4. Determine what the inconsistent unit of recovery was doing by examining the
log information, and manually make the IMS and DB2 databases consistent.
Related concepts

“Duplicate IMS correlation IDs” on page 463

628 Administration Guide



Recovering from IMS application failure
You can recover from a situation in which an IMS application abnormally
terminates in a DB2 environment.

Symptoms

The following messages are issued at the IMS master terminal and at the LTERM
that entered the transaction that is involved:
DFS555 - TRAN tttttttt ABEND (SYSIDssss);

MSG IN PROCESS: xxxx (up to 78 bytes of data) timestamp
DFS555A - SUBSYSTEM xxxx OASN yyyyyyyyyyyyyyyy STATUS COMMIT|ABORT

Causes

The problem might be caused by a usage error in the application or by a DB2
problem.

Environment
v The failing unit of recovery is backed out by both DL/I and DB2.
v The connection between IMS and DB2 remains active.

Resolving the problem

Operator response:

v If you think that the problem was caused by a usage error, investigate and
resolve the error.

v If you think that the problem is a DB2 problem, rather than a usage error, try to
diagnose the problem using standard diagnostic procedures. You might need to
contact IBM Software Support if you cannot resolve the problem yourself.
Related concepts

″Techniques for debugging programs in IMS″ (DB2 Application Programming
and SQL Guide)
Related information

DB2 Diagnosis Guide and Reference

Recovering from a DB2 failure in an IMS environment
When DB2 fails in a DB2-IMS environment, you can recover from this situation.

Symptoms

DB2 fails or is not running, and one of the following status situations exists:
v If you specified error option Q, the program terminates with a U3051 user abend

completion code.
v If you specified error option A, the program terminates with a U3047 user abend

completion code.

In either of these situations, the IMS master terminal receives IMS message
DFS554, and the terminal that is involved in the problem receives IMS message
DFS555.

Resolving the problem

Operator response:

Chapter 20. Recovering from different DB2 for z/OS problems 629

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_techniquedebugims.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_techniquedebugims.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc/db2z_digref.htm


1. Restart DB2.
2. Follow the standard IMS procedures for handling application abends.

Recovering from CICS-related failure
When you work in a DB2-CICS environment and problems occur, you can recover
from those problems.

Symptoms

Problems that occur in a DB2-CICS environment can result in a variety of
symptoms, such as:
v Messages that indicate an abend in CICS or the CICS attachment facility
v A CICS wait or a loop
v Indoubt units of recovery between CICS and DB2

Environment

DB2 can be used in an XRF (Extended Recovery Facility) recovery environment
with CICS.

Resolving the problem

To resolve CICS-related problems, follow the appropriate procedure.
Related concepts

“Plans for extended recovery facility toleration” on page 554

Recovering from CICS application failures
You can recover from a CICS application abend in a DB2 environment.

Symptoms

The following message is issued at the user’s terminal:
DFH2206 TRANSACTION tranid ABEND abcode BACKOUT SUCCESSFUL

In this message, tranid represents the transaction that abnormally terminated, and
abcode represents the specific abend code.

Environment
v The failing unit of recovery is backed out in both CICS and DB2.
v The connection between CICS and DB2 remains active.

Resolving the problem

Operator response: Investigate the abend by reading about the abend code.
v For an AEY9 abend, start the CICS attachment facility.
v For an ASP7 abend, determine why the CICS SYNCPOINT was unsuccessful.
v For other abends, follow appropriate diagnostic procedures.

630 Administration Guide



Recovering DB2 when CICS is not operational
You can recover DB2 from a situation in which CICS is not operational.

Symptoms

Any of the following symptoms might occur:
v CICS waits or loops.
v CICS abends, as indicated by messages or dump output.

Environment

DB2 performs each of the following actions:
v Detects the CICS failure.
v Backs out inflight work.
v Saves indoubt units of recovery that need to be resolved when CICS is

reconnected.

Diagnosing the problem

If you think that CICS is in a wait or loop situation, find the origin of the wait or
loop. The origin might be in CICS, in CICS applications, or in the CICS attachment
facility.

If you receive messages that indicate a CICS abend, examine the messages and
dump output for more information.

If threads are connected to DB2 when CICS terminates, DB2 issues message
DSN3201I. The message indicates that DB2 end-of-task (EOT) routines have
cleaned up and disconnected any connected threads.

Resolving the problem

Operator response:

1. Correct the problem that caused CICS to terminate abnormally.
2. Do an emergency restart of CICS. The emergency restart performs each of the

following actions:
v Backs out inflight transactions that changed CICS resources
v Remembers the transactions with access to DB2 that might be indoubt

3. Start the CICS attachment facility by entering the appropriate command for
your release of CICS. The CICS attachment facility performs the following
actions:
v Initializes and reconnects to DB2
v Requests information from DB2 about the indoubt units of recovery and

passes the information to CICS
v Allows CICS to resolve the indoubt units of recovery
Related tasks

“Connecting from CICS” on page 457
Related information

DB2 Diagnosis Guide and Reference

CICS Transaction Server for z/OS Information Center

Chapter 20. Recovering from different DB2 for z/OS problems 631

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc/db2z_digref.htm
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/


Recovering DB2 when the CICS attachment facility cannot
connect to DB2

You can recover DB2 when the CICS attachment facility cannot connect to DB2.

Symptoms

Any of the possible symptoms can occur:
v CICS remains operational, but the CICS attachment facility abends.
v The CICS attachment facility issues a message that indicates the reason for the

connection failure, or it requests a X’04E’ dump.
v The reason code in the X’04E’ dump indicates the reason for failure.
v CICS issues message DFH2206 that indicates that the CICS attachment facility

has terminated abnormally with the DSNC abend code.
v CICS application programs that try to access DB2 while the CICS attachment

facility is inactive are abnormally terminated. The code AEY9 is issued.

Environment

CICS backs out the abnormally terminated transaction and treats it like an
application abend.

Resolving the problem

Operator response: Start the CICS attachment facility by entering the appropriate
command for your release of CICS. After you start the CICS attachment facility, the
following events occur:
1. The CICS attachment facility initializes and reconnects to DB2.
2. The CICS attachment facility requests information about the indoubt units of

recovery and passes the information to CICS.
3. CICS resolves the indoubt units of recovery.

Recovering CICS indoubt units of recovery
When the CICS attachment facility abends, CICS and DB2 build lists of indoubt
units of work, either dynamically or during restart, depending on the failing
subsystem. If any units of recovery are indoubt at connect time, you can recover
from this situation.

Symptoms

One of the following messages is sent to the user-named CICS destination that is
specified for the MSGQUEUEn(name) attribute in the RDO (resource definition
online): DSN2001I, DSN2034I, DSN2035I, or DSN2036I.

Causes

For CICS, a DB2 unit of recovery might be indoubt if the forget entry (X’FD59’) of
the task-related installation exit routine is absent from the CICS system journal.
The indoubt condition applies only to the DB2 unit of recovery in this case because
CICS already committed or backed out any changes to its resources.

A DB2 unit of recovery is indoubt for DB2 if an End Phase 1 is present and the
Begin Phase 2 is absent.

632 Administration Guide



Environment

The following table summarizes the situations that can exist when CICS units of
recovery are indoubt.

Table 105. Situations that involve CICS abnormal indoubt units of recovery

Message ID Meaning

DSN2001I The named unit of recovery cannot be resolved by CICS because CICS
was cold started. The CICS attachment facility continues the startup
process.

DSN2034I The named unit of recovery is not indoubt for DB2, but it is indoubt
according to CICS log information. The reason is probably a CICS restart
with the wrong tape. The problem might also be caused by a DB2 restart
to a prior point in time.

DSN2035I The named unit of recovery is indoubt for DB2, but it is not in the CICS
indoubt list. This is probably due to an incorrect CICS restart. The CICS
attachment facility continues the startup process and provides a
transaction dump. The problem might also be caused by a DB2 restart to
a prior point in time.

DSN2036I CICS indicates rollback for the named unit of recovery, but DB2 has
already committed the unit of recovery. The CICS attachment facility
continues the startup process.

CICS retains details of indoubt units of recovery that were not resolved during
connection startup. An entry is purged when it no longer shows up on the list that
is presented by DB2 or, when the entry is present in the list, when DB2 resolves it.

Resolving the problem

System programmer response: If CICS cannot resolve one or more indoubt units
of recovery, resolve them manually by using DB2 commands. Using the steps in
this procedure is rarely necessary because it is required only where operational
errors or software problems have prevented automatic resolution.
1. Obtain a list of the indoubt units of recovery from DB2 by issuing the following

command:
-DISPLAY THREAD (connection-name) TYPE (INDOUBT)

Messages like these are then issued:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS - DSNV406I - INDOUBT THREADS - COORDINATOR

STATUS RESET URID AUTHID
coordinator_name status yes/no urid authid
DISPLAY INDOUBT REPORT COMPLETE DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL
COMPLETION

The corr_id (correlation ID) for CICS Transaction Server for z/OS 1.2 and
subsequent releases of CICS consists of:

Bytes 1 - 4
Thread type: COMD, POOL, or ENTR

Bytes 5 - 8
Transaction ID

Bytes 9 - 12
Unique thread number

Two threads can sometimes have the same correlation ID when the connection
has been broken several times and the indoubt units of recovery have not been

Chapter 20. Recovering from different DB2 for z/OS problems 633



resolved. In this case, use the network ID (NID) instead of the correlation ID to
uniquely identify indoubt units of recovery.
The network ID consists of the CICS connection name and a unique number
that is provided by CICS at the time that the syncpoint log entries are written.
This unique number is an 8-byte store clock value that is stored in records that
are written to both the CICS system log and to the DB2 log at syncpoint
processing time. This value is referred to in CICS as the recovery token.

2. Scan the CICS log for entries that are related to a particular unit of recovery.
Look for a PREPARE record (JCRSTRID X’F959’), for the task-related
installation where the recovery token field (JCSRMTKN) equals the value that
is obtained from the network-ID. The network ID is supplied by DB2 in the
DISPLAY THREAD command output.
You can find the CICS task number by locating the prepare log record in the
CICS log for indoubt units of recovery. Using the CICS task number, you can
locate all other entries on the log for this CICS task.
You can use the CICS journal print utility DFHJUP to scan the log.

3. Use the change log inventory utility (DSNJU003) to scan the DB2 log for entries
that are related to a particular unit of recovery. Locate the End Phase 1 record
with the required network ID. Then use the URID from this record to obtain
the rest of the log records for this unit of recovery.
When scanning the DB2 log, note that the DB2 startup message DSNJ099I
provides the start log RBA for this session.

4. If needed, do indoubt resolution in DB2. To invoke DB2 to take the
recovery action for an indoubt unit of recovery, issue the DB2 RECOVER
INDOUBT command, where the correlation_id is unique:
DSNC -RECOVER INDOUBT (connection-name)

ACTION (COMMIT/ABORT)
ID (correlation_id)

If the transaction is a pool thread, use the value of the correlation ID (corr_id)
that is returned by DISPLAY THREAD for thread#.tranid in the RECOVER
INDOUBT command. In this case, the first letter of the correlation ID is P. The
transaction ID is in characters five through eight of the correlation ID.
If the transaction is assigned to a group (group is a result of using an entry
thread), use thread#.groupname instead of thread#.tranid. In this case, the first
letter of the correlation ID is a G, and the group name is in characters five
through eight of the correlation ID. The groupname is the first transaction that is
listed in a group.
Where the correlation ID is not unique, use the following command:
DSNC -RECOVER INDOUBT (connection-name)

ACTION (COMMIT|ABORT)
NID (network-id)

When two threads have the same correlation ID, use the NID keyword instead
of the ID keyword. The NID value uniquely identifies the work unit.
To recover all threads that are associated with connection-name, omit the ID
option.
The command results that are in either of the following messages indicate
whether the thread is committed or rolled back:
DSNV414I - THREAD thread#.tranid COMMIT SCHEDULED
DSNV414I - THREAD thread#.tranid ABORT SCHEDULED

When you resolve indoubt units of work, note that CICS and the CICS
attachment facility are not aware of the commands to DB2 to commit or abort
indoubt units of recovery because only DB2 resources are affected. However,

634 Administration Guide



CICS keeps details about the indoubt threads that could not be resolved by
DB2. This information is purged either when the presented list is empty or
when the list does not include a unit of recovery that CICS remembers.

Investigate any inconsistencies that you found in the preceding steps.
Related reference

″DSNJU003 (change log inventory)″ (DB2 Utility Guide and Reference)
Related information

CICS Transaction Server for z/OS Information Center

Recovering from CICS attachment facility failure
You can recover DB2 when the CICS attachment facility abends or when a CICS
attachment thread subtask abends.

Symptoms

The symptoms depend on whether the CICS attachment facility or one of its thread
subtasks terminated:
v If the main CICS attachment facility subtask abends, an abend dump is

requested. The contents of the dump indicate the cause of the abend. When the
dump is issued, shutdown of the CICS attachment facility begins.

v If a thread subtask terminates abnormally, a X’04E’ dump is issued, and the
CICS application abends with a DSNC dump code. The X’04E’ dump generally
indicates the cause of the abend. The CICS attachment facility remains active.

Resolving the problem

Operator response: Correct the problem that caused the abend by analyzing the
CICS formatted transaction dump or subtask SNAP dump. If the CICS attachment
facility shuts down, use CICS commands to stop the execution of any CICS-DB2
applications.

Related information

″DB2 messages″ (DB2 Messages)

Recovering from subsystem termination
You can recover DB2 after DB2 or an operator-issued cancel causes the subsystem
to terminate.

Symptoms

When a DB2 subsystem terminates, the specific failure is identified in one or
messages. The following messages might be issued at the z/OS console:
DSNV086E - DB2 ABNORMAL TERMINATION REASON=XXXXXXXX
DSN3104I - DSN3EC00 -TERMINATION COMPLETE
DSN3100I - DSN3EC00 - SUBSYSTEM ssnm READY FOR -START COMMAND

The following message might be issued to the IMS master terminal:
DSNM002I IMS/TM xxxx DISCONNECTED FROM SUBSYSTEM

yyyy RC=rc

The following message might be issued to the CICS transient data error
destination, which is defined in the RDO:

Chapter 20. Recovering from different DB2 for z/OS problems 635

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnju003.htm
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/db2z_messageslist.htm


DSNC2025I - THE ATTACHMENT FACILITY IS INACTIVE

Environment
v IMS and CICS continue.
v In-process IMS and CICS applications receive SQLCODE -923 (SQLSTATE

’57015’) when accessing DB2.
In most cases, if an IMS or CICS application program is running when a -923
SQLCODE is returned, an abend occurs. This is because the application program
generally terminates when it receives a -923 SQLCODE. To terminate, some
synchronization processing occurs (such as a commit). If DB2 is not operational
when synchronization processing is attempted by an application program, the
application program abends. In-process applications can abend with an abend
code X’04F’.

v IMS applications that begin to run after subsystem termination begins are
handled according to the error options.
– For option R, SQL return code -923 is sent to the application, and IMS pseudo

abends.
– For option Q, the message is enqueued again, and the transaction abends.
– For option A, the message is discarded, and the transaction abends.

v CICS applications that begin to run after subsystem termination begins are
handled as follows:
– If the CICS attachment facility has not terminated, the application receives a

-923 SQLCODE.
– If the CICS attachment facility has terminated, the application abends (code

AEY9).

Resolving the problem

Operator response:

1. Restart DB2 by issuing the command START DB2.
2. For IMS environments, re-establish the IMS connection by issuing the IMS

command /START SUBSYS DB2.
3. For CICS environments, re-establish the CICS connection by issuing the CICS

attachment facility command DSNC STRT.

Recovering from temporary resource failure
DB2 sometimes experiences a temporary problem when it accesses log data sets. In
this case, you need to recover from the situation so that processing can continue as
normal.

Symptoms

DB2 issues messages for the access failure for each log data set. These messages
provide information that is needed to resolve the access error. For example:
DSNJ104I ( DSNJR206 RECEIVED ERROR STATUS 00000004

FROM DSNPCLOC FOR DSNAME=DSNC710.ARCHLOG1.A0000049

*DSNJ153E ( DSNJR006 CRITICAL LOG READ ERROR
CONNECTION-ID = TEST0001
CORRELATION-ID = CTHDCORID001
LUWID = V71A.SYEC1DB2.B3943707629D=10
REASON-CODE = 00D10345

636 Administration Guide



Causes

DB2 might experience a problem when it attempts to allocate or open archive log
data sets during the rollback of a long-running unit of recovery. These temporary
failures can be caused by:
v A temporary problem with DFHSM recall
v A temporary problem with the tape subsystem
v Uncataloged archive logs
v Archive tape mount requests being canceled

Resolving the problem

User response: You can attempt to recover from temporary failures by issuing a
positive reply (Y) to the following message:
*26 DSNJ154I ( DSNJR126 REPLY Y TO RETRY LOG READ REQUEST, N TO ABEND

If the problem persists, quiesce other work in the system before replying N, which
terminates DB2.

Recovering from active log failures
A variety of active log failures might occur, but you can recover from them.

Symptoms

Most active log failures are accompanied by or preceded by error messages to
inform you of out-of-space conditions, write or read I/O errors, or loss of dual
active logging.

If you receive message DSNJ103I at startup time, the active log is experiencing
dynamic allocation problems. If you receive message DSNJ104I, the active log is
experiencing open-close problems. In either case, you should follow procedures in
“Recovering from BSDS or log failures during restart” on page 650.

Recovering from being out of space in active logs
The available space in the active log is finite, so the active log might fill to capacity
for one of several reasons. For example, delays in offloading and excessive logging
can fill the active log. You can recover from out-of-space conditions in the active
log.

Symptoms

The following warning message is issued when the last available active log data
set is 5% full:
DSNJ110E - LAST COPY n ACTIVE LOG DATA SET IS nnn PERCENT FULL

The DB2 subsystem reissues the message after each additional 5% of the data set
space is filled. Each time the message is issued, the offload process is started.
IFCID trace record 0330 is also issued if statistics class 3 is active.

If the active log fills to capacity, after having switched to single logging, DB2 issues
the following message, and an offload is started.
DSNJ111E - OUT OF SPACE IN ACTIVE LOG DATA SETS

Chapter 20. Recovering from different DB2 for z/OS problems 637



The DB2 subsystem then halts processing until an offload is completed.

Causes

The active log is out of space.

Environment

An out-of-space condition on the active log has very serious consequences.
Corrective action is required before DB2 can continue processing. When the active
log becomes full, the DB2 subsystem cannot do any work that requires writing to
the log until an offload is completed. Until that offload is completed, DB2 waits for
an available active log data set before resuming normal DB2 processing. Normal
shutdown, with either a QUIESCE or FORCE command, is not possible because
the shutdown sequence requires log space to record system events that are related
to shutdown (for example, checkpoint records).

Resolving the problem

Operator response:

1. Ensure that the offload is not waiting for a tape drive. If it is, mount a tape.
DB2 then processes the offload task.

2. If you are uncertain about what is causing the problem, enter the following
command:
-ARCHIVE LOG CANCEL OFFLOAD

This command causes DB2 to restart the offload task. Issuing this command
might solve the problem.

3. If issuing this command does not solve the problem, determine and resolve the
cause of the problem, and then reissue the command. If the problem cannot be
resolved quickly, have the system programmer define additional active logs
until you can resolve the problem.

System programmer response: Define additional active log data sets so that DB2
can continue its normal operation while the problem that is causing the offload
failures is corrected.
1. Use the z/OS command CANCEL to stop DB2.
2. Use the access method services DEFINE command to define new active log

data sets.
3. Run utility DSNJLOGF to initialize the new active log data sets.
4. Define the new active log data sets in the BSDS by using the change log

inventory utility (DSNJU003). .
5. Restart DB2. Offload is started automatically during startup, and restart

processing occurs.

Recommendation: To minimize the number of offloads that are taken per day in
your installation, consider increasing the size of the active log data sets.

Related reference

″DSNJU003 (change log inventory)″ (DB2 Utility Guide and Reference)

Recovering from a write I/O error on an active log data set
You can recover from a situation in which a write error occurs on an active log
data set.

638 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnju003.htm


Symptoms

The following message is issued:
DSNJ105I - csect-name LOG WRITE ERROR DSNAME=..., LOGRBA=...,

ERROR STATUS= ccccffss

Causes

Although this problem can be caused by several problems, one possible cause is a
CATUPDT failure.

Environment

When a write error occurs on an active log data set, the following characteristics
apply:
v DB2 marks the failing DB2 log data set TRUNCATED in the BSDS.
v DB2 goes on to the next available data set.
v If dual active logging is used, DB2 truncates the other copy at the same point.
v The data in the truncated data set is offloaded later, as usual.
v The data set is not stopped; it is reused on the next cycle. However, if a

DSNJ104 message indicates a CATUPDT failure, the data set is marked
STOPPED.

Resolving the problem

System programmer response: If the DSNJ104 message indicates a CATUPDT
failure, use access method services and the change log inventory utility
(DSNJU003) to add a replacement data set. In this case, you need to stop DB2. The
timing of when you should take this action depends on how widespread the
problem is.
v If the additional problem is localized and does not affect your ability to recover

from any other problems, you can wait until the earliest convenient time.
v If the problem is widespread (perhaps affecting an entire set of active log data

sets), stop DB2 after the next offload.
Related reference

″DSNJU003 (change log inventory)″ (DB2 Utility Guide and Reference)

Recovering from a loss of dual active logging
If you use dual active logs, which is generally recommended, and one of the active
log fails, DB2 reverts to use of a single active log. You can recover from this
situation and return to dual active-log mode.

Symptoms

The following message is issued:
DSNJ004I - ACTIVE LOG COPY n INACTIVE, LOG IN SINGLE MODE,

ENDRBA=...

Causes

This problem occurs when DB2 completes one active log data set and then finds
that the subsequent copy (COPY n) data sets have not been offloaded and are
marked STOPPED.

Chapter 20. Recovering from different DB2 for z/OS problems 639

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnju003.htm


Environment

DB2 continues in single mode until offloading completes and then returns to dual
mode. If the data set is marked STOPPED, however, intervention is required.

Resolving the problem

System programmer response:

1. Verify that offload is proceeding and is not waiting for a tape mount. You
might need to run the DB2 print log map utility (DSNJU004) to determine the
status of all data sets.

2. If any data sets are marked STOPPED, use IDCAMS to delete the data sets, and
then re-add them by using the DB2 change log inventory utility (DSNJU003).
Related reference

″DSNJU003 (change log inventory)″ (DB2 Utility Guide and Reference)

Recovering from I/O errors while reading the active log
You can recover from situations in which an I/O error occurs when DB2 is reading
the active log.

Symptoms

The following message is issued:
DSNJ106I - LOG READ ERROR DSNAME=..., LOGRBA=...,

ERROR STATUS=ccccffss

Environment
v If the error occurs during offload, offload tries to identify the RBA range from a

second copy of the active log.
– If no second copy of the active log exists, the data set is stopped.
– If the second copy of the active log also has an error, only the original data

set that triggered the offload is stopped. Then the archive log data set is
terminated, leaving a discontinuity in the archived log RBA range.

– The following message is issued:
DSNJ124I - OFFLOAD OF ACTIVE LOG SUSPENDED FROM RBA xxxxxx

TO RBA xxxxxx DUE TO I/O ERROR

– If the second copy of the active log is satisfactory, the first copy is not
stopped.

v If the error occurs during recovery, DB2 provides data from specific log RBAs
that are requested from another copy or archive. If this is unsuccessful, recovery
fails and the transaction cannot complete, but no log data sets are stopped.
However, the table space that is being recovered is not accessible.

Resolving the problem

System programmer response:

v If the problem occurred during offload, determine which databases are affected
by the active log problem, and take image copies of those. Then proceed with a
new log data set.

v You can use the IDCAMS REPRO command to archive as much of the stopped
active log data set as possible. Then run the change log inventory utility to

640 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnju003.htm


notify the BSDS of the new archive log and its log RBA range. Repairing the
active log does not solve the problem because offload does not go back to
unload it.

v If the active log data set has been stopped, it is not used for logging. The data
set is not deallocated; it is still used for reading.

v If the data set is not stopped, an active log data set should nevertheless be
replaced if persistent errors occur. The operator is not told explicitly whether the
data set has been stopped. To determine the status of the active log data set, run
the print log map utility (DSNJU004).

v If you need to replace the data set:
1. Ensure that the data is saved.

If you have dual active logs, the data is saved on the other active log, which
becomes your new data set. Skip to step 4.
If you are not using dual active logs, take the following steps to determine
whether the data set with the error has been offloaded:
a. Use the print log map utility (DSNJU004) to list information about the

archive log data sets from the BSDS.
b. Search the list for a data set whose RBA range includes the range of the

data set with the error.
2. If the data set with the error has been offloaded (that is, if the value for high

RBA offloaded in the print log map utility output is greater than the RBA
range of the data set with the error), manually add a new archive log to the
BSDS by using the change log inventory utility (DSNJU003). Use IDCAMS to
define a new log that has the same LRECL and BLKSIZE values as defined in
DSNZPxxx. You can use the access method services REPRO command to
copy a data set with the error to the new archive log. If the archive log is not
cataloged, DB2 can locate it from the UNIT and VOLSER values in the BSDS.

3. If an active log data set has been stopped, an RBA range has not been
offloaded; copy from the data set with the error to a new data set. If
additional I/O errors prevent you from copying the entire data set, a gap
occurs in the log and restart might fail, although the data still exists and is
not overlaid. If this occurs, see “Recovering from BSDS or log failures during
restart” on page 650.

4. Stop DB2, and use the change log inventory utility to update information in
the BSDS about the data set with the error.
a. Use DELETE to remove information about the bad data set.
b. Use NEWLOG to name the new data set as the new active log data set

and to give it the RBA range that was successfully copied.
The DELETE and NEWLOG operations can be performed by the same job
step; put DELETE before NEWLOG in the SYSIN input data set. This step
clears the stopped status, and DB2 eventually archives it.

c. Delete the data set that is in error by using access method services.
d. Redefine the data set so that you can write to it. Use access method

services DEFINE command to define the active log data sets. Run utility
DSNJLOGF to initialize the active log data sets. If using dual logs, use
access method services REPRO to copy the good log into the redefined
data set so that you have two consistent, correct logs again.

Related reference

″DSNJU004 (print log map)″ (DB2 Utility Guide and Reference)
″2. PRIMARY QUANTITY″ (DB2 Installation Guide)

Chapter 20. Recovering from different DB2 for z/OS problems 641

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnju004.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipa02.htm


Recovering from archive log failures
You can recover from situations in which archive logging fails.

Symptoms

Archive log failures can result in a variety of DB2 and z/OS messages that identify
problems with archive log data sets.

One specific symptom that might occur is message DSNJ104I, which indicates an
open-close problem on the archive log.

Recovering from allocation problems with the archive log
You can recover from situations in which allocation problems occur for the archive
log.

Symptoms

The following message is issued:
DSNJ103I - csect-name LOG ALLOCATION ERROR DSNAME=dsname,
ERROR STATUS=eeeeiiii, SMS REASON CODE=ssssssss

z/OS dynamic allocation provides the ERROR STATUS information. If the
allocation is for offload processing, the following message is also issued:
DSNJ115I - OFFLOAD FAILED, COULD NOT ALLOCATE AN ARCHIVE DATA SET

Causes

Archive log allocation problems can occur when various DB2 operations fail; for
example:
v The RECOVER utility executes and requires an archive log. If neither archive log

can be found or used, recovery fails.
v The active log becomes full, and an offload is scheduled. Offload tries again the

next time it is triggered. The active log does not wrap around; therefore, if no
more active logs are available, the offload fails, but data is not lost.

v The input is needed for restart, which fails. If this is the situation that you are
experiencing, see “Recovering from BSDS or log failures during restart” on page
650

Resolving the problem

Operator response: Check the allocation error code for the cause of the problem,
and correct it. Ensure that drives are available, and run the recovery job again. If a
DFSMSdfp ACS user-exit filter exists for an archive log data set, be careful because
this can cause the DB2 subsystem to fail on a device allocation error when DB2
attempts to read the archive log data set.

Recovering from write I/O errors during archive log offload
You can recover from write I/O errors that occur during the offload of an archive
log.

Symptoms

642 Administration Guide



No specific DB2 message is issued for write I/O errors. Only a z/OS error
recovery program message is issued.

If DB2 message DSNJ128I is issued, an abend in the offload task occurred, in
which case you should follow the instructions for this message.

Environment
v Offload abandons that output data set (no entry in BSDS).
v Offload dynamically allocates a new archive and restarts offloading from the

point at which it was previously triggered. For dual archiving, the second copy
waits.

v If an error occurs on the new data set, these additional actions occur:
– For dual archive mode, the following DSNJ114I message is generated, and the

offload processing changes to single mode.
DSNJ114I - ERROR ON ARCHIVE DATA SET, OFFLOAD CONTINUING

WITH ONLY ONE ARCHIVE DATA SET BEING GENERATED

– For single mode, the offload process abandons the output data set. Another
attempt to offload this RBA range is made the next time offload is triggered.

– The active log does not wrap around; if no more active logs are available,
data is not lost.

Resolving the problem

Operator response: Ensure that offload activity is allocated on a drive and control
unit that are operational.

Related information

″DSNJ128I″ (DB2 Messages)

Recovering from read I/O errors on an archive data set during
recovery

You can recover from read I/O errors that occur on an archive log during recovery.

Symptoms

No specific DB2 message is issued; only the z/OS error recovery program message
is issued.

Environment
v If a second copy of the archive log exists, the second copy is allocated and used.
v If a second copy of the archive log does not exist, recovery fails.

Resolving the problem

Operator response: If you recover from tape, try recovering by using a different
drive. If this approach does not work, contact the system programmer.

System programmer response: Recover to the last image copy or to the RBA of the
last quiesce point.

Related reference

″RECOVER″ (DB2 Utility Guide and Reference)

Chapter 20. Recovering from different DB2 for z/OS problems 643

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnj128i.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_recover.htm


Recovering from insufficient disk space for offload processing
If offload processing terminates unexpectedly when DB2 is offloading the active
log data sets to disk, you can recover from this situation.

Symptoms

Prior to the failure, z/OS issues abend message IEC030I, IEC031I, or IEC032I.
Offload processing terminates unexpectedly. DB2 issues the following message:
DSNJ128I - LOG OFFLOAD TASK FAILED FOR ACTIVE LOG nnnnn

Additional z/OS abend messages might accompany message DSNJ128I.

Causes

The following situations can cause problems with insufficient disk space during
DB2 offload processing:
v The size of the archive log data set is too small to contain the data from the

active log data sets during offload processing. All secondary space allocations
have been used.

v All available space on the disk volumes to which the archive data set is being
written has been exhausted.

v The primary space allocation for the archive log data set (as specified in the load
module for subsystem parameters) is too large to allocate to any available online
disk device.

Environment

DB2 deallocates the data set on which the error occurred. If the subsystem is in
dual archive mode, DB2 changes to single archive mode and continues the offload.
If the offload cannot complete in single archive mode, the active log data sets
cannot be offloaded, and the status of the active log data sets remains
NOTREUSEABLE. Another attempt to offload the RBA range of the active log data
sets is made the next time offload is invoked.

Resolving the problem

System programmer response: The actions that you take depend on what caused
DB2 message DSNJ128I to be issued:
v If z/OS abend message IEC030I precedes DB2 message DSNJ128I, increase the

primary or secondary allocations (or both) for the archive log data set in
DSNZPxxx. Another option is to reduce the size of the active log data set.
Modifications to DSNZPxxx require that you stop and start DB2 for the changes
to take effect. If the data that is to be offloaded is particularly large, you can
mount another online storage volume or make one available to DB2.

v If z/OS abend message IEC032I precedes message DSNJ128I, make space
available on the disk volumes, or make another online storage volume available
for DB2. After you make additional space available, issue the DB2 command
ARCHIVE LOG CANCEL OFFLOAD. DB2 then retries the offload.

v If z/OS abend message IEC032I precedes DB2 message DSNJ128I, make space
available on the disk volumes, or make available another online storage volume
for DB2. If this approach is not possible, adjust the value of PRIQTY in the
DSNZPxxx module to reduce the primary allocation. If the primary allocation is
reduced, you might need to increase the size of the secondary space allocation to
avoid future abends.

644 Administration Guide



Related reference

″2. PRIMARY QUANTITY″ (DB2 Installation Guide)

Recovering from BSDS failures
When the bootstrap data set (BSDS) is damaged, you need to recover that BSDS,
regardless of whether you are running DB2 in dual-BSDS or single-BSDS mode.

Symptoms

If a BSDS is damaged, DB2 issues one of the following message numbers:
DSNJ126I, DSNJ100I, or DSNJ120I.

Related concepts

“Management of the bootstrap data set” on page 519

Recovering from an I/O error on the BSDS
When an I/O error occurs on the only copy of the BSDS, you need to recover the
BSDS before DB2 can operate normally. If an I/O error occurs on one copy of the
BSDS in a dual-BSDS mode environment, you need to recover that copy of the
BSDS before the next restart.

Symptoms

The following message is issued:
DSNJ126I - BSDS ERROR FORCED SINGLE BSDS MODE

The following messages are then issued:
DSNJ107I - READ ERROR ON BSDS

DSNAME=... ERROR STATUS=...
DSNJ108I - WRITE ERROR ON BSDS

DSNAME=... ERROR STATUS=...

Causes

A write I/O error occurred on a BSDS.

Environment

If DB2 is in a dual-BSDS mode and one copy of the BSDS is damaged by an I/O
error, the BSDS mode changes from dual-BSDS mode to single-BSDS mode. If DB2
is in a single-BSDS mode when the BSDS is damaged by an I/O error, DB2
terminates until the BSDS is recovered.

Resolving the problem

System programmer response:

1. Use access method services to rename or delete the damaged BSDS and to
define a new BSDS with the same name as the failing BSDS. You can find
control statements in job DSNTIJIN.

2. Issue the DB2 command RECOVER BSDS to make a copy of the good BSDS in
the newly allocated data set and to reinstate dual-BSDS mode.
Related tasks

“Recovering the BSDS from a backup copy” on page 647

Chapter 20. Recovering from different DB2 for z/OS problems 645

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipa02.htm


Recovering from an error that occurs while opening the BSDS
You need to recover the bootstrap data set (BSDS) if an error occurs when DB2
opens the BSDS.

Symptoms

The following message is issued:
DSNJ100I - ERROR OPENING BSDS n DSNAME=..., ERROR STATUS=eeii

Resolving the problem

System programmer response:

1. Use access method services to delete or rename the damaged data set, to define
a replacement data set, and to copy (with the REPRO command) the remaining
BSDS to the replacement.

2. Use the START DB2 command to start the DB2 subsystem.
Related tasks

“Recovering the BSDS from a backup copy” on page 647

Recovering from unequal timestamps on BSDSs
When timestamps on different copies of the bootstrap data set (BSDS) differ, DB2
attempts to resynchronize the BSDSs and restore dual BSDS mode. If this attempt
succeeds,DB2 restart continues automatically. If this attempt fails, you need to
recover from the situation.

Symptoms

The following message is issued:
DSNJ120I - DUAL BSDS DATA SETS HAVE UNEQUAL TIMESTAMPS,

BSDS1 SYSTEM=..., UTILITY=..., BSDS2 SYSTEM=..., UTILITY=...

Causes

Unequal timestamps can occur for the following reasons:
v One of the volumes that contains the BSDS has been restored. All information of

the restored volume is outdated. If the volume contains any active log data sets
or DB2 data, their contents are also outdated. The outdated volume has the
lower timestamp.

v Dual BSDS mode has degraded to single BSDS mode, and you are trying to start
without recovering the bad copy of the BSDS.

v The DB2 subsystem abended after updating one copy of the BSDS, but prior to
updating the second copy.

Resolving the problem

Operator response: If DB2 restart fails, notify the system programmer.

System programmer response: If DB2 fails to automatically resynchronize the
BSDS data sets:
1. Run the print log map utility (DSNJU004) on both copies of the BSDS; compare

the lists to determine which copy is accurate or current.
2. Rename the outdated data set, and define a replacement for it.

646 Administration Guide



3. Copy the good data set to the replacement data set, using the REPRO
command of access method services.

4. Use the access method services REPRO command to copy the current version
of the active log to the outdated data set if all the following conditions are true:
v The problem was caused by a restored outdated BSDS volume.
v The restored volume contains active log data.
v You were using dual active logs on separate volumes.
If you were not using dual active logs, cold start the subsystem.
If the restored volume contains database data, use the RECOVER utility to
recover that data after successful restart.
Related troubleshooting information

“Recovering from a failure during a log RBA read request” on page 671
“Recovering from a failure resulting from total or excessive loss of log data” on
page 675
Related tasks

“Recovering the BSDS from a backup copy”

Recovering the BSDS from a backup copy
In some situations, the bootstrap data set (BSDS) becomes damaged, and you need
to recover the BSDS from a backup copy.

DB2 stops and does not restart until dual-BSDS mode is restored in the following
situations:
v DB2 is operating in single-BSDS mode, and the BSDS is damaged.
v DB2 is operating in dual-BSDS mode, and both BSDSs are damaged.

To recover the BSDS from a backup copy:
1. Locate the BSDS that is associated with the most recent archive log data set.

The data set name of the most recent archive log is displayed on the z/OS
console in the last occurrence of message DSNJ003I, which indicates that
offloading has successfully completed. In preparation for the rest of this
procedure, keep a log of all successful archives that are noted by that message.
v If archive logs are on disk, the BSDS is allocated on any available disk. The

BSDS name is like the corresponding archive log data set name; change only
the first letter of the last qualifier, from A to B, as in the following example:

Archive log name
DSN.ARCHLOG1.A0000001

BSDS copy name
DSN.ARCHLOG1.B0000001

v If archive logs are on tape, the BSDS is the first data set of the first archive
log volume. The BSDS is not repeated on later volumes.

2. If the most recent archive log data set has no copy of the BSDS (presumably
because an error occurred during its offload), locate an earlier copy of the BSDS
from an earlier offload.

3. Rename or delete any damaged BSDS.
v To rename a damaged BSDS, use the access method services ALTER

command with the NEWNAME option.
v To delete a damaged BSDS, use the access method services DELETE

command.

Chapter 20. Recovering from different DB2 for z/OS problems 647



For each damaged BSDS, use access method services to define a new BSDS as a
replacement data set. Job DSNTIJIN contains access method services control
statements to define a new BSDS. The BSDS is a VSAM key-sequenced data set
(KSDS) that has three components: cluster, index, and data. You must rename
all components of the data set. Avoid changing the high-level qualifier.

4. Use the access method services REPRO command to copy the BSDS from the
archive log to one of the replacement BSDSs that you defined in the prior step.
Do not copy any data to the second replacement BSDS; data is placed in the
second replacement BSDS in a later step in this procedure.
a. Use the print log map utility (DSNJU004) to print the contents of the

replacement BSDS. You can then review the contents of the replacement
BSDS before continuing your recovery work.

b. Update the archive log data set inventory in the replacement BSDS.
Examine the print log map output, and note that the replacement BSDS
does not obtain a record of the archive log from which the BSDS was
copied. If the replacement BSDS is a particularly old copy, it is missing all
archive log data sets that were created later than the BSDS backup copy.
Therefore, you need to update the BSDS inventory of the archive log data
sets to reflect the current subsystem inventory.
Use the change log inventory utility (DSNJU003) NEWLOG statement to
update the replacement BSDS, adding a record of the archive log from
which the BSDS was copied. Ensure that the CATALOG option of the
NEWLOG statement is properly set to CATALOG = YES if the archive log
data set is cataloged. Also, use the NEWLOG statement to add any
additional archive log data sets that were created later than the BSDS copy.

c. Update DDF information in the replacement BSDS. If the DB2 subsystem for
your installation is part of a distributed network, the BSDS contains the
DDF control record. You must review the contents of this record in the
output of the print log map utility. If changes are required, use the change
log inventory DDF statement to update the BSDS DDF record.

d. Update the active log data set inventory in the replacement BSDS.
In unusual circumstances, your installation might have added, deleted, or
renamed active log data sets since the BSDS was copied. In this case, the
replacement BSDS does not reflect the actual number or names of the active
log data sets that your installation has currently in use.
If you must delete an active log data set from the replacement BSDS log
inventory, use the change log inventory utility DELETE statement.
If you need to add an active log data set to the replacement BSDS log
inventory, use the change log inventory utility NEWLOG statement. Ensure
that the RBA range is specified correctly on the NEWLOG statement.
If you must rename an active log data set in the replacement BSDS log
inventory, use the change log inventory utility DELETE statement, followed
by the NEWLOG statement. Ensure that the RBA range is specified correctly
on the NEWLOG statement.

e. Update the active log RBA ranges in the replacement BSDS. Later, when a
restart is performed, DB2 compares the RBAs of the active log data sets that
are listed in the BSDS with the RBAs that are found in the actual active log
data sets. If the RBAs do not agree, DB2 does not restart. The problem is
magnified when a particularly old copy of the BSDS is used. To resolve this
problem, use the change log inventory utility to change the RBAs that are
found in the BSDS to the RBAs in the actual active log data sets. Take the
appropriate action, described below, to change RBAs in the BSDS:

648 Administration Guide



v If you are not certain of the RBA range of a particular active log data set,
use DSN1LOGP to print the contents of the active log data set. Obtain the
logical starting and ending RBA values for the active log data set from
the DSN1LOGP output. The STARTRBA value that you use in the change
log inventory utility must be at the beginning of a control interval.
Similarly, the ENDRBA value that you use must be at the end of a control
interval. To get these values, round the starting RBA value from the
DSN1LOGP output down so that it ends in X’000’. Round the ending
RBA value up so that it ends in X’FFF’.

v When the RBAs of all active log data sets are known, compare the actual
RBA ranges with the RBA ranges that are found in the BSDS (listed in the
print log map utility output).
If the RBA ranges are equal for all active log data sets, you can proceed
to step 4f without any additional work.
If the RBA ranges are not equal, adjust the values in the BSDS to reflect
the actual values. For each active log data set for which you need to
adjust the RBA range, use the change log inventory utility DELETE
statement to delete the active log data set from the inventory in the
replacement BSDS. Then use the NEWLOG statement to redefine the
active log data set to the BSDS.

f. If only two active log data sets are specified in the replacement BSDS, add a
new active log data set for each copy of the active log, and define each new
active log data set of the replacement BSDS log inventory.
If only two active log data sets are specified for each copy of the active log,
DB2 might have difficulty during restart. The difficulty can arise when one
of the active log data sets is full and has not been offloaded, whereas the
second active log data set is close to filling. Adding a new active log data set
for each copy of the active log can alleviate difficulties on restart in this
situation.
To add a new active log data set for each copy of the active log, use the
access method services DEFINE command. The control statements to
accomplish this task can be found in job DSNTIJIN. After the active log data
sets are physically defined and allocated, use the change log inventory
utility NEWLOG statement to define the new active log data sets of the
replacement BSDS. You do not need to specify the RBA ranges on the
NEWLOG statement.

5. Copy the updated BSDS copy to the second new BSDS data set. The dual
bootstrap data sets are now identical.

6. Optional: Use the print log map utility (DSNJU004) to print the contents of the
second replacement BSDS at this point.

7. If you have lost your current active log data set, refer to the following topics:
v “Recovering from BSDS or log failures during restart” on page 650
v “Task 4: Truncate the log at the point of error” on page 662, which provides

information about how to construct a conditional restart control record
(CRCR).

8. Restart DB2, using the newly constructed BSDS. DB2 determines the current
RBA and what active logs need to be archived.
Related information

z/OS Internet Library

Chapter 20. Recovering from different DB2 for z/OS problems 649

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/


Recovering from BSDS or log failures during restart
When the bootstrap data set (BSDS) or part of the recovery log for DB2 is damaged
or lost and that damage prevents restart, you need to recover from that situation.
What you do to recover varies based on the particular circumstances.

If the problem is discovered at restart, begin with one of the following recovery
procedures:
v “Recovering from active log failures” on page 637
v “Recovering from archive log failures” on page 642
v “Recovering from BSDS failures” on page 645

If the problem persists, return to the procedures in this section.

When DB2 recovery log damage terminates restart processing, DB2 issues messages
to the console to identify the damage and issue an abend reason code. (The SVC
dump title includes a more specific abend reason code to assist in problem
diagnosis.) If the explanations for the reason codes indicate that restart failed
because of some problem that is not related to a log error, see DB2 Diagnosis
Guide and Reference, and contact IBM Software Support.

To minimize log problems during restart, the system requires two copies of the
BSDS. Dual logging is also recommended.

Basic approaches to recovery: The two basic approaches to recovery from problems
with the log are:
v Restart DB2, bypassing the inaccessible portion of the log and rendering some

data inconsistent. Then recover the inconsistent objects by using the RECOVER
utility, or re-create the data by using REPAIR. Use the methods that are
described following this procedure to recover the inconsistent data.

v Restore the entire DB2 subsystem to a prior point of consistency. The method
requires that you have first prepared such a point; for suggestions, see
“Preparing to recover to a prior point of consistency” on page 585. Methods of
recovery are described under “Recovering from unresolvable BSDS or log data
set problem during restart” on page 672.

Bypassing the damaged log

Even if the log is damaged, and DB2 is started by circumventing the damaged
portion, the log is the most important source for determining what work was lost
and what data is inconsistent.

Bypassing a damaged portion of the log generally proceeds with the following
steps:
1. DB2 restart fails. A problem exists on the log, and a message identifies the

location of the error. The following abend reason codes, which appear only in
the dump title, can be issued for this type of problem. This is not an exhaustive
list; other codes might occur.

00D10261
00D10262
00D10263

00D10264
00D10265
00D10266

00D10267
00D10268
00D10329

00D1032A
00D1032B

00D1032C
00E80084

650 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc/db2z_digref.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc/db2z_digref.htm


The following figure illustrates the general problem.

2. DB2 cannot skip over the damaged portion of the log and continue restart
processing. Instead, you restrict processing to only a part of the log that is error
free. For example, the damage shown in the preceding figure occurs in the log
RBA range between X to Y. You can restrict restart to all of the log before X;
then changes later than X are not made. Alternatively, you can restrict restart to
all of the log after Y; then changes between X and Y are not made. In either
case, some amount of data is inconsistent.

3. You identify the data that is made inconsistent by your restart decision. With
the SUMMARY option, the DSN1LOGP utility scans the accessible portion of
the log and identifies work that must be done at restart, namely, the units of
recovery that are to be completed and the page sets that they modified.
Because a portion of the log is inaccessible, the summary information might not
be complete. In some circumstances, your knowledge of work in progress is
needed to identify potential inconsistencies.

4. You use the CHANGE LOG INVENTORY utility to identify the portion of the
log to be used at restart, and to tell whether to bypass any phase of recovery.
You can choose to do a cold start and bypass the entire log.

5. You restart DB2. Data that is unaffected by omitted portions of the log is
available for immediate access.

6. Before you allow access to any data that is affected by the log damage, you
resolve all data inconsistencies. That process is described under “Resolving
inconsistencies resulting from a conditional restart” on page 679.

Where to start

The specific procedure depends on the phase of restart that was in control when
the log problem was detected. On completion, each phase of restart writes a
message to the console. You must find the last of those messages in the console
log. The next phase after the one that is identified is the one that was in control
when the log problem was detected. Accordingly, start at:
v “Recovering from failure during log initialization or current status rebuild” on

page 652
v “Recovering from a failure during forward log recovery” on page 663
v “Recovering from a failure during backward log recovery” on page 669

As an alternative, determine which, if any, of the following messages was last
received and follow the procedure for that message. Other DSN messages can also
be issued.

Message ID Procedure to use

DSNJ001I “Recovering from failure during log initialization or current status
rebuild” on page 652

Log Start Log EndLog Error

XRBA: Y

Time
line

Figure 57. General problem of damaged DB2 log information

Chapter 20. Recovering from different DB2 for z/OS problems 651



Message ID Procedure to use

DSNJ100I “Recovering from unresolvable BSDS or log data set problem during
restart” on page 672

DSNJ107 “Recovering from unresolvable BSDS or log data set problem during
restart” on page 672

DSNJ1191 “Recovering from unresolvable BSDS or log data set problem during
restart” on page 672

DSNR002I None. Normal restart processing can be expected.

DSNR004I “Recovering from a failure during forward log recovery” on page 663

DSNR005I “Recovering from a failure during backward log recovery” on page 669

DSNR006I None. Normal restart processing can be expected.

Other “Recovering from failure during log initialization or current status
rebuild”

Another procedure (“Recovering from a failure resulting from total or excessive
loss of log data” on page 675) provides information to use if you determine (by
using “Recovering from failure during log initialization or current status rebuild”)
that an excessive amount (or all) of DB2 log information (BSDS, active, and archive
logs) has been lost.

The last procedure,“Resolving inconsistencies resulting from a conditional restart”
on page 679, can be used to resolve inconsistencies introduced while using one of
the restart procedures in this information. If you decide to use “Recovering from
unresolvable BSDS or log data set problem during restart” on page 672, you do not
need to use “Resolving inconsistencies resulting from a conditional restart” on
page 679.

Because of the severity of the situations described, the procedures identify
“Operations management action”, rather than “Operator action”. Operations
management might not be performing all the steps in the procedures, but they
must be involved in making the decisions about the steps to be performed.
Related reference

″DB2 codes″ (DB2 Codes)
″Restarting a member with conditions″ (DB2 Data Sharing: Planning and
Administration)
″DSN1LOGP″ (DB2 Utility Guide and Reference)

Recovering from failure during log initialization or current
status rebuild

When a failure occurs during the log initialization phase or the current status
rebuild phase of restart, you need to recover from this situation.

Symptoms

An abend was issued, indicating that restart failed. In addition, either the last
restart message that was received was a DSNJ001I message that indicates a failure
during current status rebuild, or none of the following messages was issued:
v DSNJ001I
v DSNR004I
v DSNR005I

652 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.codes/db2z_codesintro.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.dshare/db2z_restartmemberconds.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.dshare/db2z_restartmemberconds.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1logp.htm


If none of the preceding messages was issued, the failure occurred during the log
initialization phase of restart.

Environment

What happens in the environment depends on whether the failure occurred during
log initialization or current status rebuild.

Failure during log initialization
DB2 terminates because a portion of the log is inaccessible, and DB2
cannot locate the end of the log during restart.

Failure during current status rebuild
DB2 terminates because a portion of the log is inaccessible, and DB2
cannot determine the state of the subsystem at the prior DB2 termination.
Possible states include: outstanding units of recovery, outstanding database
writes, and exception database conditions.

Resolving the problem

Operations management response: To correct the problem, choose one of the
following approaches:
v Correct the problem that has made the log inaccessible, and start DB2 again. To

determine if this approach is possible, read the relevant information about the
messages and codes that you received. The explanations for the messages and
codes identify the corrective action that can be taken to resolve the problem.

v Restore the DB2 log and all data to a prior consistent point, and then start DB2.
This procedure is described in “Recovering from unresolvable BSDS or log data
set problem during restart” on page 672.

v Start DB2 without completing some database changes. Using a combination of
DB2 services and your own knowledge, determine what work is likely to be lost
if you truncate the log. The procedure for determining the page sets that contain
incomplete changes is described in “Restarting DB2 by truncating the log” on
page 656.
Related reference

″DB2 codes″ (DB2 Codes)
Related information

″DB2 messages″ (DB2 Messages)
″DB2 messages″ (DB2 Messages)

Failure during log initialization phase
When a failure occurs during the log initialization phase, certain characteristics of
the situation are evident.

The following figure illustrates the timeline of events that exist when a failure
occurs during the log initialization phase.

Chapter 20. Recovering from different DB2 for z/OS problems 653

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.codes/db2z_codesintro.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/db2z_messageslist.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/db2z_messageslist.htm


The portion of the log between log RBAs X and Y is inaccessible. For failures that
occur during the log initialization phase, the following activities occur:
1. DB2 allocates and opens each active log data set that is not in a stopped state.
2. DB2 reads the log until the last log record is located.
3. During this process, a problem with the log is encountered, preventing DB2

from locating the end of the log. DB2 terminates and issues an abend reason
code. Some of the abend reason codes that might be issued include:
v 00D10261
v 00D10262
v 00D10263
v 00D10264
v 00D10265
v 00D10266
v 00D10267
v 00D10268
v 00D10329
v 00D1032A
v 00D1032B
v 00D1032C
v 00E80084

During its operations, DB2 periodically records in the BSDS the RBA of the last log
record that was written. This value is displayed in the print log map report as
follows:
HIGHEST RBA WRITTEN: 00000742989E

Because this field is updated frequently in the BSDS, the “highest RBA written”
can be interpreted as an approximation of the end of the log. The field is updated
in the BSDS when any one of a variety of internal events occurs. In the absence of
these internal events, the field is updated each time a complete cycle of log buffers
is written. A complete cycle of log buffers occurs when the number of log buffers
that are written equals the value of the OUTPUT BUFFER field of installation
panel DSNTIPL. The value in the BSDS is, therefore, relatively close to the end of
the log.

To find the actual end of the log at restart, DB2 reads the log forward sequentially,
starting at the log RBA that approximates the end of the log and continuing until
the actual end of the log is located.

Because the end of the log is inaccessible in this case, some information is lost:
v Units of recovery might have successfully committed or modified additional

page sets past point X.
v Additional data might have been written, including those that are identified

with writes that are pending in the accessible portion of the log.

Begin URID1 Begin URID3

Page Set B Checkpoint

Log Start Log Error

XRBA: Y

Time
line

Figure 58. Failure during log initialization

654 Administration Guide



v New units of recovery might have been created, and these might have modified
data.

Because of the log error, DB2 cannot perceive these events.

A restart of DB2 in this situation requires truncation of the log. .
Related tasks

“Restarting DB2 by truncating the log” on page 656

Description of failure during current status rebuild
When a failure occurs during current status rebuild, certain characteristics of the
situation are evident.

The following figure illustrates the timeline of events that exist when a failure
occurs during current status rebuild.

The portion of the log between log RBAs X and Y is inaccessible. For failures that
occur during the current status rebuild phase, the following activities occur:
1. Log initialization completes successfully.
2. DB2 locates the last checkpoint. (The BSDS contains a record of its location on

the log.)
3. DB2 reads the log, beginning at the checkpoint and continuing to the end of the

log.
4. DB2 reconstructs the status of the subsystem as it existed at the prior

termination of DB2.
5. During this process, a problem with the log is encountered, preventing DB2

from reading all required log information. DB2 terminates and issues an abend
reason code. Some of the abend reason codes that might be issued include:
v 00D10261
v 00D10262
v 00D10263
v 00D10264
v 00D10265
v 00D10266
v 00D10267
v 00D10268
v 00D10329
v 00D1032A
v 00D1032B
v 00D1032C
v 00E80084

Because the end of the log is inaccessible in this case, some information is lost:
v Units of recovery might have successfully committed or modified additional

page sets past point X.

Begin URID1 Begin URID3

Page Set B Checkpoint

Log Start Log Error

XRBA: Y

Time
line

Log End

Figure 59. Failure during current status rebuild

Chapter 20. Recovering from different DB2 for z/OS problems 655



v Additional data might have been written, including those that are identified
with writes that are pending in the accessible portion of the log.

v New units of recovery might have been created, and these might have modified
data.

Because of the log error, DB2 cannot perceive these events.

A restart of DB2 in this situation requires truncation of the log.
Related tasks

“Restarting DB2 by truncating the log”

Restarting DB2 by truncating the log
A portion of the log is inaccessible during the log initialization or current status
rebuild phases of restart. When the log is inaccessible, DB2 cannot identify
precisely what units of recovery failed to complete, what page sets had been
modified, and what page sets have writes pending. You need to gather that
information, and restart DB2.

Task 1: Find the log RBA after the inaccessible part of the log:

The first task in restarting DB2 by truncating the log is to locate the log RBA after
the inaccessible part of the log.

The range of the log between RBAs X and Y is inaccessible to all DB2 processes.

To find the RBA after the inaccessible part of the log, take the action that is
associated with the message number that you received (DSNJ007I, DSNJ012I,
DSNJ103I, DSNJ104I, DSNJ106I, and DSNJ113I):
v When message DSNJ007I is issued:

The problem is that an operator canceled a request for archive mount. Reason
code 00D1032B is associated with this situation and indicates that an entire data
set is inaccessible.
For example, the following message indicates that the archive log data set
DSNCAT.ARCHLOG1.A0000009 is not accessible. The operator canceled a
request for archive mount, resulting in the following message:
DSNJ007I OPERATOR CANCELED MOUNT OF ARCHIVE

DSNCAT.ARCHLOG1.A0000009 VOLSER=5B225.

To determine the value of X, run the print log map utility (DSNJU004) to list the
log inventory information. The output of this utility provides each log data set
name and its associated log RBA range, the values of X and Y.

v When message DSNJ012I is issued:

The problem is that a log record is logically damaged. Message DSNJ012I
identifies the log RBA of the first inaccessible log record that DB2 detects. The
following reason codes are associated with this situation:
– 00D10261
– 00D10262
– 00D10263
– 00D10264
– 00D10265
– 00D10266
– 00D10267
– 00D10268
For example, the following message indicates a logical error in the log record at
log RBA X’7429ABA’.

656 Administration Guide



DSNJ012I ERROR D10265 READING RBA 000007429ABA
IN DATA SET DSNCAT.LOGCOPY2.DS01
CONNECTION-ID=DSN,
CORRELATION-ID=DSN

A given physical log record is actually a set of logical log records (the log
records that are generally spoken of) and the log control interval definition
(LCID). DB2 stores logical records in blocks of physical records to improve
efficiency. When this type of an error on the log occurs during log initialization
or current status rebuild, all log records within the physical log record are
inaccessible. Therefore, the value of X is the log RBA that was reported in the
message, rounded down to a 4-KB boundary. (For the example message above,
the rounded 4-KB boundary value would be X’7429000’.)

v When message DSNJ103I or DSNJ104I is issued:

For message DSNJ103I, the underlying problem depends on the reason code that
is issued:
– For reason code 00D1032B, an allocation error occurred for an archive log

data set.
– For reason code 00E80084, an active log data set that is named in the BSDS

could not be allocated during log initialization.
For message DSNJ104I, the underlying problem is that an open error occurred
for an archive and active log data set.
In any of these cases, the message that accompanies the abend identifies an
entire data set that is inaccessible. For example, the following DSNJ103I message
indicates that the archive log data set DSNCAT.ARCHLOG1.A0000009 is not
accessible. The STATUS field identifies the code that is associated with the
reason for the data set being inaccessible.
DSNJ103I - csect-name LOG ALLOCATION ERROR

DSNAME=DSNCAT.ARCHLOG1.A0000009,ERROR
STATUS=04980004
SMS REASON CODE=reasond-code

To determine the value of X, run the print log map utility (DSNJU004) to list the
log inventory information. The output of the utility provides each log data set
name and its associated log RBA range, the values of X and Y.
Verify the accuracy of the information in the print log map utility output for the
active log data set with the lowest RBA range. For this active log data set only,
the information in the BSDS is potentially inaccurate for the following reasons:
– When an active log data set is full, archiving is started. DB2 then selects

another active log data set, usually the data set with the lowest RBA. This
selection is made so that units of recovery do not need to wait for the archive
operation to complete before logging can continue. However, if a data set has
not been archived, nothing beyond it has been archived, and the procedure is
ended.

– When logging has begun on a reusable data set, DB2 updates the BSDS with
the new log RBA range for the active log data set and marks it as “Not
Reusable.” The process of writing the new information to the BSDS might be
delayed by other processing. Therefore, a possible outcome is for a failure to
occur between the time that logging to a new active log data set begins and
the time that the BSDS is updated. In this case, the BSDS information is not
correct.

If the data set is marked “Not Reusable,” the log RBA that appears for the active
log data set with the lowest RBA range in the print log map utility output is
valid. If the data set is marked “Reusable,” you can assume for the purposes of
this restart that the starting log RBA (X) for this data set is one greater than the
highest log RBA that is listed in the BSDS for all other active log data sets.

Chapter 20. Recovering from different DB2 for z/OS problems 657



v When message DSNJ106I is issued:

The problem is that an I/O error occurred while a log record was being read.
The message identifies the log RBA of the first inaccessible log record that DB2
detects. Reason code 00D10329 is associated with this situation.
For example, the following message indicates an I/O error in the log at RBA
X’7429ABA’.
DSNJ106I LOG READ ERROR DSNAME=DSNCAT.LOGCOPY2.DS01,

LOGRBA=000007429ABA,ERROR STATUS=0108320C

A given physical log record is actually a set of logical log records (the log
records that are generally spoken of) and the log control interval definition
(LCID). When this type of an error on the log occurs during log initialization or
current status rebuild, all log records within the physical log record, and beyond
it to the end of the log data set, are inaccessible. This is due to the log
initialization or current status rebuild phase of restart. Therefore, the value of X
is the log RBA that was reported in the message, rounded down to a 4-KB
boundary. (For the example message above, the rounded 4-KB boundary value
would be X’7429000’.)

v When message DSNJ113E is issued:

The problem is that the log RBA could not be found in the BSDS. Message
DSNJ113E identifies the log RBA of the inaccessible log record. This log RBA is
not registered in the BSDS. Reason code 00D1032B is associated with this
situation.
For example, the following message indicates that the log RBA X’7429ABA’ is
not registered in the BSDS:
DSNJ113E RBA 000007429ABA NOT IN ANY ACTIVE OR ARCHIVE

LOG DATA SET. CONNECTION-ID=DSN, CORRELATION-ID=DSN

Use the print log map utility (DSNJU004) to list the contents of the BSDS.
A given physical log record is actually a set of logical log records (the log
records that are generally spoken of) and the log control interval definition
(LCID). When this type of an error on the log occurs during log initialization or
current status rebuild, all log records within the physical log record are
inaccessible.
Using the print log map output, locate the RBA that is closest to, but less than,
X’7429ABA’ for the value of X. If you do not find an RBA that is less than
X’7429ABA’, a considerable amount of log information has been lost. If this is
the case, continue with “Recovering from a failure resulting from total or
excessive loss of log data” on page 675. Otherwise, continue with the next topic.
Related concepts

“Failure during log initialization phase” on page 653
“Description of failure during current status rebuild” on page 655
Related reference

″DSNJU004 (print log map)″ (DB2 Utility Guide and Reference)
Related information

″DSNJ103I″ (DB2 Messages)

Task 2: Identify lost work and inconsistent data:

In certain recovery situations (such as when you recover by truncating the log),
you need to identify what work was lost and what data is inconsistent.

To identify lost work and inconsistent data:

658 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnju004.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnj103i.htm


1. Obtain available information to help you determine the extent of the loss. DB2
cannot determine what units of recovery are not completed, what database
state information is lost, or what data is inconsistent in this situation. The log
contains all such information, but the information is not available. The steps
below explain what to do to obtain the information that is available within DB2
to help you determine the extent of the loss. The steps also explain how to start
DB2 in this situation.
After restart, data is inconsistent. Results of queries and any other operations
on such data vary from incorrect results to abends. Abends that occur either
identify an inconsistency in the data or incorrectly assume the existence of a
problem in the DB2 internal algorithms.
Attention: If the inconsistent page sets are not identified and the problems in
them are not resolved after starting DB2, be aware that following this
procedure and allowing access to inconsistent data involves some risk.
a. Run the print log map utility. The report that the utility produces includes a

description of the last 100 checkpoints and provides, for each checkpoint the
following information:
v The location in the log of the checkpoint (begin and end RBA)
v The date and time of day that the checkpoint was performed

b. Locate the checkpoint on the log prior to the point of failure (X). Do that by
finding the first checkpoint with an end RBA that is less than X.
Continue with the step 2 unless one of the following conditions exists:
v You cannot find such a checkpoint. This means that a considerable

amount of log has been lost.
v You find the checkpoint, but the checkpoint is several days old, and DB2

has been operational during the interim.
In these two cases, use one of the following procedures:
v “Recovering from a failure resulting from total or excessive loss of log

data” on page 675
v “Recovering from unresolvable BSDS or log data set problem during

restart” on page 672
2. Determine what work is lost and what data is inconsistent. The portion of the

log that represents activity that occurred before the failure provides information
about work that was in progress at that point. From this information, you
might be able to deduce what work was in progress within the inaccessible
portion of the log. If use of DB2 was limited at the time or if DB2 was
dedicated to a small number of activities (such as batch jobs that perform
database loads or image copies), you might be able to accurately identify the
page sets that were made inconsistent. To make the identification, extract a
summary of the log activity up to the point of damage in the log by using the
DSN1LOGP utility.
v Use the DSN1LOGP utility to specify the “BEGIN CHECKPOINT” RBA prior

to the point of failure, which was determined in the previous task as the
RBASTART. Terminate the DSN1LOGP scan prior to the point of failure on
the log (X - 1) by using the RBAEND specification.

v Specify the last complete checkpoint. This is very important for ensuring that
complete information is obtained from DSN1LOGP.

v Specify the SUMMARY(ONLY) option to produce a summary report.
The following figure is an example of a DSN1LOGP job that obtains summary
information for the checkpoint that was described previously.

Chapter 20. Recovering from different DB2 for z/OS problems 659



3. Analyze the DSN1LOGP utility output.
Related reference

″DSN1LOGP″ (DB2 Utility Guide and Reference)

DSN1LOGP summary report:

The DSN1LOGP utility generates a summary report, which is placed in the
SYSSUMRY file. The report includes a summary of completed events and a restart
summary. You can use the information in this report to identify lost work and
inconsistent data that needs to be resolved.

The following figure shows an excerpt from the restart summary in a sample
DSN1LOGP summary report. The report is described after the figure.

The following message acts as a heading, which is followed by messages that
identify the units of recovery that have not yet completed and the page sets that
they modified:
DSN1157I RESTART SUMMARY

//ONE EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=prefix.SDSNLOADSDSNLOAD,DISP=SHR
//SYSABEND DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSSUMRY DD SYSOUT=A
//BSDS DD DSN=DSNCAT.BSDS01,DISP=SHR
//SYSIN DD *

RBASTART (7425468) RBAEND (7428FFF) SUMMARY (ONLY)
/*

Figure 60. Sample JCL for obtaining DSN1LOGP summary output for restart

DSN1157I RESTART SUMMARY
DSN1153I DSN1LSIT CHECKPOINT

STARTRBA=000007425468 ENDRBA=000007426C6C STARTLRSN=AA527AA809DF ENDLRSN=AA527AA829F4
DATE=92.284 TIME=14:49:25

DSN1162I DSN1LPRT UR CONNID=BATCH CORRID=PROGRAM2 AUTHID=ADMF001 PLAN=TCEU02
START DATE=92.284 TIME=11:12:01 DISP=INFLIGHT INFO=COMPLETE
STARTRBA=0000063DA17B STARTLRSN=A974FAFF27FF NID=*
LUWID=DB2NET.LUND0.A974FAFE6E77.0001 COORDINATOR=*
PARTICIPANTS=*
DATA MODIFIED:

DATABASE=0101=STVDB02 PAGESET=0002=STVTS02
DSN1162I DSN1LPRT UR CONNID=BATCH CORRID=PROGRAM5 AUTHID=ADMF001 PLAN=TCEU02

START DATE=92.284 TIME=11:21:02 DISP=INFLIGHT INFO=COMPLETE
STARTRBA=000006A57C57 STARTLRSN=A974FAFF2801 NID=*
LUWID=DB2NET.LUND0.A974FAFE6FFF.0003 COORDINATOR=*
PARTICIPANTS=*
DATA MODIFIED:

DATABASE=0104=STVDB05 PAGESET=0002=STVTS05
DSN1162I DSN1LPRT UR CONNID=TEST0001 CORRID=CTHDCORID001 AUTHID=MULT002 PLAN=DONSQL1

START DATE=92.278 TIME=06:49:33 DISP=INDOUBT INFO=PARTIAL
STARTRBA=000005FBCC4F STARTLRSN=A974FBAF2302 NID=*
LUWID=DB2NET.LUND0.B978FAFEFAB1.0000 COORDINATOR=*
PARTICIPANTS=*
NO DATA MODIFIED (BASED ON INCOMPLETE LOG INFORMATION)

DSN1162I UR CONNID=BATCH CORRID=PROGRAM2 AUTHID=ADMF001 PLAN=TCEU02
START DATE=92.284 TIME=11:12:01 DISP=INFLIGHT INFO=COMPLETE
START=0000063DA17B

DSN1160I DATABASE WRITES PENDING:
DATABASE=0001=DSNDB01 PAGESET=004F=SYSUTIL START=000007425468
DATABASE=0102 PAGESET=0015 START=000007425468

Figure 61. Partial sample of DSN1LOGP summary output

660 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1logp.htm


Following the summary of outstanding units of recovery is a summary of page sets
that have database writes that are pending.

In each case (units of recovery or databases with pending writes), the earliest
required log record is identified by the START information. In this context, START
information is the log RBA of the earliest log record that is required in order to
complete outstanding writes for this page set.

Those units of recovery with a START log RBA equal to, or prior to, the point Y
cannot be completed at restart. All page sets that were modified by these units of
recovery are inconsistent after completion of restart when you attempt to identify
lost work and inconsistent data.

All page sets that are identified in message DSN1160I with a START log RBA value
equal to, or prior to, the point Y have database changes that cannot be written to
disk. As in the previously described case, all of these page sets are inconsistent
after completion of restart when you attempt to identify lost work and inconsistent
data.

At this point, you need to identify only the page sets in preparation for restart.
After restart, you need to resolve the problems in the page sets that are
inconsistent.

Because the end of the log is inaccessible, some information is lost; therefore, the
information is inaccurate. Some of the units of recovery that appear to be inflight
might have successfully committed, or they might have modified additional page
sets beyond point X. Additional data might have been written, including those
page sets that are identified as having pending writes in the accessible portion of
the log. New units of recovery might have been created, and these might have
modified data. DB2 cannot detect that these events occurred.

From this and other information (such as system accounting information and
console messages), you might be able to determine what work was actually
outstanding and which page sets are likely to be inconsistent after you start DB2.
This is because the record of each event contains the date and time to help you
determine how recent the information is. In addition, the information is displayed
in chronological sequence.

Task 3: Determine what status information is lost:

The third task in restarting DB2 by truncating the log is to determine what status
information has been lost.

Depending on what was going on in your environment before the problem
occurred, some amount of system status information might have been lost.

To determine what system status information is lost:
1. If you already know what system status information is lost (such as in the case

in which utilities are in progress), you do not need to do anything. Continue
with the next topic.

2. If you do not already know what system status information is lost, examine all
relevant messages that provide details about the loss of status information
(such as in the cases of deferred restart pending or write error ranges). If the
messages provide adequate information about what information is lost, you do
not need to do anything more. Continue with the next step.

Chapter 20. Recovering from different DB2 for z/OS problems 661



3. If you find that all system status information is lost, try to reconstruct this
information from recent console displays, messages, and abends that alerted
you to these conditions. These page sets contain inconsistencies that you must
resolve.

Task 4: Truncate the log at the point of error:

The fourth task in restarting DB2 by truncating the log is to truncate the log at the
point of error.

No DB2 process, including the RECOVER utility, allows a gap in the log RBA
sequence. You cannot process up to point X, skip over points X through Y, and
continue after Y.

To truncate the log at the point of error:

Create a conditional restart control record (CRCR) in the BSDS by using the change
log inventory utility. Specify the following options:

ENDRBA=endrba
The endrba value is the RBA at which DB2 begins writing new log records.
If point X is X’7429000’, specify ENDRBA=7429000 on the CRESTART
control statement.

At restart, DB2 discards the portion of the log beyond X’7429000’ before
processing the log for completing work (such as units of recovery and
database writes). Unless otherwise directed, DB2 performs normal restart
processing within the scope of the log. Because log information is lost, DB2
errors might occur. For example, a unit of recovery that has actually been
committed might be rolled back. Also, some changes that were made by
that unit of recovery might not be rolled back because information about
data changes is lost.

FORWARD=NO
Terminates forward-log recovery before log records are processed. This
option and the BACKOUT=NO option minimize errors that might result
from normal restart processing.

BACKOUT=NO
Terminates backward-log recovery before log records are processed. This
option and the FORWARD=NO option minimize errors that might result
from normal restart processing.

Recovering and backing out units of recovery with lost information might
introduce more inconsistencies than the incomplete units of recovery.

The following example is a CRESTART control statement for the ENDRBA value of
X’7429000’:
CRESTART CREATE,ENDRBA=7429000,FORWARD=NO,BACKOUT=NO

Task 5: Start DB2 and resolve data inconsistencies:

The final task in restarting DB2 by truncating the log is to restart DB2 and resolve
inconsistencies.

You must have a CRESTART control statement with the correct ENDRBA value
and the FORWARD and BACKOUT options set to NO.

662 Administration Guide



To start DB2 and resolve data inconsistencies:
1. Start DB2 with the following command:

-START DB2 ACCESS (MAINT)

In response to this command, DB2 performs the following actions:
v Discards from the checkpoint queue any entries with RBAs that are beyond

the ENDRBA value in the CRCR (for example, X’7429000’).
v Reconstructs the system status up to the point of log truncation.
v Performs pending database writes that the truncated log specifies and that

have not already been applied to the data. You can use the DSN1LOGP
utility to identify these writes. No forward recovery processing occurs for
units of work in a FORWARD=NO conditional restart. All pending writes for
in-commit and indoubt units of recovery are applied to the data. The
standard forward-log recovery processing for the different unit of work states
does not occur.

v Marks all units of recovery that have committed or are indoubt as complete
on the log.

v Leaves inflight and in-abort units of recovery incomplete. Inconsistent data is
left in tables that are modified by inflight or indoubt units of recovery. When
you specify a BACKOUT=NO conditional restart, inflight and in-abort units
of recovery are not backed out.
In a conditional restart that truncates the log, BACKOUT=NO minimizes
DB2 errors for the following reasons:
– Inflight units of recovery might have been committed in the portion of the

log that the conditional restart discarded. If these units of recovery are
backed out (as would be normal during backward-log recovery) DB2
might back out database changes incompletely, which introduces
additional errors.

– Data that is modified by in-abort units of recovery might have been
modified again after the point of damage on the log. For in-abort units of
recovery, DB2 might have written backout processing to disk after the
point of log truncation. If these units of recovery are backed out (as would
be normal during backward-log recovery), DB2 might introduce additional
data inconsistencies by backing out units of recovery that are already
partially or fully backed out.

At the end of restart, the conditional restart control record (CRCR) is marked
“Deactivated” to prevent its use on a later restart. Until the restart completes
successfully, the CRCR is in effect. Until data is consistent or page sets are
stopped, start DB2 with the ACCESS (MAINT) option.

2. Resolve all data inconsistency problems.
Related concepts

“Phase 3: Forward log recovery” on page 527
“Phase 4: Backward log recovery” on page 528
Related tasks

“Resolving inconsistencies resulting from a conditional restart” on page 679

Recovering from a failure during forward log recovery
If a failure occurs during the forward-log recovery phase of restart, operations
management can recover from this situation.

Symptoms

Chapter 20. Recovering from different DB2 for z/OS problems 663



A DB2 abend occurred, indicating that restart had failed. In addition, the last
restart message that was received was a DSNR004I message, which indicates that
log initialization completed; therefore, the failure occurred during forward log
recovery.

Environment

DB2 terminates because a portion of the log is inaccessible, and DB2 is therefore
unable to guarantee the consistency of the data after restart.

Resolving the problem

Operations management response: To start DB2 successfully, choose one of the
following approaches:
v Read the information about relevant messages and codes that you received to

determine if this approach is possible. The explanations of the messages and
codes identify any corrective action that you can take to resolve the problem. If
it is possible, correct the problem that made the log inaccessible, and start DB2
again.

v Restore the DB2 log and all data to a prior consistent point and start DB2. This
procedure is described in “Recovering from unresolvable BSDS or log data set
problem during restart” on page 672.

v Start DB2 without completing some database changes. Do this only if the exact
changes cannot be identified; all that can be determined is which page sets
might have incomplete changes and which units of recovery made modifications
to those page sets. The procedure for determining which page sets contain
incomplete changes and which units of recovery made the modifications is
described in “Recovering from BSDS or log failures during restart” on page 650.
Other topics might help you better understand the problem.
Related reference

″DB2 codes″ (DB2 Codes)
Related information

″DB2 messages″ (DB2 Messages)

Forward-log recovery failure
When a failure occurs during the forward-log recovery phase of DB2 restart,
certain characteristics of the situation are evident.

The following figure illustrates the events surrounding a failure during the
forward-log recovery phase of DB2 restart.

The portion of the log between log RBA X and Y is inaccessible. The log
initialization and current status rebuild phases of restart completed successfully.
Restart processing was reading the log in a forward direction, beginning at some
point prior to X and continuing to the end of the log. Because of the inaccessibility

Begin
URID1

Begin
URID2

Begin
URID3

Begin
URID4

Page
Set A

Page
Set B

Checkpoint

Log
Start Log Error

XRBA: Y

Time
line

Log
End

Figure 62. Illustration of failure during forward-log recovery

664 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.codes/db2z_codesintro.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/db2z_messageslist.htm


of log data (between points X and Y), restart processing cannot guarantee the
completion of any work that was outstanding at restart prior to point Y.

Assume that the following work was outstanding at restart:
v The unit of recovery that is identified as URID1 was in-commit.
v The unit of recovery that is identified as URID2 was inflight.
v The unit of recovery that is identified as URID3 was in-commit.
v The unit of recovery that is identified as URID4 was inflight.
v Page set A had writes that were pending prior to the error on the log,

continuing to the end of the log.
v Page set B had writes that were pending after the error on the log, continuing to

the end of the log.

The earliest log record for each unit of recovery is identified on the log line in
Figure 62 on page 664. In order for DB2 to complete each unit of recovery, DB2
requires access to all log records from the beginning point for each unit of recovery
to the end of the log.

The error on the log prevents DB2 from guaranteeing the completion of any
outstanding work that began prior to point Y on the log. Consequently, database
changes that are made by URID1 and URID2 might not be fully committed or
backed out. Writes that were pending for page set A (from points in the log prior
to Y) are lost.

Starting DB2 by limiting restart processing
When a portion of the log is inaccessible during forward recovery, starting DB2 is
possible. You need to identify the units of recovery for which database changes
cannot be fully guaranteed (either committed or backed out). You also need to
identify the page sets that these units of recovery changed.

You must determine which page sets are involved because after this procedure is
used, the page sets will contain inconsistencies that you must resolve. In addition,
using this procedure results in the completion of all database writes that are
pending.

Related concepts

″Write operations″ (DB2 Performance Monitoring and Tuning Guide)

Task 1: Find the log RBA after the inaccessible part of the log:

The first task in restarting DB2 by limiting restart processing is to locate the log
RBA that is after the inaccessible part of the log.

The range of the log between RBAs X and Y is inaccessible to all DB2 processes.

To find the RBA after the inaccessible part of the log, take the action that is
associated with the message number that you received (DSNJ007I, DSNJ012I,
DSNJ103I, DSNJ104I, DSNJ106I, and DSNJ113I):
v When message DSNJ007I is issued:

The problem is that an operator canceled a request for archive mount. Reason
code 00D1032B is associated with this situation and indicates that an entire data
set is inaccessible.

Chapter 20. Recovering from different DB2 for z/OS problems 665

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.pmtg/db2z_bufferpoolwriteoperations.htm


For example, the following message indicates that the archive log data set
DSNCAT.ARCHLOG1.A0000009 is not accessible. The operator canceled a
request for archive mount, resulting in the following message:
DSNJ007I OPERATOR CANCELED MOUNT OF ARCHIVE

DSNCAT.ARCHLOG1.A0000009 VOLSER=5B225.

To determine the value of X, run the print log map utility (DSNJU004) to list the
log inventory information. The output of this utility provides each log data set
name and its associated log RBA range, the values of X and Y.

v When message DSNJ012I is issued:

The problem is that a log record is logically damaged. Message DSNJ012I
identifies the log RBA of the first inaccessible log record that DB2 detects. The
following reason codes are associated with this situation:
– 00D10261
– 00D10262
– 00D10263
– 00D10264
– 00D10265
– 00D10266
– 00D10267
– 00D10268
For example, the following message indicates a logical error in the log record at
log RBA X’7429ABA’.
DSNJ012I ERROR D10265 READING RBA 000007429ABA

IN DATA SET DSNCAT.LOGCOPY2.DS01
CONNECTION-ID=DSN,
CORRELATION-ID=DSN

A given physical log record is actually a set of logical log records (the log
records that are generally spoken of) and the log control interval definition
(LCID). DB2 stores logical records in blocks of physical records to improve
efficiency. When this type of an error on the log occurs during forward log
recovery, all log records within the physical log record are inaccessible.
Therefore, the value of X is the log RBA that was reported in the message,
rounded down to a 4-KB boundary. (For the example message above, the
rounded 4-KB boundary value would be X’7429000’.)

v When message DSNJ103I or DSNJ104I is issued:

For message DSNJ103I, the underlying problem depends on the reason code that
is issued:
– For reason code 00D1032B, an allocation error occurred for an archive log

data set.
– For reason code 00E80084, an active log data set that is named in the BSDS

could not be allocated during log initialization.
For message DSNJ104I, the underlying problem is that an open error occurred
for an archive and active log data set.
In any of these cases, the message that accompanies the abend identifies an
entire data set that is inaccessible. For example, the following DSNJ103I message
indicates that the archive log data set DSNCAT.ARCHLOG1.A0000009 is not
accessible. The STATUS field identifies the code that is associated with the
reason for the data set being inaccessible.
DSNJ103I - csect-name LOG ALLOCATION ERROR

DSNAME=DSNCAT.ARCHLOG1.A0000009,ERROR
STATUS=04980004
SMS REASON CODE=reasond-code

666 Administration Guide



To determine the value of X, run the print log map utility (DSNJU004) to list the
log inventory information. The output of the utility provides each log data set
name and its associated log RBA range, the values of X and Y.

v When message DSNJ106I is issued:

The problem is that an I/O error occurred while a log record was being read.
The message identifies the log RBA of the first inaccessible log record that DB2
detects. Reason code 00D10329 is associated with this situation.
For example, the following message indicates an I/O error in the log at RBA
X’7429ABA’.
DSNJ106I LOG READ ERROR DSNAME=DSNCAT.LOGCOPY2.DS01,

LOGRBA=000007429ABA,ERROR STATUS=0108320C

A given physical log record is actually a set of logical log records (the log
records that are generally spoken of) and the log control interval definition
(LCID). When this type of an error on the log occurs during forward log
recovery, all log records within the physical log record, and beyond it to the end
of the log data set, are inaccessible to the forward log recovery phase of restart.
This is due to the log initialization or current status rebuild phase of restart.
Therefore, the value of X is the log RBA that was reported in the message,
rounded down to a 4-KB boundary. (For the example message above, the
rounded 4-KB boundary value would be X’7429000’.)

v When message DSNJ113E is issued:

The problem is that the log RBA could not be found in the BSDS. Message
DSNJ113E identifies the log RBA of the inaccessible log record. This log RBA is
not registered in the BSDS. Reason code 00D1032B is associated with this
situation.
For example, the following message indicates that the log RBA X’7429ABA’ is
not registered in the BSDS:
DSNJ113E RBA 000007429ABA NOT IN ANY ACTIVE OR ARCHIVE

LOG DATA SET. CONNECTION-ID=DSN, CORRELATION-ID=DSN

Use the print log map utility (DSNJU004) to list the contents of the BSDS.
A given physical log record is actually a set of logical log records (the log
records that are generally spoken of) and the log control interval definition
(LCID). When this type of an error on the log occurs during forward log
recovery, all log records within the physical log record are inaccessible.
Using the print log map output, locate the RBA that is closest to, but less than,
X’7429ABA’ for the value of X. If you do not find an RBA that is less than
X’7429ABA’, the value of X is zero. Locate the RBA that is closest to, by greater
than, X’7429ABA’. This is the value of Y.
Related concepts

“Forward-log recovery failure” on page 664
Related reference

″DSNJU004 (print log map)″ (DB2 Utility Guide and Reference)
Related information

″DSNJ103I″ (DB2 Messages)

Task 2: Identify incomplete units of recovery and inconsistent page sets:

The second task in restarting DB2 by limiting restart processing is to identify
incomplete units of recovery and inconsistent page sets.

Chapter 20. Recovering from different DB2 for z/OS problems 667

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnju004.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnj103i.dita


Units of recovery that cannot be fully processed are considered incomplete units of
recovery. Page sets that will be inconsistent after completion of restart are
considered inconsistent page sets.

To identify incomplete units of recovery and inconsistent page sets:
1. Determine the location of the latest checkpoint on the log by looking at one of

the following sources, whichever is more convenient:
v The operator’s console contains the following message, identifying the

location of the start of the last checkpoint on the log at log RBA X’876B355’.
For example:
DSNR003I RESTART ... PRIOR CHECKPOINT

RBA=00007425468

v The print log map utility output identifies the last checkpoint, including its
BEGIN CHECKPOINT RBA.

2. Obtain a report of the outstanding work that is to be completed at the next
restart of DB2 by running the DSN1LOGP utility. When you run the
DSN1LOGP utility, specify the checkpoint RBA as the STARTRBA and the
SUMMARY(ONLY) option. In order to obtain complete information, be sure to
include the last complete checkpoint from running DSN1LOGP.

3. Analyze the output of the DSN1LOGP utility. The summary report that is
placed in the SYSSUMRY file contains two sections of information: a complete
summary of completed events and a restart summary.
Related concepts

“DSN1LOGP summary report” on page 660

Task 3: Restrict restart processing to the part of the log after the damage:

The third task in restarting DB2 by limiting restart processing is to restrict restart
processing to the part of the log that is after the damage.

To restrict restart processing to the part of the log after the damage:

Create a conditional restart control record (CRCR) in the BSDS by using the change
log inventory utility. Identify the accessible portion of the log beyond the damage
by using the STARTRBA specification, which will be used at the next restart.
Specify the value Y+1 (that is, if Y is X’7429FFF’, specify STARTRBA=742A000).
Restart restricts its processing to the portion of the log beginning with the specified
STARTRBA and continuing to the end of the log. For example:
CRESTART CREATE,STARTRBA=742A000

Task 4: Start DB2 and resolve inconsistent data:

The final task in restarting DB2 by limiting restart processing is to start DB2 and
resolve problems with inconsistent data.

To start DB2 and resolve data inconsistencies:

At the end of restart, the CRCR is marked DEACTIVATED to prevent its use on a
subsequent restart. Until the restart is complete, the CRCR will be in effect. Use
START DB2 ACCESS(MAINT) until data is consistent or page sets are stopped.
1. Start DB2 with the following command:

-START DB2 ACCESS (MAINT)

668 Administration Guide



At the end of restart, the conditional restart control record (CRCR) is marked
“Deactivated” to prevent its use on a later restart. Until the restart completes
successfully, the CRCR is in effect. Until data is consistent or page sets are
stopped, start DB2 with the ACCESS (MAINT) option.

2. Resolve all data inconsistency problems.
Related tasks

“Resolving inconsistencies resulting from a conditional restart” on page 679

Recovering from a failure during backward log recovery
When a failure occurs during backward log recovery, DB2 terminates because it
cannot access a portion of the log that it needs. Operations management can
recover from this situation.

Symptoms

An abend is issued to indicate that restart failed because of a log problem. In
addition, the last restart message that is received is a DSNR005I message,
indicating that forward log recovery completed and that the failure occurred
during backward log recovery.

Environment

Because a portion of the log is inaccessible, DB2 needs to roll back some database
changes during restart.

Resolving the problem

Operations management response: To start DB2, choose one of the following
approaches:
v Read the information about relevant messages and codes that you received to

determine if this approach is possible. The explanations of the messages and
codes identify any corrective action that you can take to resolve the problem. If
it is possible, correct the problem that made the log inaccessible, and start DB2
again.

v Restore the DB2 log and all data to a prior consistent point and start DB2. This
procedure is described in “Recovering from unresolvable BSDS or log data set
problem during restart” on page 672.

v Start DB2 without completing some database changes. Do this only if the exact
changes cannot be identified; all that can be determined is which page sets
might have incomplete changes. The procedure for determining which page sets
contain incomplete changes is described in “Bypassing backout before
restarting” on page 670. Other related topics might help you better understand
the problem.
Related reference

″DB2 codes″ (DB2 Codes)
Related information

″DB2 messages″ (DB2 Messages)

Backward log recovery failure
If a failure occurs during the backward-log recovery phase of restart, operations
management can recover from this situation.

Chapter 20. Recovering from different DB2 for z/OS problems 669

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.codes/db2z_codesintro.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/db2z_messageslist.htm


When a failure occurs during the backward log recovery phase, certain
characteristics of the situation are evident, as the following figure shows.

The portion of the log between log RBA X and Y is inaccessible. The restart process
was reading the log in a backward direction, beginning at the end of the log and
continuing backward to the point marked by Begin URID5 in order to back out the
changes that were made by URID5, URID6, and URID7. You can assume that DB2
determined that these units of recovery were inflight or in-abort. The portion of the
log from point Y to the end of the log has been processed. However, the portion of
the log from Begin URID5 to point Y has not been processed and cannot be
processed by restart. Consequently, database changes that were made by URID5
and URID6 might not be fully backed out. All database changes made by URID7
have been fully backed out, but these database changes might not have been
written to disk. A subsequent restart of DB2 causes these changes to be written to
disk during forward recovery.

Related concepts

“Recommendations for changing the BSDS log inventory” on page 520

Bypassing backout before restarting
A portion of the log becomes inaccessible when a failure occurs during backward
log recovery. Operations management can recover from this situation by starting
DB2 in a certain way, and then identifying the page sets that are inconsistent
because of the incomplete units of recovery.

To bypass backout before recovery:
1. Determine the units of recovery that cannot be backed out and the page sets

that will be inconsistent after the completion of restart.
a. Determine the location of the latest checkpoint on the log by looking at one

of the following sources, whichever is more convenient:
v The operator’s console contains message DSNR003I, which identifies the

location of the start of the last checkpoint on the log at log RBA
X’7425468’.
DSNR003I RESTART ... PRIOR CHECKPOINT

RBA=00007425468

v The print log map utility output identifies the last checkpoint, including
its BEGIN CHECKPOINT RBA.

b. Obtain a report of the outstanding work that is to be completed at the next
DB2 restart by running the DSN1LOGP. When you run DSN1LOGP, specify
the checkpoint RBA as the RBASTART and the SUMMARY(ONLY) option.
Include the last complete checkpoint in the execution of DSN1LOGP in
order to obtain complete information.
Analyze the output of the DSN1LOGP utility. The summary report that is
placed in the SYSSUMRY file contains two sections of information. The
heading of first section of the output is the following message:
DSN1150I SUMMARY OF COMPLETED EVENTS

Begin
URID5

Begin
URID6

Begin
URID7

Checkpoint

Log
Start Log Error

XRBA: Y

Time
line

Log
End

Figure 63. Illustration of failure during backward log recovery

670 Administration Guide



That message is followed by other messages that identify completed events,
such as completed units of recovery. That section of the output does not
apply to this procedure.
The heading of the second section of the output is the following message:
DSN1157I RESTART SUMMARY

That message is followed by others that identify units of recovery that are
not yet completed and the page sets that they modified. After the summary
of outstanding units of recovery is a summary of page sets with database
writes that are pending.
The restart processing that failed was able to complete all units of recovery
processing within the accessible scope of the log after point Y. Database
writes for these units of recovery are completed during the forward
recovery phase of restart on the next restart. Therefore, do not bypass the
forward recovery phase. All units of recovery that can be backed out have
been backed out.
All remaining units of recovery that are to be backed out (DISP=INFLIGHT
or DISP=IN-ABORT) are bypassed on the next restart because their
STARTRBA values are less than the RBA of point Y. Therefore, all page sets
that were modified by those units of recovery are inconsistent after restart.
This means that some changes to data might not be backed out. At this
point, you only need to identify the page sets in preparation for restart.

2. Use the change log inventory utility to create a conditional restart control
record (CRCR) in the BSDS, and direct restart to bypass backward recovery
processing during the subsequent restart by using the BACKOUT specification.
At restart, all units of recovery that require backout are declared complete by
DB2, and log records are generated to note the end of the unit of recovery. The
change log inventory utility control statement is:
CRESTART CREATE,BACKOUT=NO

3. Start DB2. At the end of restart, the CRCR is marked “Deactivated” to prevent
its use on a subsequent restart. Until the restart is complete, the CRCR is in
effect. Use START DB2 ACCESS(MAINT) until data is consistent or page sets
are stopped.

4. Resolve all inconsistent data problems. After the successful start of DB2, resolve
all data inconsistency problems. “Resolving inconsistencies resulting from a
conditional restart” on page 679 describes how to do this. At this time, make all
other data available for use.
Related concepts

“DSN1LOGP summary report” on page 660

Recovering from a failure during a log RBA read request
A failure might occur during a log RBA read request. For example, because of
problems with the BSDS, the requested RBA, which contains the dropped log data
set, cannot be read. You can recover from the situation.

Symptoms

Abend code 00D1032A is issued, and message DSNJ113E is displayed:
DSNJ113E RBA log-rba NOT IN ANY ACTIVE OR ARCHIVE

LOG DATA SET. CONNECTION-ID=aaaaaaaa, CORRELATION-ID=aaaaaaaa

Causes

Chapter 20. Recovering from different DB2 for z/OS problems 671



The BSDS is wrapping around too frequently when log RBA read requests are
submitted; when the last archive log data sets were added to the BSDS, the
maximum allowable number of log data sets in the BSDS was exceeded. This
caused the earliest data sets in the BSDS to be displaced by the new entry.
Subsequently, the requested RBA containing the dropped log data set cannot be
read after the wrap occurs.

Resolving the problem

System programmer response:

1. Stop DB2 with the STOP DB2 command, if it has not already been stopped
automatically as a result of the problem.

2. Check any other messages and reason codes that are displayed, and correct the
errors that are indicated. Locate the output from an old execution of the print
log map utility, and identify the data set that contains the missing RBA. If the
data set has not been reused, run the change log inventory utility to add this
data set back into the inventory of log data sets.

3. Increase the maximum number of archive log volumes that can be recorded in
the BSDS. To do this, update the MAXARCH system parameter value as
follows:
a. Start the installation CLIST.
b. On panel DSNTIPA1, select UPDATE mode.
c. On panel DSNTIPT, change any data set names that are not correct.
d. On panel DSNTIPB, select the ARCHIVE LOG DATA SET PARAMETERS

option.
e. On panel DSNTIPA, increase the value of RECORDING MAX.
f. When the installation CLIST editing completes, rerun job DSNTIJUZ to

recompile the system parameters.
4. Start DB2 with the START DB2 command.

Related concepts

″The update process″ (DB2 Installation Guide)
Related reference

″10. RECORDING MAX″ (DB2 Installation Guide)
″DSNJU003 (change log inventory)″ (DB2 Utility Guide and Reference)

Recovering from unresolvable BSDS or log data set problem
during restart

During a restart of DB2, serious problems with the bootstrap data set (BSDS) or log
data sets might occur. However, operations management can recover from these
problems. Use of dual logging (active logs, archive logs, and bootstrap data sets)
can reduce your efforts in resolving these sorts of problems.

Symptoms

The following messages are issued:
v DSNJ100I
v DSNJ107I
v DSNJ119I

Causes

672 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_updateprocess.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipa10.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnju003.htm


Any of the following problems might cause problems with the BSDS or log data
sets during restart:
v A log data set is physically damaged.
v Both copies of a log data set are physically damaged in the case of dual logging

mode.
v A log data set is lost.
v An archive log volume was reused even though it was still needed.
v A log data set contains records that are not recognized by DB2 because they are

logically broken.

Environment

DB2 cannot be started until this procedure is performed.

Resolving the problem

Operations management response: Serious cases such as this sometimes
necessitate a fallback to a prior shutdown level.
v If you decide to fall back (because the amount of lost information is not

excessive):
1. See “Preparing to recover to a prior point of consistency” on page 585.
2. Follow the procedure in “Falling back to a prior shutdown point.”

If you use do a fallback, all database changes between the shutdown point and
the present are lost. However, all the data that is retained will be consistent
within DB2.

v If you decide not to fall back (because too much log information has been lost),
use the alternative approach that is described in “Recovering from a failure
resulting from total or excessive loss of log data” on page 675.

Falling back to a prior shutdown point
When a failure occurs in your environment, you might decide to fall back to a
prior shutdown point.

When a failure occurs and you decide to fall back, use the following procedure to
complete the fallback:
1. Use the print log map utility on the most current copy of the BSDS. Even if

you are not able to do this, continue with the next step. (If you are unable to
do this, an error message is issued.)

2. Use the access method services IMPORT command to restore the backed-up
versions of the BSDS and active log data sets.

3. Use the print log map utility on the copy of the BSDS with which DB2 is to be
restarted.

4. Determine whether any archive log data sets must be deleted.
v If you have a copy of the most current BSDS, compare it to the BSDS with

which DB2 is to be restarted. Delete and uncatalog any archive log data sets
that are listed in the most current BSDS but are not listed in the previous
one. These archive log data sets are normal physical sequential (SAM) data
sets. If you are able to do this step, continue with step 5 on page 674.

v If you were not able to print a copy of the most current BSDS and the
archive logs are cataloged, use access method services LISTCAT to check for
archive logs with a higher sequence number than the last archive log that is
shown in the BSDS that is being used to restart DB2.

Chapter 20. Recovering from different DB2 for z/OS problems 673



– If no archive log data sets with a higher sequence number exist, you do
not need to delete or uncatalog any data sets, and you can continue with
step 5.

– Delete and uncatalog all archive log data sets that have a higher
sequence number than the last archive log data set in the BSDS that is
being used to restart DB2. These archive log data sets are SAM data sets.
Continue with the next step.

If the archive logs are not cataloged, you do not need to uncatalog them.
5. Issue the START DB2 ACCESS(MAINT) command until data is consistent or

page sets are stopped.
6. Determine what data needs to be recovered, what data needs to be dropped,

what data can remain unchanged, and what data needs to be recovered to the
prior shutdown point.
v For table spaces and indexes that might have been changed after the

shutdown point, use the DB2 RECOVER utility to recover these table spaces
and indexes. They must be recovered in the proper order.

v For data that has not been changed after the shutdown point (data used
with RO access), you do not need to use RECOVER or DROP.

v For table spaces that were deleted after the shutdown point, issue the
DROP statement. These table spaces will not be recovered.

v Re-create any objects that were created after the shutdown point.
You must recover all data that has potentially been modified after the
shutdown point. If you do not use the RECOVER utility to recover modified
data, serious problems might can occur because of data inconsistency.
If you try to access inconsistent data, any of the following events can occur
(and the list is not comprehensive):
v You can successfully access the correct data.
v You can access data without DB2 recognizing any problem, but it might not

be the data that you want (the index might be pointing to the wrong data).
v DB2 might recognize that a page is logically incorrect and, as a result,

abend the subsystem with an X’04E’ abend completion code and an abend
reason code of X’00C90102’.

v DB2 might notice that a page was updated after the shutdown point and, as
a result, abend the requester with an X’04E’ abend completion code and an
abend reason code of X’00C200C1’.

7. Analyze the CICS log and the IMS log to determine the work that must be
redone (work that was lost because of shutdown at the previous point).
Inform all users (TSO users, QMF users, and batch users for whom no
transaction log tracking has been performed) about the decision to fall back to
a previous point.

8. When DB2 is started after being shut down, indoubt units of recovery might
exist. This occurs if transactions are indoubt when the STOP DB2 MODE
(QUIESCE) command is issued. When DB2 is started again, these transactions
will still be indoubt to DB2. IMS and CICS cannot know the disposition of
these units of recovery.
To resolve these indoubt units of recovery, use the RECOVER INDOUBT
command.

9. If a table space was dropped and re-created after the shutdown point, drop
and re-create it again after DB2 is restarted. To do this, use SQL DROP and
SQL CREATE statements.

674 Administration Guide



Do not use the RECOVER utility to accomplish this, because it will result in
the old version (which might contain inconsistent data) that is being
recovered.

10. If any table spaces and indexes were created after the shutdown point,
re-create these after DB2 is restarted. You can accomplish this in these ways:
v For data sets that are defined in DB2 storage groups, use the CREATE

TABLESPACE statement, and specify the appropriate storage group names.
DB2 automatically deletes the old data set and redefines a new one.

v For user-defined data sets, use the access method services DELETE
command to delete the old data sets. After these data sets have been
deleted, use the access method services DEFINE command to redefine them;
then use the CREATE TABLESPACE statement.

Related reference

″RECOVER″ (DB2 Utility Guide and Reference)

Recovering from a failure resulting from total or excessive
loss of log data

If a situation occurs that causes the entire log or an excessive amount of log data
to be lost or destroyed, operations management needs to recover from that
situation.

Symptoms

This situation is generally accompanied by messages or abend reason codes that
indicate that an excessive amount of log information, or the entire log, has been
lost.

Diagnosing the problem

In this situation, you need to rely on your own sources to determine what data is
inconsistent as a result of the failure; DB2 cannot provide any hints of
inconsistencies. For example, you might know that DB2 was dedicated to a few
processes (such as utilities) during the DB2 session, and you might be able to
identify the page sets that they modified. If you cannot identify the page sets that
are inconsistent, you must decide whether you are willing to assume the risk that
is involved in restarting DB2 under those conditions.

Resolving the problem

Operations management response: If you decide that a restart is needed, restart
DB2 without any log data by using the appropriate procedure, depending on
whether the log is totally or partially (but excessively) lost.

Recovering from a total loss of the log
If all system and user table spaces remain intact and you have a recent copy of the
BSDS, you can recover from a total loss of the log. DB2 can still be restarted, and
data that belongs to that DB2 subsystem can still be accessed.

All system and user table spaces must be intact, and you must have a recent copy
of the BSDS. Other VSAM clusters on disk, such as the system databases
DSNDB01, DSNDB04, and DSNB06, and also user databases are assumed to exist.

To restart DB2 when the entire log is lost:
1. Define and initialize the BSDSs by recovering the BSDS from a backup copy.

Chapter 20. Recovering from different DB2 for z/OS problems 675

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_recover.htm


2. Define the active log data sets by using the access method services DEFINE
command. Run utility DSNJLOGF to initialize the new active log data sets.

3. Prepare to restart DB2 with no log data. Each data and index page contains the
log RBA of the last log record that was applied against the page. Safeguards
within DB2 disallow a modification to a page that contains a log RBA that is
higher than the current end of the log. You have two choices:
v Determine the highest possible log RBA of the prior log. From previous

console logs that were written when DB2 was operational, locate the last
DSNJ001I message. When DB2 switches to a new active log data set, this
message is written to the console, identifying the data set name and the
highest potential log RBA that can be written for that data set. Assume that
this is the value X’8BFFF’. Add one to this value (X’8C000’), and create a
conditional restart control record that specifies the following change log
inventory control statement:
CRESTART CREATE,STARTRBA=8C000,ENDRBA=8C000

When DB2 starts, all phases of restart are bypassed, and logging begins at
log RBA X’8C000’. If you choose this method, you do not need to use the
RESET option of the DSN1COPY utility, and you can save a lot of time.

v Run the DSN1COPY utility, specifying the RESET option to reset the log RBA
in every data and index page. Depending on the amount of data in the
subsystem, this process might take quite a long time. Because the BSDS has
been redefined and reinitialized, logging begins at log RBA 0 when DB2
starts.
If the BSDS is not reinitialized, you can force logging to begin at log RBA 0
by constructing a conditional restart control record (CRCR) that specifies a
STARTRBA and ENDRBA that are both equal to 0, as the following
command shows:
CRESTART CREATE,STARTRBA=0,ENDRBA=0

4. Start DB2. Use the START DB2 ACCESS(MAINT) command until data is
consistent or page sets are stopped.

5. After restart, resolve all inconsistent data as described in “Resolving
inconsistencies resulting from a conditional restart” on page 679.
Related tasks

“Recovering the BSDS from a backup copy” on page 647
“Deferring restart processing” on page 532
Related reference

″DSNJLOGF (preformat active log)″ (DB2 Utility Guide and Reference)

Recovering from an excessive loss of active log data
When your site experiences an excessive loss of active log data, you can develop a
procedure for restarting in this situation. Do not redefine the BSDS.

You can recover from an excessive loss of active log data in one of two ways.

Recovering DB2 by creating a gap in the active log:

If your site experiences an excessive loss of active log data, you can recover by
creating a gap in the active log.

To recover by creating a gap in the active log:
1. Use the print log map utility (DSNJU004) on the copy of the BSDS with which

DB2 is to be restarted.

676 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnjlogf.htm


2. Use the print log map output to obtain the data set names of all active log data
sets. Use the access method services LISTCAT command to determine which
active log data sets are no longer available or usable.

3. Use the access method services DELETE command to delete all active log data
sets that are no longer usable.

4. Use the access method services DEFINE command to define new active log
data sets. Run the DSNJLOGF utility to initialize the new active log data sets.
Define one active log data set for each one that is found to be no longer
available or usable in step 2. Use the active log data set name that is found in
the BSDS as the data set name for the access method services DEFINE
command.

5. Refer to the print log map utility (DSNJU004) output, and note whether an
archive log data set exists that contains the RBA range of the redefined active
log data set. To do this, note the starting and ending RBA values for the active
log data set that was recently redefined, and look for an archive log data set
with the same starting and ending RBA values.
If no such archive log data sets exist:
a. Use the change log inventory utility (DSNJU003) DELETE statement to

delete the recently redefined active log data sets from the BSDS active log
data set inventory.

b. Use the change log inventory utility (DSNJU003) NEWLOG statement to
add the active log data set to the BSDS active log data set inventory. Do not
specify RBA ranges on the NEWLOG statement.

If the corresponding archive log data sets exist, two courses of action are
available:
v If you want to minimize the number of potential read operations on the

archive log data sets, use the access method services REPRO command to
copy the data from each archive log data set into the corresponding active
log data set. Ensure that you copy the proper RBA range into the active log
data set.
Ensure that the active log data set is large enough to hold all the data from
the archive log data set. When DB2 does an archive operation, it copies the
log data from the active log data set to the archive log data set, and then
pads the archive log data set with binary zeroes to fill a block. In order for
the access method services REPRO command to be able to copy all of the
data from the archive log data set to a recently defined active log data set,
the new active log data set might need to be larger than the original one.
For example, if the block size of the archive log data set is 28 KB, and the
active log data set contains 80 KB of data, DB2 copies the 80 KB and pads
the archive log data set with 4 KB of nulls to fill the last block. Thus, the
archive log data set now contains 84 KB of data instead of 80 KB. In order
for the access method services REPRO command to complete successfully,
the active log data set must be able to hold 84 KB, rather than just 80 KB of
data.

v If you are not concerned about read operations against the archive log data
sets, complete the two steps that appear in the steps 5a and 5b (as though
the archive data sets did not exist).

6. Choose the appropriate point for DB2 to start logging. To do this, determine the
highest possible log RBA of the prior log. From previous console logs that were
written when DB2 was operational, locate the last DSNJ001I message. When
DB2 switches to a new active log data set, this message is written to the
console, identifying the data set name and the highest potential log RBA that
can be written for that data set. Assume that this is the value X’8BFFF’. Add

Chapter 20. Recovering from different DB2 for z/OS problems 677



one to this value (X’8C000’), and create a conditional restart control record that
specifies the following change log inventory control statement:
CRESTART CREATE,STARTRBA=8C000,ENDRBA=8C000

When DB2 starts, all phases of restart are bypassed, and logging begins at log
RBA X’8C000’. If you choose this method, you do not need to use the RESET
option of the DSN1COPY utility, and you can save a lot of time.

7. To restart DB2 without using any log data, create a conditional restart control
record for the change log inventory utility (DSNJU003).

8. Start DB2. Use the START DB2 ACCESS(MAINT) command until data is
consistent or page sets are stopped.

9. After restart, resolve all inconsistent data as described in “Resolving
inconsistencies resulting from a conditional restart” on page 679.

This procedure causes all phases of restart to be bypassed and logging to begin at
the point in the log RBA that you identified in step 6 on page 677 (X’8C000’ in the
example given in this procedure). This procedure creates a gap in the log between
the highest RBA kept in the BSDS and, in this example, X’8C000’, and that portion
of the log is inaccessible.

Because no DB2 process can tolerate a gap, including RECOVER, you need to take
image copies of all data after a cold start, even data that you know is consistent.

Related reference

″DSNJU003 (change log inventory)″ (DB2 Utility Guide and Reference)

Recovering DB2 without creating a gap in the active log:

You can do a cold start without creating a gap in the log. Although this approach
does eliminate the gap in the physical log record, you cannot use a cold start to
resolve the logical inconsistencies.

To recover without creating a gap in the active log:
1. Locate the last valid log record by using the DSN1LOGP utility to scan the log.

Message DSN1213I identifies the last valid log RBA.
2. Identify the last RBA that is known to be valid by examining message

DSN1213I. For example, if message DSN1213I indicates that the last valid log
RBA is X’89158’, round this value up to the next 4-KB boundary, which in this
example is X’8A000’.

3. Create a conditional restart control record (CRCR). For example:
CRESTART CREATE,STARTRBA=8A000,ENDRBA=8A000

4. Start DB2 with the START DB2 ACCESS(MAINT) command until data is
consistent or page sets are stopped.

5. Take image copies of all data for which data modifications were recorded
beyond the log RBA that was used in the CRESTART statement (in this
example, X’8A000’). If you do not know what data was modified, take image
copies of all data.
If you do not take image copies of data that has been modified beyond the log
RBA that was used in the CRESTART statement, future RECOVER utility
operations might fail or result in inconsistent data.

After restart, resolve all inconsistent data as described in “Resolving inconsistencies
resulting from a conditional restart” on page 679.

678 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsnju003.htm


Resolving inconsistencies resulting from a conditional restart
When a conditional restart of the DB2 subsystem is done, several problems might
occur. Recovery from these problems is possible and varies based on the specific
situation.

The following problems might occur after a conditional restart of DB2:
v Some amount of work is left incomplete.
v Some data is left inconsistent.
v Information about the status of objects within the DB2 subsystem is made

unusable.

Inconsistencies in a distributed environment
In a distributed environment, when a DB2 subsystem restarts, DB2 indicates its
restart status and the name of its recovery log to the systems that it communicates
with. The two possible conditions for restart status are warm and cold.

A cold status is associated with a cold start, which is a process by which a DB2
subsystem restarts without processing any log records. DB2 has no memory of
previous connections with its partner. The general process that occurs with a cold
start in a distributed environment is as follows:
1. The partner (for example CICS) accepts the cold start connection and

remembers the recovery log name of the DB2 subsystem that experienced the
cold start.

2. If the partner has indoubt thread resolution requirements with the cold-starting
DB2 subsystem, those requirements cannot be satisfied.

3. The partner terminates its indoubt resolution responsibility with the
cold-starting DB2 subsystem. However, as a participant, the partner has
indoubt logical units of work that must be resolved manually.

4. Because the DB2 subsystem has an incomplete record of resolution
responsibilities, DB2 attempts to reconstruct as much resynchronization
information as possible.

5. DB2 displays the information that it was able to reconstruct in one or more
DSNL438 or DSNL439 messages.

6. DB2 then discards the synchronization information that it was able to
reconstruct and removes any restrictive states that are maintained on the object.

Resolving inconsistencies
In some problem situations, you need to determine what you must do in order to
resolve any data inconsistencies that exist.

To resolve inconsistencies:
1. Determine the scope of any inconsistencies that are introduced by the situation.

a. If the situation is either a cold start that is beyond the current end of the log
or a conditional restart that skips backout or forward log recovery, use the
DSN1LOGP utility to determine what units of work have not been backed
out and which objects are involved. For a cold start that is beyond the end
of the log, you can also use DSN1LOGP to help identify any restrictive
object states that have been lost.

b. If a conditional restart truncates the log in a non-data sharing environment,
recover all data and indexes to the new current point in time, and rebuild
the data and indexes as needed. You need to recover or rebuild (or both
recover and rebuild) the data and indexes because data and index updates

Chapter 20. Recovering from different DB2 for z/OS problems 679

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|



might exist without being reflected in the DB2 log. When this situation
occurs, a variety of inconsistency errors might occur, including DB2 abends
with reason code 00C200C1.

2. Decide what approach to take to resolve inconsistencies by reading related
topics about the approaches:
v Recovery to a prior point of consistency
v Restoration of a table space
v Use of the REPAIR utility on the data

The first two approaches are less complex than, and therefore preferred over,
the third approach.

3. If one or more of the following conditions are applicable, take image copies of
all DB2 table spaces:
v You did a cold start.
v You did a conditional restart that altered or truncated the log.
v The log is damaged.
v Part of the log is no longer accessible.
When a portion of the DB2 recovery log becomes inaccessible, all DB2 recovery
processes have difficulty operating successfully, including restart, RECOVER,
and deferred restart processing. Conditional restart allows circumvention of the
problem during the restart process. To ensure that RECOVER does not attempt
to access the inaccessible portions of the log, secure a copy (either full or
incremental) that does not require such access. A failure occurs any time a DB2
process (such as the RECOVER utility) attempts to access an inaccessible
portion of the log. You cannot be sure which DB2 processes must use that
portion of the recovery log. Therefore, you need to assume that all data
recovery activity requires that portion of the log.
A cold start might cause down-level page set errors, which you can find out
about in different ways:
v Message DSNB232I is sometimes displayed during DB2 restart, once for each

down-level page set that DB2 detects. After you restart DB2, check the
console log for down-level page set messages.
– If a small number of those messages exist, run DSN1COPY with the

RESET option to correct the errors to the data before you take image
copies of the affected data sets.

– If a large number of those messages exist, the actual problem is not that
page sets are down-level but that the conditional restart inadvertently
caused a high volume of DSNB232I messages. In this case, temporarily
turn off down-level detection by turning off the DLDFREQ ZPARM. (See
14. LEVELID UPDATE FREQ.)

In either case, continue with step 4 on page 681.
v If you run the COPY utility with the SHRLEVEL REFERENCE option to

make image copies, the COPY utility sometimes issues message DSNB232I
about down-level page sets that DB2 does not detect during restart. If any of
those messages were issued when you are making image copies, correct the
errors, and continue making image copies of the affected data sets.

v If you use some other method to make image copies, you will find out about
down-level page set errors during normal operation. In this case, you need to
correct the errors by using the information in “Recovering from a down-level
page set problem” on page 686.

680 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipl14.htm


4. For any DB2 (catalog and directory) system table spaces that are inconsistent,
recover them in the proper order. You might need to recover to a prior point in
time, prior to the conditional restart.

5. For any objects that you suspect might be inconsistent, resolve the database
inconsistencies before proceeding.
v First, resolve inconsistencies in DB2 system databases DSNDB01 and

DSNDB06. Catalog and directory inconsistencies need to be resolved before
inconsistencies in other databases because the subsystem databases describe
all other databases, and access to other databases requires information from
DSNDB01 and DSNDB06.

v If you determine that the existing inconsistencies involve indexes only (not
data), use the REBUILD INDEX utility to rebuild the affected indexes.
Alternatively, you can use the RECOVER utility to recover the index if
rebuilding the indexes is not possible.

v For a table space that cannot be recovered (and is thus inconsistent),
determine the importance of the data and whether it can be reloaded. If the
data is not critical or can be reloaded, drop the table after you restart DB2,
and reload the data rather than trying to resolve the inconsistencies.

Related concepts

“Recovery of data to a prior point in time” on page 578
Related tasks

″Recovering catalog and directory objects″ (DB2 Utility Guide and Reference)
Related reference

″RECOVER″ (DB2 Utility Guide and Reference)
″DSN1COPY″ (DB2 Utility Guide and Reference)

Restoring the table space:

You can restore the table space by reloading data into it or by re-creating the table
space, which requires advance planning. Either of these methods is easier than
using REPAIR.

Reloading the table space is the preferred approach, when it is possible, because
reloading is easier and requires less advance planning than re-creating a table
space. Re-creating a table space involves dropping and then re-creating the table
space and associated tables, indexes, authorities, and views, which are implicitly
dropped when the table space is dropped. Therefore, re-creating the objects means
that you need to plan ahead so that you will be prepared to re-establish indexes,
views, authorizations, and the data content itself.

Restriction: You cannot drop DB2 system tables, such as the catalog and directory.
For these system tables, follow one of these procedures instead of this one:
v “Recovery of data to a prior point in time” on page 578
v “Using the REPAIR utility on inconsistent data” on page 682

To restore the table space:
1. Decide whether you can reload the table space or must drop and re-create it.
v If you can reload the table space, run the appropriate LOAD utility jobs to

do so; specify the REPLACE option. After you load the content of the table
space, skip to step 6 on page 682.

v If you cannot reload the table space, continue with step 2 on page 682.

Chapter 20. Recovering from different DB2 for z/OS problems 681

|
|
|

|
|
|
|
|
|
|

|
|

|

|

|

|

|
|
|

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_recovercatalogdirectoryobjects.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_recover.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1copy.htm


2. Issue an SQL DROP TABLESPACE statement for the table space that is
suspected of being involved in the problem.

3. Re-create the table space, tables, indexes, synonyms, and views by using SQL
CREATE statements.

4. Grant access to these objects the same way that access was granted prior to the
time of the error.

5. Reconstruct the data in the tables.
6. Run the RUNSTATS utility on the data.
7. Use the COPY utility to acquire a full image copy of all data.
8. Use the REBIND command on all plans that use the tables or views that are

involved in this activity.
Related concepts

“Recovery of data to a prior point in time” on page 578
Related tasks

“Using the REPAIR utility on inconsistent data”
Related reference

″LOAD″ (DB2 Utility Guide and Reference)

Using the REPAIR utility on inconsistent data:

You can resolve inconsistencies with the REPAIR utility. However, using REPAIR is
not recommended unless the inconsistency is limited to a small number of data or
index pages.

DB2 does not provide a mechanism to automatically inform users about data that
is physically inconsistent or damaged. When you use SQL to access data that is
physically damaged, DB2 issues messages to indicate that data is not available due
to a physical inconsistency.

However, DB2 includes several utilities that can help you identify data that is
physically inconsistent before you try to access it. These utilities are:
v CHECK DATA
v CHECK INDEX
v CHECK LOB
v COPY with the CHECKPAGE option
v DSN1COPY with the CHECK option

Attention: If you decide to use this method to resolve data inconsistencies, use
extreme care. Use of the REPAIR utility to correct inconsistencies requires in-depth
knowledge of DB2 data structures. Incorrect use of the REPAIR utility can cause
further corruption and loss of data. Read this topic carefully because it contains
information that is important to the successful resolution of the inconsistencies.

Recommendation: Avoid using this procedure if you are experiencing extensive
data inconsistency because it is more time-consuming and complex (and therefore
prone to error) than recovering to a point in time or re-creating the table spaces. If
possible, use those alternative procedures instead.

Restrictions:

v Although the DSN1LOGP utility can identify page sets that contain
inconsistencies, this utility cannot identify the specific data modifications that
are involved in the inconsistencies within a given page set.

682 Administration Guide

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29doc.ugref/db2z_utl_load.htm


v Any pages that are on the logical page list (perhaps caused by this restart)
cannot be accessed by using the REPAIR utility.

To use the REPAIR utility to resolve the inconsistency:
1. Issue the following command to start DB2 and allow access to data:

START DATABASE (dbase) SPACENAM (space) ACCESS(FORCE)

In this command, space identifies the table space that is involved.
2. If any system data is inconsistent, use the REPAIR utility to resolve those

inconsistencies. DB2 system data (such as data that is in the catalog and
directory) exists in interrelated tables and table spaces. Data in DB2 system
databases cannot be modified with SQL, so use of the REPAIR utility is
necessary to resolve the inconsistencies that are identified.

3. Determine if you have any structural violations in data pages. DB2 stores data
in data pages. The structure of data in a data page must conform to a set of
rules for DB2 to be able to process the data accurately. Using a conditional
restart process does not cause violations to this set of rules; but, if violations
existed prior to conditional restart, they continue to exist after conditional
restart.

4. Use the DSN1COPY utility with the CHECK option to identify any violations
that you detected in the previous step, and then resolve the problems, possibly
by recovering or rebuilding the object or by dropping and re-creating it.

5. Examine the various types of pointers that DB2 uses to access data (indexes,
hashes, and links), and identify inconsistencies that need to be manually
corrected.
Hash and link pointers exist in the DB2 directory database; link pointers also
exist in the catalog database. DB2 uses these pointers to access data. During a
conditional restart, data pages might be modified without update of the
corresponding pointers. When this occurs, one of the following actions might
occur:
v If a pointer addresses data that is nonexistent or incorrect, DB2 abends the

request. If SQL is used to access the data, a message that identifies the
condition, and the page in question is issued.

v If data exists but no pointer addresses it, that data is virtually invisible to all
functions that attempt to access it by using the damaged hash or link pointer.
The data might, however, be visible and accessible by some functions, such
as SQL functions that use another pointer that was not damaged. This
situation can result in inconsistencies.

If a row that contains a varying-length field is updated, it can increase in size.
If the page in which the row is stored does not contain enough available space
to store the additional data, the row is placed in another data page, and a
pointer to the new data page is stored in the original data page. After a
conditional restart, one of the following conditions might exist.
v The row of data exists, but the pointer to that row does not exist. In this

case, the row is invisible, and the data cannot be accessed.
v The pointer to the row exists, but the row itself no longer exists. DB2 abends

the requester when any operation (for instance, a SELECT) attempts to access
the data. If termination occurs, one or more messages are issued to identify
the condition and the page that contains the pointer.

6. Use the REPAIR utility to resolve any inconsistencies that you detected in the
previous step.

7. Reset the log RBA in every data and index page set that are to be corrected
with this procedure by using the DSN1COPY RESET option. This step is

Chapter 20. Recovering from different DB2 for z/OS problems 683

|
|

|

|

|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

|
|



necessary for the following reason. If the log was truncated, changing data by
using the REPAIR utility can cause problems. Each data and index page
contains the log RBA of the last recovery log record that was applied against
the page. DB2 does not allow modification of a page that contains a log RBA
that is higher than the current end of the log.

8. When all known inconsistencies have been resolved, take full image copies of
all modified table spaces, in order to use the RECOVER utility to recover from
any future problems. This last step is imperative.

Related concepts

“Recovery of data to a prior point in time” on page 578
Related tasks

“Restoring the table space” on page 681
Related reference

″REPAIR″ (DB2 Utility Guide and Reference)
Related information

DB2 Diagnosis Guide and Reference

Recovering from DB2 database failure
If a DB2 failure occurs because of an allocation or open problem, you can recover
from this situation.

Symptoms

The symptoms vary based on whether the failure was an allocation or an open
problem:

Allocation problem
The following message indicates an allocation problem:
DSNB207I - DYNAMIC ALLOCATION OF DATA SET FAILED.

REASON=rrrr DSNAME=dsn

The rrrr is a z/OS dynamic allocation reason code.

Open problem
The following messages indicate an open problem:
IEC161I rc[(sfi)] - ccc, iii, sss, ddn,

ddd, ser, xxx, dsn, cat

DSNB204I - OPEN OF DATA SET FAILED. DSNAME = dsn

In the IEC161I message:
rc Is a return code.
sfi Is subfunction information, which is displayed only with certain

return codes.
ccc Is a function code.
iii Is a job name.
sss Is a step name.
ddn Is a DD name.
ddd Is a device number (if the error is related to a specific device).
ser Is a volume serial number (if the error is related to a specific

volume).
xxx Is a VSAM cluster name.
dsn Is a data set name.
cat Is a catalog name.

684 Administration Guide

|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_repair.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc/db2z_digref.htm


Environment

When this type of problem occurs:
v The table space is automatically stopped.
v Programs receive a -904 SQLCODE (SQLSTATE ’57011’).
v If the problem occurs during restart, the table space is marked for deferred

restart, and restart continues. The changes are applied later when the table space
is started.

Resolving the problem

Operator response:

1. Check reason code, and correct problems.
2. Ensure that drives are available for allocation.
3. Enter the command START DATABASE.

Recovering a DB2 subsystem to a prior point in time
You can recover a DB2 subsystem and data sharing group to a prior point in time
by using the BACKUP SYSTEM and RESTORE SYSTEM utilities.

In this recovery procedure, you create and populate a table that contains data that
is both valid and invalid. You need to restore your DB2 subsystem to a point in
time before the invalid data was inserted into the table, but after the point in time
when the valid data was inserted. Also, you create an additional table space and
table that DB2 will re-create during the log-apply phase of the restore process.

To insert data into a table, determine the point in time that you want to recover to,
and then recover the DB2 subsystem to a prior point in time:
1. Issue the START DB2 command to start DB2 and all quiesced members of the

data sharing group. Quiesced members are ones that you removed from the
data sharing group either temporarily or permanently. Quiesced members
remain dormant until you restart them.

2. Issue SQL statements to create a database, a table space, and two tables with
one index for each table.

3. Issue the BACKUP SYSTEM DATA ONLY utility control statement to create a
backup copy of only the database copy pool for a DB2 subsystem or data
sharing group.

4. Issue an SQL statement to first insert rows into one of the tables, and then
update some of the rows.

5. Use the LOAD utility with the LOG NO attribute to load the second table.
6. Issue SQL statements to create an additional table space, table, and index in

an existing database. DB2 will re-create the additional table space and table
during the log-apply phase of the restore process.

7. Issue the SET LOG SUSPEND command or the SET LOG RESUME command
to obtain a log truncation point, logpoint1, which is the point you want to
recover to. For a non-data sharing group, use the RBA value. For a data
sharing group, use the lowest log record sequence number (LRSN) from the
active members.
The following example shows sample output for the SET LOG SUSPEND
command:

Chapter 20. Recovering from different DB2 for z/OS problems 685

|

|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

|

|
|
|

|
|
|
|
|

|
|



09.47.52 @set log suspend
09.47.52 STC00066 DSN9022I @ DSNJC001 '-SET LOG' NORMAL COMPLETION
*09.47.55 STC00066 *DSNJ372I @ DSNJC09A UPDATE ACTIVITY HAS BEEN
*SUSPENDED FOR VA1A AT RBA 00004777B710, LRSN C31E5141E0C4, PRIOR
*CHECKPOINT RBA 000047778090

8. Issue an SQL statement to first insert rows into one of the tables and then to
update and delete some rows.

9. Issue the STOP DB2 command to stop DB2 and all active members of the data
sharing group.

10. Run the DSNJU003 change log inventory utility to create a SYSPITR CRCR
record (CRESTART CREATE SYSPITR=logpoint1). The log truncation point is the
value that you obtained from issuing either the SET LOG SUSPEND
command, or the SET LOG RESUME command.

11. For a data sharing group, delete all of the coupling facility structures.
12. Issue the START DB2 command to restart DB2 and all members of the data

sharing group.
13. Run the RESTORE SYSTEM utility. For a data sharing group, this utility can

be run only on one member. If the utility stops and you must restart it, you
can restart the utility only on the member on which it was initially run.

14. After the RESTORE SYSTEM utility completes successfully, issue the STOP
DB2 command to stop DB2 and all active members of the data sharing group.
The DB2 subsystem resets to RECOVER-pending status.

15. Issue the START DB2 command to restart DB2 and all members of the data
sharing group.

16. Issue the DISPLAY command to identify the utilities that are active and the
objects that are restricted. For example:
-DIS UTIL(*)

-DIS DB(DSNDB01) SP(*)

-DIS DB(DSNDB06) SP(*) LIMIT(*)

-DIS DB(DSNDB06) SP(*) LIMIT(*)RESTRICT

17. Stop all of the active utilities that you identified in the previous step.
18. Recover any objects that are in RECOVER-pending status or

REBUILD-pending status from the table that you created in step 6 on page
685.

Recovering from a down-level page set problem
When using a stand-alone utility or a non-DB2 utility, you might inadvertently
replace a DB2 page set with an incorrect or outdated copy. This type of copy is
called down-level. Using a down-level page set can cause complex problems;
therefore, you need to recover from this situation.

Symptoms

The following message is issued:
DSNB232I csect-name - UNEXPECTED DATA SET LEVEL ID ENCOUNTERED

The message also contains the level ID of the data set, the level ID that DB2
expects, and the name of the data set.

Causes

A down-level page set can be caused by:

686 Administration Guide

|
|
|
|
|

|
|

|
|

|
|
|
|

|

|
|

|
|
|

|
|
|

|
|

|
|

|

|

|

|

|

|
|
|



v A DB2 data set is inadvertently replaced by an incorrect or outdated copy.
Usually this happens in conjunction with use of a stand-alone or non-DB2 utility,
such as DSN1COPY or DFSMShsm.

v A cold start of DB2 occurs.
v A VSAM high-used RBA of a table space becomes corrupted.

DB2 associates a level ID with every page set or partition. Most operations detect a
down-level ID, and return an error condition, when the page set or partition is first
opened for mainline or restart processing. The exceptions are the following
operations, which do not use the level ID data:
v LOAD REPLACE
v RECOVER
v REBUILD INDEX
v DSN1COPY
v DSN1PRNT

Environment
v If the error was reported during mainline processing, DB2 sends a ″resource

unavailable″ SQLCODE and a reason code to the application to explain the error.
v If the error was detected while a utility was processing, the utility generates a

return code 8.

Diagnosing the problem

Determine whether the message was issued during restart or at some other time
during normal operation. This information is important for determining what steps
to take below

Resolving the problem

System programmer response: The actions that you need to do to recover depend
on when the message was issued:
v If the message was issued during restart, take one of the following actions:

– Replace the data set with one that is at the proper level, by using DSN1COPY,
DFSMShsm, or some equivalent method. To check the level ID of the new
data set, run the stand-alone utility DSN1PRNT on it, with the options
PRINT(0) (to print only the header page) and FORMAT. The formatted print
output identifies the level ID.

– Recover the data set to the current time, or to a prior time, by using the
RECOVER utility.

– Replace the contents of the data set, by using LOAD REPLACE.
v If the message was issued during normal operation (not during restart):

1. Take one of the actions that are listed for situations when the message was
issued during restart.

2. Accept the down-level data set by changing its level ID. You can use the
REPAIR utility with the LEVELID statement. (You cannot use the LEVELID
option in the same job step with any other REPAIR utility control statement.)
Attention: If you accept a down-level data set or disable down-level
detection, your data might be inconsistent.

Related system programmer actions: Consider taking the following actions, which
might help you minimize or deal with down-level page set problems in the future:

Chapter 20. Recovering from different DB2 for z/OS problems 687



v To control how often the level ID of a page set or partition is updated, specify a
value between 0 and 32767 on the LEVELID UPDATE FREQ field of panel
DSNTIPL.

v To disable down-level detection, specify 0 in the LEVELID UPDATE FREQ field
of panel DSNTIPL.

v To control how often level ID updates are taken, specify a value between 1 and
32767.
Related reference

″DSN1COPY″ (DB2 Utility Guide and Reference)
″DSN1PRNT″ (DB2 Utility Guide and Reference)
″LOAD″ (DB2 Utility Guide and Reference)
″RECOVER″ (DB2 Utility Guide and Reference)
″REPAIR″ (DB2 Utility Guide and Reference)
″14. LEVELID UPDATE FREQ″ (DB2 Installation Guide)

Recovering from a problem with invalid LOBs
If a LOB table space is defined with LOG NO and you need to recover that table
space, you can recover the LOB data to the point at which you made your last
image copy of the table space.

Unless your LOBs are fairly small, specifying LOG NO for LOB objects is
recommended for the best performance. However, to maximize recoverability,
specifying LOG YES is recommended. The performance cost of logging exceeds the
benefits that you can receive from logging such large amounts of data. If no
changes are made to LOB data, the logging cost is not an issue. However, you
should make image copies of the LOB table space to prepare for failures. The
frequency with which you make image copies is based on how often you update
LOB data.

To recover LOB data from a LOB table space that is defined with LOG NO:
1. Run the RECOVER utility as you do for other table spaces:

RECOVER TABLESPACE dbname.lobts

If changes were made after the image copy, DB2 puts the table space in
auxiliary warning status, which indicates that some of your LOBs are invalid.
Applications that try to retrieve the values of those LOBs receive SQLCODE
-904. Applications can still access other LOBs in the LOB table space.

2. Get a report of the invalid LOBs by running CHECK LOB on the LOB table
space:
CHECK LOB TABLESPACE dbname.lobts

DB2 generates the following messages:
LOB WITH ROWID = 'xxxxxxx' VERSION = n IS INVALID

3. Fix the invalid LOBs, by updating the LOBs or setting them to the null
value. For example, suppose that you determine from the CHECK LOB utility
that the row of the EMP_PHOTO_RESUME table with ROWID
X’C1BDC4652940D40A81C201AA0A28’ has an invalid value for column
RESUME. If host variable hvlob contains the correct value for RESUME, you can
use this statement to correct the value:

688 Administration Guide

|
|
|
|
|
|
|
|

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1copy.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1prnt.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_load.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_recover.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_repair.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipa14.htm


UPDATE DSN8910. EMP_PHOTO_RESUME
SET RESUME = :hvlob
WHERE EMP_ROWID = ROWID(X'C1BDC4652940D40A81C201AA0A28');

Recovering from table space I/O errors
You can recover a table space after I/O errors have occurred and caused the table
space to fail.

Symptoms

The following message is issued, where dddddddd is a table space name:
DSNU086I DSNUCDA1 READ I/O ERRORS ON SPACE=dddddddd.

DATA SET NUMBER=nnn.
I/O ERROR PAGE RANGE=aaaaaa, bbbbbb.

Any table spaces that are identified in DSNU086I messages must be recovered.
Follow the steps later in this topic.

Environment

DB2 remains active.

Resolving the problem

Operator response:

1. Fix the error range:
a. Use the command STOP DATABASE to stop the failing table space.
b. Use the command START DATABASE ACCESS (UT) to start the table space

for utility-only access.
c. Start a RECOVER utility step to recover the error range by using the

following statement:
DB2 RECOVER (dddddddd) ERROR RANGE

If you receive message DSNU086I again to indicate that the error range
recovery cannot be performed, continue with step 2.

d. Issue the command START DATABASE to start the table space for RO or
RW access, whichever is appropriate. If the table space is recovered, you do
not need to continue with the following procedure.

2. If error range recovery fails because of a hardware problem:
a. Use the command STOP DATABASE to stop the table space or table space

partition that contains the error range. As a result of this command, all
in-storage data buffers that are associated with the data set are externalized
to ensure data consistency during the subsequent steps.

b. Use the INSPECT function of the IBM Device Support Facility, ICKDSF, to
check for track defects and to assign alternate tracks as necessary.
Determine the physical location of the defects by analyzing the output of
messages DSNB224I, DSNU086I, and IOS000I. These messages are displayed
on the system operator’s console at the time that the error range was
created. If damaged storage media is suspected, request assistance from IBM
Hardware Support before proceeding.

Chapter 20. Recovering from different DB2 for z/OS problems 689



c. Use the command START DATABASE to start the table space with
ACCESS(UT) or ACCESS(RW).

d. Run the RECOVER utility with the ERROR RANGE option. Specify an error
range that, from image copies, locates, allocates, and applies the pages
within the tracks that are affected by the error ranges.

Related information

z/OS Internet Library

Recovering from DB2 catalog or directory I/O errors
When the DB2 catalog or directory fails because of I/O errors, you need to recover
from this situation so that processing can return to normal.

Symptoms

The following message is issued, where dddddddd is the name of the table space
from the catalog or directory that failed (for example, SYSIBM.SYSCOPY):
DSNU086I DSNUCDA1 READ I/O ERRORS ON SPACE=dddddddd.

DATA SET NUMBER=NNN.
I/O ERROR PAGE RANGE=aaaaaa, bbbbbb

This message can indicate either read or write errors. You might also receive a
DSNB224I or DSNB225I message, which indicates an input or output error for the
catalog or directory.

Environment

DB2 remains active.

If the DB2 directory or any catalog table is damaged, only user IDs with the
RECOVERDB privilege in DSNDB06, or an authority that includes that privilege,
can perform the recovery. Furthermore, until the recovery takes place, only those
IDs can do anything with the subsystem. If an ID without proper authorization
attempts to recover the catalog or directory, message DSNU060I is displayed. If the
authorization tables are unavailable, message DSNT500I is displayed to indicate
that the resource is unavailable.

Resolving the problem

Operator response: Recover each table space in the failing DB2 catalog or
directory. If multiple table spaces need to be recovered, recover them in the
recommended order as defined in the information about the RECOVER utility. (See
Recovering catalog and directory objects in DB2 Utility Guide and Reference.)
1. Stop the failing table spaces.
2. Determine the name of the data set that failed by using one of the following

methods:
v Check prefix.SDSNSAMP (DSNTIJIN), which contains the JCL for installing

DB2. Find the fully qualified name of the data set that failed by searching for
the name of the table space that failed (the one that is identified in the
message as SPACE=dddddddd).

v Construct the data set name by performing one of the following actions:
– If the table space is in the DB2 catalog, the data set name format is:

DSNC910.DSNDBC.DSNDB06.dddddddd.I0001.A001

690 Administration Guide

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugmref/db2z_recovercatalogdirectoryobjects.htm


The dddddddd is the name of the table space that failed.
– If the table space is in the DB2 directory, the data set name format is:

DSNC910.DSNDBC.DSNDB01.dddddddd.I0001.A001

The dddddddd is the name of the table space that failed.
If you do not use the default (IBM-supplied) formats, the formats for data set
names might be different.

3. Use the access method services DELETE command to delete the data set,
specifying the fully qualified data set name.

4. After the data set is deleted, use the access method services DEFINE command
with the REUSE parameter to redefine the same data set, again specifying the
same fully qualified data set name. Use the JCL for installing DB2 to determine
the appropriate parameters.

5. Issue the command START DATABASE ACCESS(UT), naming the table space
that is involved.

6. Use the RECOVER utility to recover the table space that failed.
7. Issue the command START DATABASE, specifying the table space name and

RO or RW access, whichever is appropriate.

Recovering from integrated catalog facility failure
Sometimes VSAM volume data sets might be out of space or destroyed. Also, you
might experience problems with other VSAM data sets being out of space or
unable to be extended any further.

Symptoms

The symptoms for integrated catalog facility problems vary according to the
underlying problems.

Recovering VSAM volume data sets that are out of space or
destroyed

If the VSAM volume data set (VVDS) is out of space or destroyed, you can recover
from the situation. You can recover by using DB2 commands, DB2 utilities, and
access method services.

Symptoms

DB2 sends the following message to the master console:
DSNP012I - DSNPSCT0 - ERROR IN VSAM CATALOG LOCATE FUNCTION

FOR data_set_name
CTLGRC=50
CTLGRSN=zzzzRRRR
CONNECTION-ID=xxxxxxxx,
CORRELATION-ID=yyyyyyyyyyyy
LUW-ID=logical-unit-of-work-id=token

VSAM might also issue the following message:
IDC3009I VSAM CATALOG RETURN CODE IS 50, REASON CODE IS

IGGOCLaa - yy

In this VSAM message, yy is 28, 30, or 32 for an out-of-space condition. Any other
values for yy indicate a damaged VVDS.

Environment

Chapter 20. Recovering from different DB2 for z/OS problems 691



Your program is terminated abnormally, and one or more messages are issued.

Resolving the problem

Operator response: Begin by determining whether the VSAM volume data set is
out of space or has been destroyed. Then follow these steps:

1. Determine the names of all table spaces that reside on the same volume as the
VVDS. To determine the table space names, look at the VTOC entries list for
that volume, which indicates the names of all the data sets on that volume.

2. Use the DB2 COPY utility to take image copies of all table spaces of the
volume. Taking image copies minimizes reliance on the DB2 recovery log and
can speed up the processing of the DB2 RECOVER utility (to be mentioned in a
subsequent step).
If you cannot use the COPY utility, continue with this procedure. Be aware that
processing time increases because more information must be obtained from the
DB2 recovery log.

3. Use the command STOP DATABASE for all the table spaces that reside on the
volume, or use the command STOP DB2 to stop the entire DB2 subsystem if an
unusually large number or critical set of table spaces are involved.

4. If possible, use access method services to export all non-DB2 data sets that
resides on that volume.

5. Use access method services to recover all non-DB2 data sets that resides on that
volume.

6. Use access method services DELETE and DEFINE commands to delete and
redefine the data sets for all user-defined table spaces and DB2-defined data
sets when the physical data set has been destroyed. DB2 automatically deletes
and redefines all other STOGROUP-defined table spaces.
You do not need to delete and redefine table spaces that are
STOGROUP-defined because DB2 takes care of them automatically.

7. Issue the DB2 START DATABASE command to restart all the table spaces that
were stopped in step 3. If the entire DB2 subsystem was stopped, issue the
START DB2 command.

8. Use the DB2 RECOVER utility to recover any table spaces and indexes.
Related tasks

Chapter 19, “Backing up and recovering your data,” on page 553
Related information

″DSNP012I″ (DB2 Messages)

z/OS Internet Library

z/OS Internet Library

Recovering from out-of-disk-space or extent limit problems
When a volume on which a data set is stored has insufficient space, or when the
data set reaches its maximum size or its maximum number of VSAM extents, you
can recover from this situation.

Symptoms

The symptoms vary based on the specific situation. The following messages and
codes might be issued:
v DSNP007I
v DSNP001I

692 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnp012i.htm
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/


v -904 SQL return code (SQLSTATE ’57011’)

Environment

For a demand request failure during restart, the object that is supported by the
data set (an index space or a table space) is stopped with deferred restart pending.
Otherwise, the state of the object remains unchanged.

Diagnosing the problem

Read the following descriptions of possible problems, and determine which
problem you are experiencing.
v Extend request failures: When an insert or update requires additional space, but

the space is not available in the current table space or index space, DB2 issues
the following message:
DSNP007I - DSNPmmmm - EXTEND FAILED FOR

data-set-name. RC=rrrrrrrr
CONNECTION-ID=xxxxxxxx,
CORRELATION-ID=yyyyyyyyyyyy
LUWID-ID=logical-unit-of-work-id=token

v Look-ahead warning: A look-ahead warning occurs when enough space is
available for a few inserts or updates, but the index space or table space is
almost full. On an insert or update at the end of a page set, DB2 determines
whether the data set has enough available space. DB2 uses the following values
in this space calculation:
– The primary space quantity from the integrated catalog facility (ICF) catalog
– The secondary space quantity from the ICF catalog
– The allocation unit size
If enough space does not exist, DB2 tries to extend the data set. If the extend
request fails, DB2 issues the following message:
DSNP001I - DSNPmmmm - data-set-name IS WITHIN

nK BYTES OF AVAILABLE SPACE.
RC=rrrrrrrr
CONNECTION-ID=xxxxxxxx,
CORRELATION-ID=yyyyyyyyyyyy
LUWID-ID=logical-unit-of-work-id=token

Resolving the problem

What you need to do depends on your particular circumstances.
v In most cases, if the data set has not reached its maximum size, as described

below, you can enlarge it. The maximum size of a data set can be:
– Data set of a simple space: maximum size is 2 GB.
– Data set that contains a partition: maximum size is 1, 2, or 4 GB.
– Data set of a large partitioned table space: maximum is 4 GB.
– Data set of an index on a large partitioned table space: maximum is 4 GB.

v If the data set has reached its maximum size, you need to follow the appropriate
procedure, depending on the situation you face.

Extending a data set
If a user-defined data set reaches the maximum number of VSAM extents, you can
extend the data set by adding volumes.

To extend a user-defined data set:

Chapter 20. Recovering from different DB2 for z/OS problems 693



1. If possible, delete unneeded data on the current volume.
2. If deleting data from the volume does not solve the problem, add volumes to

the data set in one of the following ways:
v If the data set is defined in a DB2 storage group, add more volumes to the

storage group by using the SQL ALTER STOGROUP statement.
v If the data set is not defined in a DB2 storage group, add volumes to the

data set by using the access method services ALTER ADDVOLUMES
command.

Enlarging a fully extended user-managed data set
If a user-managed data set reaches the maximum number of VSAM extents, you
can enlarge the data set.

To enlarge a user-managed data set:
1. To allow for recovery in case of failure during this procedure, ensure that you

have a recent full image copy of your table spaces and indexes. Use the
DSNUM option to identify the data set for table spaces or partitioning indexes.

2. Issue the command STOP DATABASE SPACENAM for the last data set of the
supported object.

3. Delete the last data set by using access method services.
4. Redefine the data set, and enlarge it as necessary. The object must be a

user-defined linear data set, and it should not have reached the maximum
number of 32 data sets for a nonpartitioned table space (or 254 data sets for
LOB table spaces). For a partitioned table space, a partitioning index, or a
nonpartitioning index on a partitioned table space, the maximum is 4096 data
sets.

5. Issue the command START DATABASE ACCESS (UT) to start the object for
utility-only access.

6. To recover the data set that was redefined, use the RECOVER utility on the
table space or index, and identify the data set by the DSNUM option (specify
this DSNUM option for table spaces or partitioning indexes only).
The RECOVER utility enables you to specify a single data set number for a
table space. Therefore, you need to redefine and recover only the last data set
(the one that needs extension). This approach can be better than using the
REORG utility if the table space is very large and contains multiple data sets,
and if the extension must be done quickly.
If you do not copy your indexes, use the REBUILD INDEX utility.

7. Issue the command START DATABASE to start the object for either RO or RW
access, whichever is appropriate.

Enlarging a fully extended DB2-managed data set
If a DB2-managed data set reaches the maximum number of VSAM extents, you
can enlarge the data set.

To enlarge a DB2-managed data set:
1. Use the SQL statement ALTER TABLESPACE or ALTER INDEX with a USING

clause. (You do not need to stop the table space before you use ALTER
TABLESPACE.) You can give new values of PRIQTY and SECQTY in either the
same or a new DB2 storage group.

2. Use one of the following procedures. No movement of data occurs until this
step is completed.

694 Administration Guide



v For indexes: If you have taken full image copies of the index, run the
RECOVER INDEX utility. Otherwise, run the REBUILD INDEX utility.

v For table spaces other than LOB table spaces: Run one of the following
utilities on the table space: REORG, RECOVER, or LOAD REPLACE.

v For LOB table spaces that are defined with LOG YES: Run the RECOVER
utility on the table space.

v For LOB table spaces that are defined with LOG NO:
a. Start the table space in read-only (RO) mode to ensure that no updates

are made during this process.
b. Make an image copy of the table space.
c. Run the RECOVER utility on the table space.
d. Start the table space in read-write (RW) mode.

Adding a data set
If a user-defined simple data set reaches its maximum size, you can use access
method services to define another data set.

To add another data set:
1. Use access method services to define another data set. The name of the new

data set must follow the naming sequence of the existing data sets that support
the object. The last four characters of each name are a relative data set number:
If the last name ends with A001, the next name must end with A002, and so on.
Also, be sure to add either the character “I” or the character “J” to the name of
the data set. If the object is defined in a DB2 storage group, DB2 automatically
tries to create an additional data set. If that fails, access method services
messages are sent to an operator to indicate the cause of the problem.

2. If necessary, correct the problem (identified in the access method services
messages) to obtain additional space.

Redefining a partition (index-based partitioning)
Sometimes each partition in a partitioned object is restricted to a single data set. If
the data set reaches its maximum size, you need to redefine the partitions.
Redefining a partition in an index-based partitioning environment is different than
in a table-based partitioning environment.

To redefine the partitions in an index-based partitioning environment:
1. Use the ALTER INDEX ALTER PARTITION statement to alter the key range

values of the partitioning index.
2. Use the REORG utility with inline statistics on the partitions that are affected

by the change in key range.
3. Use the RUNSTATS utility on the nonpartitioned indexes.
4. Rebind the dependent packages and plans.

Redefining a partition (table-based partitioning)
Sometimes each partition in a partitioned object is restricted to a single data set. If
the data set reaches its maximum size, you need to redefine the partitions.
Redefining a partition in a table-based partitioning environment is different than in
an index-based partitioning environment.

To redefine the partitions in a table-based partitioning environment:
1. Use the SQL statement ALTER TABLE ALTER PARTITION to alter the partition

boundaries.

Chapter 20. Recovering from different DB2 for z/OS problems 695



2. Use the REORG utility with inline statistics on the partitions that are affected
by the change in partition boundaries.

3. Use the RUNSTATS utility on the indexes.
4. Rebind the dependent packages and plans.

Enlarging a fully extended data set for the work file database
If you have an out-of-disk-space or extent limit problem with the work file
database (DSNDB07), you need to add space to the data set.

To enlarge a fully extended data set for the work file database:

Add space to the DB2 storage group, choosing one of the following approaches:
v Use SQL to create more table spaces in database DSNDB07.
v Execute these steps:

1. Use the command STOP DATABASE(DSNDB07) to ensure that no users are
accessing the database.

2. Use SQL to alter the storage group, adding volumes as necessary.
3. Use the command START DATABASE(DSNDB07) to allow access to the

database.

Recovering from referential constraint violation
When a referential constraint is violated, the table space is available for some
actions, but you cannot run certain utilities or use SQL to update the data in the
table space until you recover from this situation.

Symptoms

One of the following messages is issued at the end of utility processing, depending
on whether the table space is partitioned:
DSNU561I csect-name - TABLESPACE=tablespace-name PARTITION=partnum

IS IN CHECK PENDING
DSNU563I csect-name - TABLESPACE=tablespace-name IS IN CHECK PENDING

Causes

DB2 detected one or more referential constraint violations.

Environment

The table space is still generally available. However, it is not available to the
COPY, REORG, and QUIESCE utilities, or to SQL select, insert, delete, or update
operations that involve tables in the table space.

Resolving the problem

Operator response:

1. Use the START DATABASE ACCESS (UT) command to start the table space for
utility-only access.

2. Run the CHECK DATA utility on the table space. Consider these
recommendations:
v If you do not believe that violations exist, specify DELETE NO. If violations

do not exist, specifying DELETE NO resets the CHECK-pending status;
however, if violations do exist, the status is not reset.

696 Administration Guide



v If you believe that violations exist, specify the DELETE YES option and an
appropriate exception table. Specifying DELETE YES results in deletion of all
rows that are in violation, copies them to an exception table, and resets the
CHECK-pending status.

v If the CHECK-pending status was set during execution of the LOAD utility,
specify the SCOPE PENDING option. This checks only those rows that are
added to the table space by LOAD, rather than every row in the table space.

3. Correct the rows in the exception table, if necessary, and use the SQL INSERT
statement to insert them into the original table.

4. Issue the command START DATABASE to start the table space for RO or RW
access, whichever is appropriate. The table space is no longer in
CHECK-pending status and is available for use. If you use the ACCESS
(FORCE) option of this command, the CHECK-pending status is reset.
However, using ACCESS (FORCE) is not recommended because it does not
correct the underlying violations of referential constraints.
Related reference

″CHECK DATA″ (DB2 Utility Guide and Reference)

Recovering from distributed data facility failure
You can recover from various problems that occur for the distributed data facility
(DDF).

Symptoms

The symptoms for DDF failures vary based on the precise problems. The
symptoms include messages, SQL return codes, and apparent wait states.

Recovering from conversation failure
A VTAM APPC or TCP/IP conversation might fail during or after allocation. The
conversation is not available for use until you recover from the situation.

Symptoms

VTAM or TCP/IP returns a resource-unavailable condition along with the
appropriate diagnostic reason code and message. A DSNL500 or DSNL511
(conversation failed) message is sent to the console for the first failure to a location
for a specific logical unit (LU) mode or TCP/IP address. All other threads that
detect a failure from that LU mode or IP address are suppressed until
communications to the LU that uses that mode are successful.

DB2 returns messages DSNL501I and DSNL502I. Message DSNL501I usually
means that the other subsystem is not operational. When the error is detected, it is
reported by a console message, and the application receives an SQL return code.

For DB2 private protocol access, SQLCODE -904 (SQLSTATE ’57011’) is returned
with resource type 1001, 1002, or 1003. The resource name in the SQLCA contains
VTAM return codes such as RTNCD, FDBK2, RCPRI, and RCSEC, and any SNA
SENSE information.

If you use application-directed access or DRDA as the database protocols,
SQLCODE -30080 is returned to the application. The SQLCA contains the VTAM
diagnostic information, which contains only the RCPRI and RCSEC codes. For

Chapter 20. Recovering from different DB2 for z/OS problems 697

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_checkdata.htm


SNA communications errors, SQLCODE -30080 is returned. For TCP/IP
connections, SQLCODE -30081 is returned.

Environment

The application can choose to request rollback or commit, both of which deallocate
all but the first conversation between the allied thread and the remote database
access thread. A commit or rollback message is sent over this remaining
conversation.

Errors during the deallocation process of the conversation are reported through
messages, but they do not stop the commit or rollback processing. If the
conversation that is used for the commit or rollback message fails, the error is
reported. If the error occurred during a commit process and if the remote database
access was read-only, the commit process continues. Otherwise the commit process
is rolled back.

Diagnosing the problem

System programmer response: Review the VTAM or TCP/IP return codes, and
possibly discuss the problem with a communications expert. Many VTAM or
TCP/IP errors, besides the error of an inactive remote LU or TCP/IP errors,
require a person who has a knowledge of VTAM or TCP/IP and the network
configuration to diagnose them.

Resolving the problem

Operator response: Correct the cause of the unavailable-resource condition by
taking the action that is required by the diagnostic messages that are displayed on
the console.

Related concepts

SQL codes (DB2 Codes)
Related information

VTAM for MVS/ESA Messages and Codes

Recovering from communications database failure
You need to recover the communications database (CDB) when a failure occurs
during an attempt to access the CDB.

Symptoms

A DSNL700I message, which indicates that a resource-unavailable condition exists,
is sent to the console. Other messages that describe the cause of the failure are also
sent to the console.

Environment

If the distributed data facility (DDF) has already started when an individual CDB
table becomes unavailable, DDF does not terminate. Depending on the severity of
the failure, threads are affected as follows:
v The threads receive a -904 SQL return code (SQLSTATE ’57011’) with resource

type 1004 (CDB).
v The threads continue using VTAM default values.

698 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.codes/db2z_sqlcodes.htm#db2z_sqlcodes
http://www-01.ibm.com/support/docview.wss?uid=pub1sc31649300


The only threads that receive a -904 SQL return code are those that access locations
that have not had any prior threads. DB2 and DDF remain operational.

Resolving the problem

Operator response:

1. Examine the messages to determine the source of the error.
2. Correct the error, and then stop and restart DDF.

Recovering from a problem with a communications database that
is incorrectly defined
You need to recover from a situation in which the communications database (CDB)
is not correctly defined. This problem occurs when distributed data facility (DDF)
is started and the DB2 catalog is accessed to verify the CDB definitions.

Symptoms

A DSNL701I, DSNL702I, DSNL703I, DSNL704I, or DSNL705I message is issued to
identify the problem. Other messages that describe the cause of the failure are also
sent to the console.

Environment

DDF fails to start. DB2 continues to run.

Resolving the problem

Operator response:

1. Examine the messages to determine the source of the error.
2. Correct the error, and then restart DDF.

Recovering from database access thread failure
When a database access thread is deallocated, a conversation failure occurs, and
you need to recover from this situation.

Symptoms

In the event of a failure of a database access thread, the DB2 server terminates the
database access thread only if a unit of recovery exists. The server deallocates the
database access thread and then deallocates the conversation with an abnormal
indication (a negative SQL code), which is subsequently returned to the requesting
application. The returned SQL code depends on the type of remote access:
v DRDA access

For a database access thread or non-DB2 server, a DDM error message is sent to
the requesting site, and the conversation is deallocated normally. The SQL error
status code is a -30020 with a resource type 1232 (agent permanent error
received from the server).

v DB2 private protocol access
The application program receives a -904 SQL return code (SQLSTATE ’57011’)
with a resource type 1005 at the requesting site. The SNA sense code in the
resource name contains the DB2 reason code that describes the failure.

Environment

Chapter 20. Recovering from different DB2 for z/OS problems 699



Normal DB2 error recovery mechanisms apply, with the following exceptions:
v Errors that are encountered in the functional recovery routine are automatically

converted to rollback situations. The allied thread experiences conversation
failures.

v Errors that occur during commit, rollback, and deallocate within the DDF
function do not normally cause DB2 to abend. Conversations are deallocated,
and the database access thread is terminated. The allied thread experiences
conversation failures.

Diagnosing the problem

System programmer response: Collect all diagnostic information that is related to
the failure at the serving site. For a DB2 database access thread (DBAT), a dump is
produced at the server.

Resolving the problem

Operator response: Communicate with the operator at the other site to take the
appropriate corrective action, regarding the messages that are displayed at both the
requesting and responding sites. Ensure that you and operators at the other sites
gather the appropriate diagnostic information and give it to the programmer for
diagnosis.

Recovering from VTAM failure
When VTAM terminates or fails, you need to recover from the situation.

Symptoms

VTAM messages and DB2 messages are issued to indicate that distributed data
facility (DDF) is terminating and to explain why.

Causes

Environment

DDF terminates. An abnormal VTAM failure or termination causes DDF to issue a
STOP DDF MODE(FORCE) command. The VTAM commands Z NET,QUICK and
Z NET,CANCEL cause an abnormal VTAM termination. A Z NET,HALT causes a
STOP DDF MODE(QUIESCE) to be issued by DDF.

Resolving the problem

Operator response: Correct the condition that is described in the messages that are
received at the console, and restart VTAM and DDF.

Recovering from TCP/IP failure
When TCP/IP terminates or fails, you need to recover from this situation.

Symptoms

TCP/IP messages and DB2 messages are issued to indicate that TCP/IP is
unavailable.

Environment

700 Administration Guide



Distributed data facility (DDF) periodically attempts to reconnect to TCP/IP. If the
TCP/IP listener fails, DDF automatically tries to re-establish the TCP/IP listener
for the DRDA SQL port or the resync port every three minutes. TCP/IP
connections cannot be established until the TCP/IP listener is re-established.

Resolving the problem

Operator response:

1. Examine the messages that are received at the console to determine the cause of
the problem.

2. Correct the condition.
3. Restart TCP/IP. You do not need to restart DDF after a TCP/IP failure.

Recovering from remote logical unit failure
When a series of conversation or change number of sessions (CNOS) failures occur
from a remote logical unit (LU), you need to recover from this situation.

Symptoms

Message DSNL501I is issued when a CNOS request to a remote LU fails. The
CNOS request is the first attempt to connect to the remote site and must be
negotiated before any conversations can be allocated. Consequently, if the remote
LU is not active, message DSNL501I is displayed to indicate that the CNOS request
cannot be negotiated. Message DSNL500I is issued only once for all the SQL
conversations that fail as a result of a remote LU failure.

Message DSNL502I is issued for system conversations that are active to the remote
LU at the time of the failure. This message contains the VTAM diagnostic
information about the cause of the failure.

Environment

Any application communications with a failed LU receives a message to indicate a
resource-unavailable condition. The application programs receive SQL return code
-30080 for DRDA access and SQL return code -904 (SQLSTATE ’57011’) for DB2
private protocol access. Any attempt to establish communication with such an LU
fails.

Resolving the problem

System programmer response: Communicate with the other involved sites
regarding the unavailable-resource condition, and request that appropriate
corrective action be taken. If a DSNL502 message is received, activate the remote
LU, or ask another operator to do so.

Recovering from an indefinite wait condition
You might sometimes experience a problem with allied threads or database access
threads; you can recover from these problems. For example, an allied thread might
wait indefinitely for response from a remote subsystem. Another example is a
database access thread that waits for response from the local subsystem.

Symptoms

Chapter 20. Recovering from different DB2 for z/OS problems 701



An application is in an indefinitely long wait condition. This can cause other DB2
threads to fail due to resources that are held by the waiting thread. DB2 sends an
error message to the console, and the application program receives an SQL return
code.

Environment

DB2 does not respond.

Diagnosing the problem

Operator response: To check for very long waits, look to see if the conversation
timestamp is changing from the last time it was used. If it is changing, the
conversation thread is not hung, but it is taking more time for a long query. Also,
look for conversation state changes, and determine what they mean.

Resolving the problem

Operator response:

1. Use the DISPLAY THREAD command with the LOCATION and DETAIL
options to identify the LUWID and the session allocation for the waiting
thread.

2. Use the CANCEL DDF THREAD command to cancel the waiting thread.
3. If the CANCEL DDF THREAD command fails to break the wait (because the

thread is not suspended in DB2), try using VTAM commands such as VARY
TERM,SID=xxx.
Related tasks

“Canceling threads” on page 481

Recovering database access threads after security failure
During database access thread allocation, the remote site might not have the
proper security to access DB2 through distributed data facility (DDF). When this
happens, you can recover from the situation.

Symptoms

Message DSNL500I is issued at the requester for VTAM conversations (if it is a
DB2 subsystem) with return codes RTNCD=0, FDBK2=B, RCPRI=4, and RCSEC=5.
These return codes indicate that a security violation has occurred. The server has
deallocated the conversation because the user is not allowed to access the server.
For conversations that use DRDA access, LU 6.2 communications protocols present
specific reasons for why the user access failed, and these reasons are
communicated to the application. If the server is a DB2 database access thread,
message DSNL030I is issued to describe what caused the user to be denied access
into DB2 through DDF. No message is issued for TCP/IP connections.

If the server is a DB2 subsystem, message DSNL030I is issued. Otherwise, the
system programmer needs to refer to the documentation of the server. If the
application uses DRDA access, SQLCODE –30082 is returned. If the application
uses DB2 private protocol access, it receives SQLCODE -904 (SQLSTATE ’57011’)
with reason code 00D3103D, to indicate that a resource is unavailable.

Causes

702 Administration Guide



This problem is caused by a remote user who attempts to access DB2 through DDF
without the necessary security authority.

Resolving the problem

Operator response:

1. Read about the DB2 code 00D3103D.
2. Take the appropriate action:
v If the security failure involves a DB2 database access thread, provide the

DSNL030I message to the system programmer.
v If the security failure does not involve a DB2 server, work with the operator

or programmer at the server to get diagnostic information that is needed by
the system programmer.

Related reference

″00D3103D″ (DB2 Codes)

Performing remote-site disaster recovery
When your local system experiences damage or disruption that prevents recovery
from that site, you can recover by using a remote site that you have set up for this
purpose.

Symptoms

The specific symptoms of a disaster that affects your local system hardware vary,
but when this happens, the affectedDB2 subsystem is not operational.

Causes

Your local system hardware has suffered physical damage.

Resolving the problem

System programmer response: Coordinate the activities that are detailed in
“Restoring data from image copies and archive logs” on page 704.

Operator response: At the remote-site, the disaster-recovery procedures differ from
other recovery procedures because you cannot use the hardware at your local DB2
site to recover data. Instead, you use hardware at a remote site to recover after a
disaster by using one of a variety of methods.

Recovering from a disaster by using system-level backups
If you have recent system-level backups, you can use those backups along with
one of several utilities to recover after a disaster.

To recover from a disaster by using system-level backups:

For a remote site recovery procedure where tape volumes that contain system data
are sent from the production site, specify the dump class that is available at the
remote site by using the following installation options on installation panel
DSNTIP6:
v Either RESTORE FROM DUMP or RECOVER FROM DUMP
v DUMP CLASS NAME

Chapter 20. Recovering from different DB2 for z/OS problems 703

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.codes/00d3103d.htm


Restoring data from image copies and archive logs
Follow the appropriate procedure for restoring from image copies and archive logs,
depending on whether you are in a data sharing environment. Both procedures
assume that all logs, copies, and reports are available at the recovery site.

Related information

z/OS Internet Library

Restoring data in a non-data sharing environment
If you are in a non-data sharing environment, you might need to recover from a
disaster by restoring data from image copies and logs. The procedure that you
follow assumes that all logs, image copies, and reports are available at the recovery
site.

To recover from a disaster in a non-data sharing environment by using image
copies and archive logs:
1. If an integrated catalog facility catalog does not already exist, run job

DSNTIJCA to create a user catalog.
2. Use the access method services IMPORT command to import the integrated

catalog facility catalog.
3. Restore DB2 libraries. Some examples of libraries that you might need to

restore include:
v DB2 SMP/E libraries
v User program libraries
v User DBRM libraries
v DB2 CLIST libraries
v DB2 libraries that contain customized installation jobs
v JCL for creating user-defined table spaces

4. Use IDCAMS DELETE NOSCRATCH to delete all catalog and user objects.
(Because step 2 imports a user ICF catalog, the catalog reflects data sets that
do not exist on disk.)

5. Obtain a copy of installation job DSNTIJIN, which creates DB2 VSAM and
non-VSAM data sets. Change the volume serial numbers in the job to volume
serial numbers that exist at the recovery site. Comment out the steps that
create DB2 non-VSAM data sets, if these data sets already exist. Run
DSNTIJIN. However, do not run DSNTIJID.

6. Recover the BSDS:
a. Use the access method services REPRO command to restore the contents of

one BSDS data set (allocated in step 5). You can find the most recent BSDS
image in the last file (archive log with the highest number) on the latest
archive log tape.

b. Determine the RBA range for this archive log by using the print log map
utility (DSNJU004) to list the current BSDS contents. Find the most recent
archive log in the BSDS listing, and add 1 to its ENDRBA value. Use this
as the STARTRBA. Find the active log in the BSDS listing that starts with
this RBA, and use its ENDRBA as the ENDRBA.

c. Register this latest archive log tape data set in the archive log inventory of
the BSDS that you just restored by using the change log inventory utility
(DSNJU003). This step is necessary because the BSDS image on an archive
log tape does not reflect the archive log data set that resides on that tape.
After these archive logs are registered, use the print log map utility
(DSNJU004) to list the contents of the BSDS.

704 Administration Guide

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/


d. Adjust the active logs in the BSDS by using the change log inventory
utility (DSNJU003), as necessary:
1) To delete all active logs in the BSDS, use the DELETE option of

DSNJU003. Use the BSDS listing that is produced in step 6c on page
704 to determine the active log data set names.

2) To add the active log data sets to the BSDS, use the NEWLOG
statement of DSNJU003. Do not specify a STARTRBA or ENDRBA in
the NEWLOG statement. This specification indicates to DB2 that the
new active logs are empty.

e. If you are using the DB2 distributed data facility, update the LOCATION
and the LUNAME values in the BSDS by running the change log
inventory utility with the DDF statement.

f. List the new BSDS contents by using the print log map utility (DSNJU004).
Ensure that the BSDS correctly reflects the active and archive log data set
inventories. In particular, ensure that:
v All active logs show a status of NEW and REUSABLE.
v The archive log inventory is complete and correct (for example, the start

and end RBAs are correct).
g. If you are using dual BSDSs, make a copy of the newly restored BSDS data

set to the second BSDS data set.
7. Optional: Restore archive logs to disk. Archive logs are typically stored on

tape, but restoring them to disk might speed later steps. If you elect this
option, and the archive log data sets are not cataloged in the primary
integrated catalog facility catalog, use the change log inventory utility to
update the BSDS. If the archive logs are listed as cataloged in the BSDS, DB2
allocates them by using the integrated catalog and not the unit or VOLSER
that is specified in the BSDS. If you are using dual BSDSs, remember to
update both copies.

8. Use the DSN1LOGP utility to determine which transactions were in process at
the end of the last archive log. Use the following job control language where
yyyyyyyyyyyy is the STARTRBA of the last complete checkpoint within the
RBA range on the last archive log from the previous print log map:
//SAMP EXEC PGM=DSN1LOGP
//SYSPRINT DD SYSOUT=*
//SYSSUMRY DD SYSOUT=*
//ARCHIVE DD DSN=last-archive, DISP=(OLD,KEEP),UNIT=TAPE,

LABEL=(2,SL),VOL=SER=volser1
(NOTE FILE 1 is BSDS COPY

//SYSIN DD *
STARTRBA(yyyyyyyyyyyy) SUMMARY(ONLY)

/*

DSN1LOGP generates a report.
9. Examine the DSN1LOGP output, and identify any utilities that were executing

at the end of the last archive log. Determine the appropriate recovery action to
take on each table space that is involved in a utility job. If DSN1LOGP output
showed that utilities are inflight (PLAN=DSNUTIL), examine SYSUTILX to
identify the utility status and determine the appropriate recovery approach.

10. Modify DSNZPxxx parameters:
a. Run the DSNTINST CLIST in UPDATE mode.
b. To defer processing of all databases, select DATABASES TO START

AUTOMATICALLY from panel DSNTIPB. Panel DSNTIPS opens. On panel
DSNTIPS, type DEFER in the first field and ALL in the second field; then
press Enter. You are returned to panel DSNTIPB.

Chapter 20. Recovering from different DB2 for z/OS problems 705



c. To specify where you are recovering, select OPERATOR FUNCTIONS from
panel DSNTIPB. Panel DSNTIPO opens. From panel DSNTIPO, type
RECOVERYSITE in the SITE TYPE field. Press Enter to continue.

d. Optional: Specify which archive log to use by selecting OPERATOR
FUNCTIONS from panel DSNTIPB. Panel DSNTIPO opens. From panel
DSNTIPO, type YES in the READ ARCHIVE COPY2 field if you are using
dual archive logging and want to use the second copy of the archive logs.
Press Enter to continue.

e. Reassemble DSNZPxxx by using job DSNTIJUZ (produced by the CLIST
started in the first step of this procedure).
At this point, you have the log, but the table spaces have not been
recovered. With DEFER ALL, DB2 assumes that the table spaces are
unavailable but does the necessary processing to the log. This step also
handles the units of recovery that are in process.

11. Create a conditional restart control record by using the change log inventory
utility with one of the following forms of the CRESTART statement:
v CRESTART CREATE,ENDRBA=nnnnnnnnn000

The nnnnnnnnn000 equals a value that is one more than the ENDRBA of the
latest archive log.

v CRESTART CREATE,ENDTIME=nnnnnnnnnnnn

The nnnnnnnnnnnn is the end time of the log record. Log records with a
timestamp later than nnnnnnnnnnnn are truncated.

12. Enter the command START DB2 ACCESS(MAINT).
You must enter this command, because real-time statistics are active and
enabled; otherwise, errors or abends could occur during DB2 restart
processing and recovery processing (for example, GRECP recovery, LPL
recovery, or the RECOVER utility).
Even though DB2 marks all table spaces for deferred restart, log records are
written so that in-abort and inflight units of recovery are backed out.
In-commit units of recovery are completed, but no additional log records are
written at restart to cause this. This happens when the original redo log
records are applied by the RECOVER utility.
At the primary site, DB2 probably committed or aborted the inflight units of
recovery, but you have no way of knowing.
During restart, DB2 accesses two table spaces that result in DSNT501I,
DSNT500I, and DSNL700I resource unavailable messages, regardless of
DEFER status. The messages are normal and expected, and you can ignore
them.
The following return codes can accompany the message. Other codes are also
possible.

00C90081
This return code is issued for activity against the object that occurs
during restart as a result of a unit of recovery or pending writes. In
this case, the status that is shown as a result of DISPLAY is
STOP,DEFER.

00C90094
Because the table space is currently only a defined VSAM data set, it
is in a state that DB2 does not expect.

00C900A9
An attempt was made to allocate a deferred resource.

706 Administration Guide

|
|
|

|
|
|

|
|

|
|
|
|



13. Resolve the indoubt units of recovery. The RECOVER utility, which you run in
a subsequent step, fails on any table space that has indoubt units of recovery.
Because of this, you must resolve them first. Determine the proper action to
take (commit or abort) for each unit of recovery. To resolve indoubt units of
recovery, see “Resolving indoubt units of recovery” on page 544. From an
install SYSADM authorization ID, enter the RECOVER INDOUBT command
for all affected transactions.

14. Recover the catalog and directory. The RECOVER function includes:
RECOVER TABLESPACE, RECOVER INDEX, or REBUILD INDEX. If you
have an image copy of an index, use RECOVER INDEX. If you do not have
an image copy of an index, use REBUILD INDEX to reconstruct the index
from the recovered table space.
a. Recover DSNDB01.SYSUTILX. This must be a separate job step.
b. Recover all indexes on SYSUTILX. This must be a separate job step.
c. Determine whether a utility was running at the time the latest archive log

was created by entering the DISPLAY UTILITY(*) command, and record
the name and current phase of any utility that is running. (You cannot
restart a utility at the recovery site that was interrupted at the disaster site.
You must use the TERM UTILITY command to terminate it. Use the TERM
UTILITY command on a utility that is operating on any object except
DSNDB01.SYSUTILX.)

d. Run the DIAGNOSE utility with the DISPLAY SYSUTILX option. The
output consists of information about each active utility, including the table
space name (in most cases). This is the only way to correlate the object
name with the utility. Message DSNU866I gives information about the
utility, and DSNU867I gives the database and table space name in
USUDBNAM and USUSPNAM, respectively.

e. Use the TERM UTILITY command to terminate any utilities that are in
progress on catalog or directory table spaces.

f. Recover the rest of the catalog and directory objects, starting with DBD01,
in the order shown in the description of the RECOVER utility. (See
Recovering catalog and directory objects in DB2 Utility Guide and
Reference.)

15. Define and initialize the work file database:
a. Define temporary work files. Use installation job DSNTIJTM as a model.
b. Issue the command START DATABASE(work-file-database) to start the work

file database.
16. Use any method that you want to verify the integrity of the DB2 catalog and

directory. Use the catalog queries in member DSNTESQ of data set
DSN910.SDSNSAMP after the work file database is defined and initialized.

17. If you use data definition control support, recover the objects in the data
definition control support database.

18. If you use the resource limit facility, recover the objects in the resource limit
control facility database.

19. Modify DSNZPxxx to restart all databases:
a. Run the DSNTINST CLIST in UPDATE mode.
b. From panel DSNTIPB, select DATABASES TO START AUTOMATICALLY.

Panel DSNTIPS opens. Type RESTART in the first field and ALL in the
second field, and press Enter. You are returned to DSNTIPB.

c. Reassemble DSNZPxxx by using job DSNTIJUZ (produced by the CLIST
started in step 3 on page 704).

Chapter 20. Recovering from different DB2 for z/OS problems 707

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugmref/db2z_recovercatalogdirectoryobjects.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugmref/db2z_recovercatalogdirectoryobjects.htm


20. Stop DB2.
21. Start DB2.
22. Make a full image copy of the catalog and directory.
23. Recover user table spaces and index spaces. If utilities were running on any

table spaces or index spaces, see “What to do about utilities that were in
progress at time of failure” on page 716. You cannot restart a utility at the
recovery site that was interrupted at the disaster site. Use the TERM UTILITY
command to terminate any utilities that are running against user table spaces
or index spaces.
a. To determine which, if any, of your table spaces or index spaces are

user-managed, perform the following queries for table spaces and index
spaces.
v Table spaces:

SELECT * FROM SYSIBM.SYSTABLEPART WHERE STORTYPE='E';

v Index spaces:
SELECT * FROM SYSIBM.SYSINDEXPART WHERE STORTYPE='E';

To allocate user-managed table spaces or index spaces, use the access
method services DEFINE CLUSTER command. To find the correct IPREFIX
for the DEFINE CLUSTER command, perform the following queries for
table spaces and index spaces.
v Table spaces:

SELECT DBNAME, TSNAME, PARTITION, IPREFIX FROM SYSIBM.SYSTABLEPART
WHERE DBNAME=dbname AND TSNAME=tsname
ORDER BY PARTITION;

v Index spaces:
SELECT IXNAME, PARTITION, IPREFIX FROM SYSIBM.SYSINDEXPART
WHERE IXCREATOR=ixcreator AND IXNAME=ixname
ORDER BY PARTITION;

Now you can perform the DEFINE CLUSTER command with the correct
IPREFIX (I or J) in the data set name:
catname.DSNDBx.dbname.psname.y0001.znnn

The y can be either I or J, x is C (for VSAM clusters) or D (for VSAM data
components), and spname is either the table space or index space name.

b. If your user table spaces or index spaces are STOGROUP-defined, and if
the volume serial numbers at the recovery site are different from those at
the local site, use the SQL statement ALTER STOGROUP to change them
in the DB2 catalog.

c. Recover all user table spaces and index spaces from the appropriate image
copies. If you do not copy your indexes, use the REBUILD INDEX utility
to reconstruct the indexes.

d. Start all user table spaces and index spaces for read-write processing by
issuing the command START DATABASE with the ACCESS(RW) option.

e. Resolve any remaining CHECK-pending states that would prevent COPY
execution.

f. Run queries for which the results are known.
24. Make full image copies of all table spaces and indexes with the COPY YES

attribute.
25. Finally, compensate for work that was lost since the last archive was created

by rerunning online transactions and batch jobs.

708 Administration Guide



Determine what to do about any utilities that were in progress at the time of
failure.

Related concepts

“What to do about utilities that were in progress at time of failure” on page 716
“Preparations for disaster recovery” on page 567
″Migration step 1: Actions that you must perform before migration″ (DB2
Installation Guide)
Related tasks

“Defining data sets” on page 32
″Invoking the CLIST″ (DB2 Installation Guide and Reference)
Related reference

″DSN1LOGP″ (DB2 Utility Guide and Reference)

Restoring data in a data sharing environment
If you are in a data sharing environment, you might need to recover from a
disaster by restoring data from image copies and logs. The procedure that you
follow assumes that all logs, image copies, and reports are available at the recovery
site.

Additional recovery procedures for data sharing environments are also available.

To recover from a disaster by using image copies and archive logs:
1. If you have information in your coupling facility from practice startups,

remove old information from the coupling facility. If you do not have old
information in your coupling facility, continue with the step 2.
a. Enter the following z/OS command to display the structures for this data

sharing group:
D XCF,STRUCTURE,STRNAME=grpname*

b. For group buffer pools and the lock structure, enter the following
command to force off the connection of those structures:
SETXCF FORCE,CONNECTION,STRNAME=strname,CONNAME=ALL

Connections for the SCA are not held at termination; therefore you do not
need to force off any SCA connections.

c. Delete all the DB2 coupling facility structures by using the following
command for each structure:
SETXCF FORCE,STRUCTURE,STRNAME=strname

This step is necessary to remove old information that exists in the coupling
facility from your practice startup when you installed the group.

2. If an integrated catalog facility catalog does not already exist, run job
DSNTIJCA to create a user catalog.

3. Use the access method services IMPORT command to import the integrated
catalog facility catalog.

4. Restore DB2 libraries. Some examples of libraries that you might need to
restore include:
v DB2 SMP/E libraries
v User program libraries
v User DBRM libraries
v DB2 CLIST libraries

Chapter 20. Recovering from different DB2 for z/OS problems 709

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_acts2perfbeforemigr.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_acts2perfbeforemigr.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_invokeclist.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1logp.htm


v DB2 libraries that contain customized installation jobs
v JCL for creating user-defined table spaces

5. Use IDCAMS DELETE NOSCRATCH to delete all catalog and user objects.
(Because step 3 on page 709 imports a user ICF catalog, the catalog reflects
data sets that do not exist on disk.)

6. Obtain a copy of the installation job DSNTIJIN, which creates DB2 VSAM and
non-VSAM data sets, for the first data sharing member. Change the volume
serial numbers in the job to volume serial numbers that exist at the recovery
site. Comment out the steps that create DB2 non-VSAM data sets, if these data
sets already exist. Run DSNTIJIN on the first data sharing member. However,
do not run DSNTIJID.
For subsequent members of the data sharing group, run the DSNTIJIN that
defines the BSDS and logs.

7. Recover the BSDS by following these steps for each member in the data
sharing group:
a. Use the access method services REPRO command to restore the contents of

one BSDS data set (allocated in step 6) on each member. You can find the
most recent BSDS image in the last file (archive log with the highest
number) on the latest archive log tape.

b. Determine the RBA and LRSN ranges for this archive log by using the
print log map utility (DSNJU004) to list the current BSDS contents. Find
the most recent archive log in the BSDS listing, and add 1 to its ENDRBA
value. Use this as the STARTRBA. Find the active log in the BSDS listing
that starts with this RBA, and use its ENDRBA as the ENDRBA. Use the
STARTLRSN and ENDLRSN of this active log data set as the LRSN range
(STARTLRSN and ENDLRSN) for this archive log.

c. Register this latest archive log tape data set in the archive log inventory of
the BSDS that you just restored by using the change log inventory utility
(DSNJU003). This step is necessary because the BSDS image on an archive
log tape does not reflect the archive log data set that resides on that tape.
Running DSNJU003 is critical for data sharing groups. Include the group
buffer pool checkpoint information that is stored in the BSDS from the
most recent archive log.
After these archive logs are registered, use the print log map utility
(DSNJU004) with the GROUP option to list the contents of all BSDSs. You
receive output that includes the start and end LRSN and RBA values for
the latest active log data sets (shown as NOTREUSABLE). If you did not
save the values from the DSNJ003I message, you can get those values by
running DSNJU004, which creates output as shown below
The following sample DSNJU004 output shows the (partial) information
for the archive log member DB1G.

ACTIVE LOG COPY 1 DATA SETS
START RBA/LRSN/TIME END RBA/LRSN/TIME DATE LTIME DATA SET INFORMATION
-------------------- -------------------- -------- ----- --------------------

000001C20000 000001C67FFF 1996.358 17:25 DSN=DSNDB0G.DB1G.LOGCOPY1.DS03
ADFA0FB26C6D ADFA208AA36B STATUS=TRUNCATED, REUSABLE

1996.361 23:37:48.4 1996.362 00:53:10.1
000001C68000 000001D4FFFF 1996.358 17:25 DSN=DSNDB0G.DB1G.LOGCOPY1.DS01

ADFA208AA36C AE3C45273A77 STATUS=TRUNCATED, NOTREUSABLE
1996.362 00:53:10.1 1997.048 15:28:23.5

000001D50000 0000020D3FFF 1996.358 17:25 DSN=DSNDB0G.DB1G.LOGCOPY1.DS02
AE3C45273A78 ............ STATUS=NOTREUSABLE

1997.048 15:28:23.5 ........ ..........

710 Administration Guide



The following sample DSNJU004 output shows the (partial) information
for the archive log member DB2G.

ACTIVE LOG COPY 1 DATA SETS
START RBA/LRSN/TIME END RBA/LRSN/TIME DATE LTIME DATA SET INFORMATION
-------------------- -------------------- -------- ----- --------------------

EMPTY DATA SET 1996.361 14:14 DSN=DSNDB0G.DB2G.LOGCOPY1.DS03
000000000000 000000000000 STATUS=NEW, REUSABLE

0000.000 00:00:00.0 0000.000 00:00:00.0
000000000000 0000000D6FFF 1996.361 14:14 DSN=DSNDB0G.DB2G.LOGCOPY1.DS01

ADFA00BB70FB AE3C45276DD7 STATUS=TRUNCATED, NOTREUSABLE
1996.361 22:30:51.4 1997.048 15:28:23.7

0000000D7000 00000045AFFF 1996.361 14:14 DSN=DSNDB0G.DB2G.LOGCOPY1.DS02
AE3C45276DD8 ............ STATUS=NOTREUSABLE

1997.048 15:28:23.7 ........ ..........

d. Adjust the active logs in the BSDS by using the change log inventory
utility (DSNJU003), as necessary:
1) To delete all active logs in the BSDS, use the DELETE option of

DSNJU003. Use the BSDS listing that is produced in step 7c on page
710 to determine the active log data set names.

2) To add the active log data sets to the BSDS, use the NEWLOG
statement of DSNJU003. Do not specify a STARTRBA or ENDRBA in
the NEWLOG statement. This specification indicates to DB2 that the
new active logs are empty.

e. If you are using the DB2 distributed data facility, update the LOCATION
and the LUNAME values in the BSDS by running the change log
inventory utility with the DDF statement.

f. List the new BSDS contents by using the print log map utility (DSNJU004).
Ensure that the BSDS correctly reflects the active and archive log data set
inventories. In particular, ensure that:
v All active logs show a status of NEW and REUSABLE.
v The archive log inventory is complete and correct (for example, the start

and end RBAs are correct).
g. If you are using dual BSDSs, make a copy of the newly restored BSDS data

set to the second BSDS data set.
8. Optional: Restore archive logs to disk for each member. Archive logs are

typically stored on tape, but restoring them to disk might speed later steps. If
you elect this option, and the archive log data sets are not cataloged in the
primary integrated catalog facility catalog, use the change log inventory utility
to update the BSDS. If the archive logs are listed as cataloged in the BSDS,
DB2 allocates them by using the integrated catalog and not the unit or
VOLSER that is specified in the BSDS. If you are using dual BSDSs, remember
to update both copies.

9. Use the DSN1LOGP utility to determine, for each member of the data sharing
group, which transactions were in process at the end of the last archive log.
Use the following job control language where yyyyyyyyyyyy is the STARTRBA
of the last complete checkpoint within the RBA range on the last archive log
from the previous print log map:
//SAMP EXEC PGM=DSN1LOGP
//SYSPRINT DD SYSOUT=*
//SYSSUMRY DD SYSOUT=*
//ARCHIVE DD DSN=last-archive, DISP=(OLD,KEEP),UNIT=TAPE,

LABEL=(2,SL),VOL=SER=volser1

Chapter 20. Recovering from different DB2 for z/OS problems 711



(NOTE FILE 1 is BSDS COPY
//SYSIN DD *
STARTRBA(yyyyyyyyyyyy) SUMMARY(ONLY)

/*

DSN1LOGP generates a report.
10. Examine the DSN1LOGP output for each data sharing member, and identify

any utilities that were executing at the end of the last archive log. Determine
the appropriate recovery action to take on each table space that is involved in
a utility job. If DSN1LOGP output showed that utilities are inflight
(PLAN=DSNUTIL), examine SYSUTILX to identify the utility status and
determine the appropriate recovery approach.

11. Modify DSNZPxxx parameters for each member of the data sharing group:
a. Run the DSNTINST CLIST in UPDATE mode.
b. To defer processing of all databases, select DATABASES TO START

AUTOMATICALLY from panel DSNTIPB. Panel DSNTIPS opens. On panel
DSNTIPS, type DEFER in the first field and ALL in the second field; then
press Enter. You are returned to panel DSNTIPB.

c. To specify where you are recovering, select OPERATOR FUNCTIONS from
panel DSNTIPB. Panel DSNTIPO opens. From panel DSNTIPO, type
RECOVERYSITE in the SITE TYPE field. Press Enter to continue.

d. Optional: Specify which archive log to use by selecting OPERATOR
FUNCTIONS from panel DSNTIPB. Panel DSNTIPO opens. From panel
DSNTIPO, type YES in the READ ARCHIVE COPY2 field if you are using
dual archive logging and want to use the second copy of the archive logs.
Press Enter to continue.

e. Reassemble DSNZPxxx by using job DSNTIJUZ (produced by the CLIST
started in the first step of this procedure).
At this point, you have the log, but the table spaces have not been
recovered. With DEFER ALL, DB2 assumes that the table spaces are
unavailable but does the necessary processing to the log. This step also
handles the units of recovery that are in process.

12. Create a conditional restart control record for each data sharing member by
using the change log inventory utility with one of the following forms of the
CRESTART statement:
v CRESTART CREATE,ENDLRSN=nnnnnnnnnnnn

The nnnnnnnnnnnn is the LRSN of the last log record that is to be used
during restart.

v CRESTART CREATE,ENDTIME=nnnnnnnnnnnn

The nnnnnnnnnnnn is the end time of the log record. Log records with a
timestamp later than nnnnnnnnnnnn are truncated.

Use the same LRSN or GMT TIMESTAMP value for all members in a data
sharing group. Determine the ENDLRSN value by using one of the following
methods:
v Use the DSN1LOGP summary utility. In the “Summary of Completed

Events” section, find the lowest LRSN value that is listed in the DSN1213I
message for the data sharing group. Use this value for the ENDLRSN in the
CRESTART statement.

v Use the print log map utility (DSNJU004) to list the BSDS contents. Find the
ENDLRSN of the last log record that is available for each active member of
the data sharing group. Subtract 1 from the lowest ENDLRSN in the data
sharing group. Use this value for the ENDLRSN in the CRESTART

712 Administration Guide

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|



statement. (In the sample output that is shown in step 7c on page 710, the
value is AE3C45273A77 - 1, which is AE3C45273A76.)

v If only the console logs are available, use the archive offload message
(DSNJ003I) to obtain the ENDLRSN. Compare the ending LRSN values for
the archive logs of all members. Subtract 1 from the lowest LRSN in the
data sharing group. Use this value for the ENDLRSN in the CRESTART
statement. (In the sample output that is shown in step 7c on page 710, the
value is AE3C45273A77 - 1, which is AE3C45273A76.)

DB2 discards any log information in the bootstrap data set and the active logs
with an RBA greater than or equal to nnnnnnnnn000 or an LRSN greater than
nnnnnnnnnnnn as listed in the preceding CRESTART statements.
Use the print log map utility to verify that the conditional restart control
record that you created in the previous step is active.

13. Enter the command START DB2 ACCESS(MAINT).
You must enter this command, because real-time statistics are active and
enabled; otherwise, errors or abends could occur during DB2 restart
processing and recovery processing (for example, GRECP recovery, LPL
recovery, or the RECOVER utility).
If a discrepancy exists among the print log map reports as to the number of
members in the group, which would be an unlikely occurrence, record the one
that shows the highest number of members. Start this DB2 subsystem first
using ACCESS(MAINT). DB2 prompts you to start each additional DB2
subsystem in the group.
After all additional members are successfully restarted, and if you are going to
run single-system data sharing at the recovery site, stop all except one of the
DB2 subsystems by using the STOP DB2 command with MODE(QUIESCE).
If you planned to use the light mode when starting the DB2 group, add the
LIGHT parameter to the START command. Start the members that run in
LIGHT(NO) mode first, followed by the light mode members.
Even though DB2 marks all table spaces for deferred restart, log records are
written so that in-abort and inflight units of recovery are backed out.
In-commit units of recovery are completed, but no additional log records are
written at restart to cause this. This happens when the original redo log
records are applied by the RECOVER utility.
At the primary site, DB2 probably committed or aborted the inflight units of
recovery, but you have no way of knowing.
During restart, DB2 accesses two table spaces that result in DSNT501I,
DSNT500I, and DSNL700I resource unavailable messages, regardless of
DEFER status. The messages are normal and expected, and you can ignore
them.
The following return codes can accompany the message. Other codes are also
possible.

00C90081
This return code is issued for activity against the object that occurs
during restart as a result of a unit of recovery or pending writes. In
this case, the status that is shown as a result of DISPLAY is
STOP,DEFER.

00C90094
Because the table space is currently only a defined VSAM data set, it
is in a state that DB2 does not expect.

Chapter 20. Recovering from different DB2 for z/OS problems 713

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|



00C900A9
An attempt was made to allocate a deferred resource.

14. Resolve the indoubt units of recovery. The RECOVER utility, which you run in
a subsequent step, fails on any table space that has indoubt units of recovery.
Because of this, you must resolve them first. Determine the proper action to
take (commit or abort) for each unit of recovery. To resolve indoubt units of
recovery, see “Resolving indoubt units of recovery” on page 544. From an
install SYSADM authorization ID, enter the RECOVER INDOUBT command
for all affected transactions.

15. Recover the catalog and directory. The RECOVER function includes:
RECOVER TABLESPACE, RECOVER INDEX, or REBUILD INDEX. If you
have an image copy of an index, use RECOVER INDEX. If you do not have
an image copy of an index, use REBUILD INDEX to reconstruct the index
from the recovered table space.
a. Recover DSNDB01.SYSUTILX. This must be a separate job step.
b. Recover all indexes on SYSUTILX. This must be a separate job step.
c. Determine whether a utility was running at the time the latest archive log

was created by entering the DISPLAY UTILITY(*) command, and record
the name and current phase of any utility that is running. (You cannot
restart a utility at the recovery site that was interrupted at the disaster site.
You must use the TERM UTILITY command to terminate it. Use the TERM
UTILITY command on a utility that is operating on any object except
DSNDB01.SYSUTILX.)

d. Run the DIAGNOSE utility with the DISPLAY SYSUTILX option. The
output consists of information about each active utility, including the table
space name (in most cases). This is the only way to correlate the object
name with the utility. Message DSNU866I gives information about the
utility, and DSNU867I gives the database and table space name in
USUDBNAM and USUSPNAM, respectively.

e. Use the TERM UTILITY command to terminate any utilities that are in
progress on catalog or directory table spaces.

f. Recover the rest of the catalog and directory objects, starting with DBD01,
in the order shown in the description of the RECOVER utility. (See
Recovering catalog and directory objects in DB2 Utility Guide and
Reference.)

16. Define and initialize the work file database
a. Define temporary work files. Use installation job DSNTIJTM as a model.
b. Issue the command START DATABASE(work-file-database) to start the work

file database.
17. Use any method that you want to verify the integrity of the DB2 catalog and

directory. Use the catalog queries in member DSNTESQ of data set
DSN910.SDSNSAMP after the work file database is defined and initialized.

18. If you use data definition control support, recover the objects in the data
definition control support database.

19. If you use the resource limit facility, recover the objects in the resource limit
control facility database.

20. Modify DSNZPxxx to restart all databases on each member of the data sharing
group:
a. Run the DSNTINST CLIST in UPDATE mode.
b. From panel DSNTIPB, select DATABASES TO START AUTOMATICALLY.

Panel DSNTIPS opens. Type RESTART in the first field and ALL in the
second field, and press Enter. You are returned to DSNTIPB.

714 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugmref/db2z_recovercatalogdirectoryobjects.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugmref/db2z_recovercatalogdirectoryobjects.htm


c. Reassemble DSNZPxxx by using job DSNTIJUZ (produced by the CLIST
started in step 4 on page 709).

21. Stop DB2.
22. Start DB2.
23. Make a full image copy of the catalog and directory.
24. Recover user table spaces and index spaces. If utilities were running on any

table spaces or index spaces, see “What to do about utilities that were in
progress at time of failure” on page 716. You cannot restart a utility at the
recovery site that was interrupted at the disaster site. Use the TERM UTILITY
command to terminate any utilities that are running against user table spaces
or index spaces.
a. To determine which, if any, of your table spaces or index spaces are

user-managed, perform the following queries for table spaces and index
spaces.
v Table spaces:

SELECT * FROM SYSIBM.SYSTABLEPART WHERE STORTYPE='E';

v Index spaces:
SELECT * FROM SYSIBM.SYSINDEXPART WHERE STORTYPE='E';

To allocate user-managed table spaces or index spaces, use the access
method services DEFINE CLUSTER command. To find the correct IPREFIX
for the DEFINE CLUSTER command, perform the following queries for
table spaces and index spaces.
v Table spaces:

SELECT DBNAME, TSNAME, PARTITION, IPREFIX FROM SYSIBM.SYSTABLEPART
WHERE DBNAME=dbname AND TSNAME=tsname
ORDER BY PARTITION;

v Index spaces:
SELECT IXNAME, PARTITION, IPREFIX FROM SYSIBM.SYSINDEXPART
WHERE IXCREATOR=ixcreator AND IXNAME=ixname
ORDER BY PARTITION;

Now you can perform the DEFINE CLUSTER command with the correct
IPREFIX (I or J) in the data set name:
catname.DSNDBx.dbname.psname.y0001.znnn

The y can be either I or J, x is C (for VSAM clusters) or D (for VSAM data
components), and spname is either the table space or index space name.

b. If your user table spaces or index spaces are STOGROUP-defined, and if
the volume serial numbers at the recovery site are different from those at
the local site, use the SQL statement ALTER STOGROUP to change them
in the DB2 catalog.

c. Recover all user table spaces and index spaces from the appropriate image
copies. If you do not copy your indexes, use the REBUILD INDEX utility
to reconstruct the indexes.

d. Start all user table spaces and index spaces for read-write processing by
issuing the command START DATABASE with the ACCESS(RW) option.

e. Resolve any remaining CHECK-pending states that would prevent COPY
execution.

f. Run queries for which the results are known.
25. Make full image copies of all table spaces and indexes with the COPY YES

attribute.
26. Finally, compensate for work that was lost since the last archive was created

by rerunning online transactions and batch jobs.

Chapter 20. Recovering from different DB2 for z/OS problems 715



Determine what to do about any utilities that were in progress at the time of
failure.

Related concepts

“What to do about utilities that were in progress at time of failure”
“Preparations for disaster recovery” on page 567
″Migration step 1: Actions that you must perform before migration″ (DB2
Installation Guide)
Related tasks

″Recovering data″ (DB2 Data Sharing: Planning and Administration)
″Invoking the CLIST″ (DB2 Installation Guide and Reference)
Related reference

″DSN1LOGP″ (DB2 Utility Guide and Reference)

What to do about utilities that were in progress at time of failure
After you restore data from image copies and archives, you might need to take
some additional steps. For example, you need to determine what to do about any
utilities that were in progress at the time of the failure.

You might need to take additional steps if any utility jobs were running after the
last time that the log was offloaded before the disaster.

After restarting DB2, only certain utilities need to be terminated with the TERM
UTILITY command.

Allowing the RECOVER utility to reset pending states is preferable. However, you
might occasionally need to use the REPAIR utility to reset them. Do not start the
table space with ACCESS(FORCE) because FORCE resets any page set exception
conditions described in “Database page set controls.”

For the following utility jobs, perform the indicated actions:

CHECK DATA
Terminate the utility, and run it again after recovery is complete.

COPY After you enter the TERM UTILITY command, DB2 places a record in the
SYSCOPY catalog table to indicate that the COPY utility job was
terminated. This makes it necessary for you to make a full image copy.
When you copy your environment at the completion of the disaster
recovery scenario, you fulfill that requirement.

LOAD
Find the options that you specified in the following table, and perform the
specified actions.

Table 106. Actions to take when a LOAD utility job is interrupted

LOAD options specified What to do

LOG YES If the RELOAD phase completed, recover to the current
time. Recover the indexes.

If the RELOAD phase did not complete, recover to a prior
point in time. The SYSCOPY record that is inserted at the
beginning of the RELOAD phase contains the RBA or LRSN.

716 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_acts2perfbeforemigr.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_acts2perfbeforemigr.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.dshare/db2z_recoveringdatads.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_invokeclist.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1logp.htm


Table 106. Actions to take when a LOAD utility job is interrupted (continued)

LOAD options specified What to do

LOG NO and copy-spec If the RELOAD phase completed, the table space is complete
after you recover it to the current time. Recover the indexes.

If the RELOAD phase did not complete, recover the table
space to a prior point in time. Recover the indexes.

LOG NO, copy-spec, and
SORTKEYS integer1

If the BUILD or SORTBLD phase completed, recover to the
current time, and recover the indexes.

If the BUILD or SORTBLD phase did not complete, recover
to a prior point in time. Recover the indexes.

LOG NO Recover the table space to a prior point in time. You can use
the TOCOPY option of the RECOVER utility to do this.

Note:

1. You must specify a value that is greater than zero for integer. If you specify zero for
integer, the SORTKEYS option does not apply.

To avoid extra loss of data in a future disaster situation, run the QUIESCE
utility on table spaces before invoking the LOAD utility. This enables you
to recover a table space by using the TOLOGPOINT option instead of
TOCOPY.

REORG
For a user table space, find the options that you specified in the following
table, and perform the specified actions.

Recommendation: Make full image copies of the catalog and directory
before you run REORG on them.

Table 107. Actions to take when the REORG utility is interrupted

REORG options specified What to do

LOG YES If the RELOAD phase completed, recover to the current
time. Recover the indexes.

If the RELOAD phase did not complete, recover to the
current time to restore the table space to the point before the
REORG job began. Recover the indexes.

LOG NO If the build or SORTBLD phase completed, recover to the
current time, and recover the indexes.

If the build or SORTBLD phase did not complete, recover to
the current time to restore the table space to the point before
the REORG job began. Recover the indexes.

SHRLEVEL CHANGE or
SHRLEVEL REFERENCE

If the SWITCH phase completed, terminate the utility.
Recover the table space to the current time. Recover the
indexes.

If the SWITCH phase did not complete, recover the table
space to the current time. Recover the indexes.

For a catalog or directory table space, the instructions are somewhat
different. For those table spaces that were using online REORG, find the
options that you specified in the preceding table, and perform the specified
actions.

Chapter 20. Recovering from different DB2 for z/OS problems 717

|
|



If you have no image copies from immediately before REORG failed, use
this procedure:
1. From your DISPLAY UTILITY command and DIAGNOSE utility

output, determine what phase the REORG job was in and which table
space it was reorganizing when the disaster occurred.

2. Run the RECOVER utility on the catalog and directory in the correct
order. Recover all table spaces to the current time, except the table
space that was being reorganized at the time of the disaster. If the
RELOAD phase of the REORG job on that table space had not
completed when the disaster occurred, recover the table space to the
current time. Because REORG does not generate any log records prior
to the RELOAD phase for catalog and directory objects, a recovery to
the current time restores the data to the state that it was in before the
REORG job. If the RELOAD phase completed, perform the following
actions:
a. Run the DSN1LOGP utility against the archive log data sets from

the disaster site.
b. Find the begin-UR log record for the REORG job that failed in the

DSN1LOGP output.
c. Run the RECOVER utility with the TOLOGPOINT option on the

table space that was being reorganized. Use the URID of the
begin-UR record as the TOLOGPOINT value.

3. Recover or rebuild all indexes.

If you have image copies from immediately before the REORG job failed,
run the RECOVER utility with the TOCOPY option to recover the catalog
and directory, in the correct order.

Related tasks

″Recovering catalog and directory objects″ (DB2 Utility Guide and Reference)

Recovering from disasters by using a tracker site
You can use a tracker site for disaster recovery. A DB2 tracker site is a separate DB2
subsystem or data sharing group that exists solely to keep shadow copies of the
data at your primary site.

Using a tracker site for disaster recovery is somewhat similar to other methods.

Recommendation: Test and document a disaster procedure that is customized for
your location.

From the primary site, you transfer the BSDS and the archive logs, and that tracker
site runs periodic LOGONLY recoveries to keep the shadow data up-to-date. If a
disaster occurs at the primary site, the tracker site becomes the takeover site.
Because the tracker site has been shadowing the activity on the primary site, you
do not need to constantly ship image copies; the takeover time for the tracker site
might be faster because DB2 recovery does not need to use image copies.

Characteristics of a tracker site
A tracker site is a separate DB2 subsystem or data sharing group that exists solely
for the purpose of keeping shadow copies of the data at your primary site.

Because the tracker site must use only the primary site logs for recovery, you must
not update the catalog and directory or the data at the tracker site. The DB2
subsystem at the tracker site disallows updates.

718 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_recovercatalogdirectoryobjects.htm


v The following SQL statements are not allowed at a tracker site:
– GRANT or REVOKE
– DROP, ALTER, or CREATE
– UPDATE, INSERT, or DELETE
Dynamic read-only SELECT statements are allowed, but not recommended. At
the end of each tracker site recovery cycle, databases might contain
uncommitted data, and indexes might be inconsistent with the data at the
tracker site.

v The only online utilities that are allowed are REPORT, DIAGNOSE, RECOVER,
REBUILD, and RESTORE SYSTEM LOGONLY. Recovery to a prior point in time
is not allowed.

v BIND is not allowed.
v TERM UTIL is not allowed for LOAD, REORG, REPAIR, and COPY.
v The START DATABASE command is not allowed when LPL or GRECP status

exists for the object of the command. Use of the START DATABASE command is
not necessary to clear LPL or GRECP conditions because you are going to be
running RECOVER jobs that clear the conditions.

v The START DATABASE command with ACCESS(FORCE) is not allowed.
v Down-level detection is disabled.
v Log archiving is disabled.
v Real-time statistics are disabled.

Setting up a tracker site
For disaster recovery purposes, you might want to set up a tracker site. To set up a
tracker site, you create a mirror image of your primary DB2 subsystem, and then
ensure that the tracker site is synchronized with the primary site.

To set up the tracker site:
1. Create a mirror image of your primary DB2 subsystem or data sharing group.

This process is described in steps 1 through 4 of the normal disaster recovery
procedure, which includes creating catalogs and restoring DB2 libraries.

2. Modify the subsystem parameters as follows:
v Set the TRKSITE subsystem parameter to YES.
v Optionally, set the SITETYP parameter to RECOVERYSITE if the full image

copies that this site is to receive are created as remote site copies.
3. Use the access method services DEFINE CLUSTER command to allocate data

sets for all user-managed table spaces that you plan to send over from the
primary site.

4. Optional: Allocate data sets for user-managed indexes that you want to rebuild
during recovery cycles. The main reason that you rebuild indexes during
recovery cycles is for running efficient queries on the tracker site. If you do not
require indexes, you do not need to rebuild them for recovery cycles. For
nonpartitioning indexes on very large tables, you can include indexes for
LOGONLY recovery during the recovery cycle, which can reduce the amount of
time that it takes to bring up the disaster site. Be sure that you define data sets
with the proper prefix (either I or J) for both indexes and table spaces.

5. Send full image copies of all DB2 data at the primary site to the tracker site.
Optionally, you can use the BACKUP SYSTEM utility with the DATA ONLY
option and send copies of the database copy pool to the tracker site. If you
send copies that the BACKUP SYSTEM utility creates, this step completes the
tracker site setup procedure.

Chapter 20. Recovering from different DB2 for z/OS problems 719



6. If you did not use the BACKUP SYSTEM utility in the prior, tailor installation
job DSNTIJIN to create DB2 catalog data sets.

Important: Do not attempt to start the tracker site when you are setting it up. You
must follow the procedure described in “Establishing a recovery cycle by using
RESTORE SYSTEM LOGONLY.”

Related reference

″REORG INDEX″ (DB2 Utility Guide and Reference)
″REORG TABLESPACE″ (DB2 Utility Guide and Reference)

Establishing a recovery cycle by using RESTORE SYSTEM
LOGONLY
Each time that you restore the logs and the BSDS from the primary site at your
tracker site, you establish a new recovery cycle. One way to establish a recovery
cycle is to use the RESTORE SYSTEM utility with the LOGONLY option.

Full image copies of all the data at the primary site must be available at the tracker
site.

Using the LOGONLY option of the RESTORE SYSTEM utility enables you to
periodically apply the active log, archive logs, and the BSDS from the primary site
at the tracker site.

To establish a recovery cycle at your tracker site by using the RESTORE SYSTEM
utility:
1. While your primary site continues its usual workload, send a copy of the

primary site active log, archive logs, and BSDS to the tracker site. Send full
image copies for the following objects:
v Table spaces or partitions that are reorganized, loaded, or repaired with the

LOG NO option after the latest recovery cycle
v Objects that, after the latest recovery cycle, have been recovered to a point

in time

Recommendation: If you are taking incremental image copies, run the
MERGECOPY utility at the primary site before sending the copy to the tracker
site.

2. At the tracker site, restore the BSDS that was received from the primary site
by following these steps:
a. Locate the BSDS in the latest archive log that is now at the tracker site.
b. Register this archive log in the archive log inventory of the new BSDS by

using the change log inventory utility (DSNJU003).
c. Register the primary site active log in the new BSDS by using the change

log inventory utility (DSNJU003).
3. Use the change log inventory utility (DSNJU003) with the following

CRESTART control statement:
CRESTART CREATE,ENDRBA=nnnnnnnnn000, FORWARD=NO,BACKOUT=NO

In this control statement, nnnnnnnnn equals the RBA at which the latest
archive log record ends +1. Do not specify the RBA at which the archive log
begins because you cannot cold start or skip logs in tracker mode.

Data sharing
If you are recovering a data sharing group, you must use the

720 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_reorgindex.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_reorgtablespace.htm


following CRESTART control statement on all members of the data
sharing group. The ENDLRSN value must be the same for all
members.
CRESTART CREATE,ENDLSRN=nnnnnnnnnnnn,FORWARD=NO,BACKOUT=NO

In this control statement, nnnnnnnnnnnn is the lowest LRSN of all the
members that are to be read during restart. Specify one of the
following values for the ENDLRSN:
v If you receive the ENDLRSN from the output of the print log map

utility (DSNJU004) or from the console logs using message
DSNJ003I, you must use ENDLRSN -1 as the input to the
conditional restart.

v If you receive the ENDLRSN from the output of the DSN1LOGP
utility (message DSN1213I), you can use the displayed value.

The ENDLRSN or ENDRBA value indicates the end log point for data
recovery and for truncating the archive log. With ENDLRSN, the missing log
records between the lowest and highest ENDLRSN values for all the members
are applied during the next recovery cycle.

4. If the tracker site is a data sharing group, delete all DB2 coupling facility
structures before restarting the tracker members.

5. If you used the DSN1COPY utility to create a copy of SYSUTILX during the
last tracker cycle, restore this copy with DSN1COPY.

Data sharing
For data sharing, restart every member of the data sharing group.

6. At the tracker site, restart DB2 to begin a tracker site recovery cycle.
7. At the tracker site, run the RESTORE SYSTEM utility with the LOGONLY

option to apply the logs (both archive and active) to the data at the tracker
site.

8. If the RESTORE SYSTEM utility issues a return code of 4, use the DSN1COPY
utility to make a copy of SYSUTILX and of indexes that are associated with
SYSUTILX before you recover or rebuild those objects. DSN1COPY issues a
return code of 4 if application of the log results in one or more DB2 objects
being marked as RECP or RBDP.

9. Restart DB2 at the tracker site.
10. Issue the DISPLAY DATABASE RESTRICT command to display objects that

are marked RECP, RBDP, or LPL and to identify which objects are in a utility
progress state (such as UTUT or UTRO). Run the RECOVER or REBUILD
INDEX utility on these objects, or record which objects are in an exception
state so that you can recover them at a later time. The exception states of
these objects are not retained in the next recovery cycle.

11. After all recovery activity complete at the tracker site, shut down the DB2
tracker site.

12. Optional: Stop and start the DB2 tracker site several times before completing a
recovery cycle.

Related concepts

“Media failures during LOGONLY recovery” on page 724
Related tasks

“Establishing a recovery cycle by using the RECOVER utility” on page 722
“Restoring data from image copies and archive logs” on page 704

Chapter 20. Recovering from different DB2 for z/OS problems 721



Establishing a recovery cycle by using the RECOVER utility
Each time that you restore the logs and the BSDS from the primary site at your
tracker site, you establish a new recovery cycle. One way to establish a recovery
cycle is to use the RECOVER utility.

To establish a recovery cycle by using the RECOVER utility:
1. While your primary site continues its usual workload, send a copy of the

primary site active log, archive logs, and BSDS to the tracker site. Send full
image copies for the following objects:
v Table spaces or partitions that are reorganized, loaded, or repaired with the

LOG NO option after the latest recovery cycle.
v Objects that, after the latest recovery cycle, have been recovered to a point

in time.
v SYSUTILX. Send a full image copy to DSNDB01.SYSUTILX for normal (full

image copy and log) recoveries. For LOGONLY recoveries, create a copy of
DSNDB01.SYSUTILX by using the DSN1COPY utility.

DB2 does not write SYSLGRNX entries for DSNDB01.SYSUTILX, which can
lead to long recovery times at the tracker site. In addition, SYSUTILX and its
indexes are updated during the tracker cycle when you run your recoveries.
Because SYSUTILX must remain consistent with the SYSUTILX at the primary
site, discard the tracker cycle updates before the next tracker cycle.

Recommendation: If you are taking incremental image copies, run the
MERGECOPY utility at the primary site before sending the copy to the tracker
site.

2. At the tracker site, restore the BSDS that was received from the primary site
by using one of the following methods:
v Locate the BSDS in the latest archive log that is now at the tracker site.
v Register this archive log in the archive log inventory of the new BSDS by

using the change log inventory utility (DSNJU003).
v Register the primary site active log in the new BSDS by using the change

log inventory utility (DSNJU003).
3. Use the change log inventory utility (DSNJU003) with the following

CRESTART control statement:
CRESTART CREATE,ENDRBA=nnnnnnnnn000, FORWARD=NO,BACKOUT=NO

In this control statement, nnnnnnnnn000 equals the value of the ENDRBA of
the latest archive log plus 1. Do not specify STARTRBA because you cannot
cold start or skip logs in a tracker system.

Data sharing
If you are recovering a data sharing group, you must use the
following CRESTART control statement on all members of the data
sharing group. The ENDLRSN value must be the same for all
members.
CRESTART CREATE,ENDLRSN=nnnnnnnnnnnn,FORWARD=NO,BACKOUT=NO

In this control statement, nnnnnnnnnnnn is the lowest ENDLRSN of all
the members that are to be read during restart. Specify one of the
following values for the ENDLRSN:
v If you receive the ENDLRSN from the output of the print log map

utility (DSNJU004) or from message DSNJ003I at the console logs
use ENDLRSN -1 as the input to the conditional restart.

722 Administration Guide



v If you receive the ENDLRSN from the output of the DSN1LOGP
utility (DSN1213I message), use the displayed value.

The ENDLRSN or ENDRBA value indicates the end log point for data
recovery and for truncating the archive log. With ENDLRSN, the missing log
records between the lowest and highest ENDLRSN values for all the members
are applied during the next recovery cycle.

4. If the tracker site is a data sharing group, delete all DB2 coupling facility
structures before restarting the tracker members.

5. At the tracker site, restart DB2 to begin a tracker site recovery cycle.

Data sharing
For data sharing, restart every member of the data sharing group.

6. At the tracker site, submit RECOVER utility jobs to recover database objects.
Run the RECOVER utility with the LOGONLY option on all database objects
that do not require recovery from an image copy.
You must recover database objects as the following procedure specifies:
a. Restore the full image copy or DSN1COPY of SYSUTILX.

If you are doing a LOGONLY recovery on SYSUTILX from a previous
DSN1COPY backup, make another DSN1COPY copy of that table space
after the LOGONLY recovery is complete and before recovering any other
catalog or directory objects.
After you recover SYSUTILX and either recover or rebuild its indexes, and
before you recover other system and user table spaces, determine what
utilities were running at the primary site.

b. Recover the catalog and directory in the correct order.
If you have user-defined catalog indexes, rebuilding them is optional until
the tracker DB2 site becomes the takeover DB2 site. (You might want to
rebuild them sooner if you require them for catalog query performance.)
However, if you are recovering user-defined catalog indexes, do the
recovery in this step.

c. If needed, recover other system data such as the data definition control
support table spaces and the resource limit facility table spaces.

d. Recover user data and, optionally, rebuild your indexes.
You do not need to rebuild indexes unless you intend to run dynamic
queries on the data at the tracker site.

For a tracker site, DB2 stores the conditional restart ENDRBA or ENDLRSN in
the page set after each recovery completes successfully. By storing the log
truncation value in the page set, DB2 ensures that it does not skip any log
records between recovery cycles.

7. Issue the DISPLAY UTILITY(*) command for a list of currently running
utilities.

8. Run the DIAGNOSE utility with the DISPLAY SYSUTIL statement to
determine the names of the object on which the utilities are running.
Installation SYSOPR authority is required.

9. Perform the following actions for objects at the tracker site on which utilities
are pending. Restrictions apply to these objects because DB2 prevents you
from using the TERM UTILITY command to remove pending statuses at a
tracker site.
v If a LOAD, REORG, REPAIR, or COPY utility job is in progress on any

catalog or directory object at the primary site, shut down DB2 subsystem.
You cannot continue recovering by using the list of catalog and directory

Chapter 20. Recovering from different DB2 for z/OS problems 723



objects. Therefore, you cannot recover any user data. At the next recovery
cycle, send a full image copy of the object from the primary site. At the
tracker site, use the RECOVER utility to restore the object.

v If a LOAD, REORG, REPAIR, or COPY utility job is in progress on any user
data, at the next recovery cycle, send a full image copy of the object from
the primary site. At the tracker site, use the RECOVER utility to restore the
object.

v If an object is in the restart-pending state, use LOGONLY recovery to
recover the object when that object is no longer in a restart-pending state.

Data sharing
If read/write shared data (GPB-dependent data) is in the advisory
recovery pending state, the tracker DB2 site performs recovery
processing. Because the tracker DB2 site always performs a
conditional restart, the postponed indoubt units of recovery are not
recognized after the tracker DB2 site restarts.

10. After all recovery has completed at the tracker site, shut down the tracker
DB2 site. This is the end of the tracker site recovery cycle.

11. Optional: Stop and start the tracker DB2 site several times before completing a
recovery cycle.

Related concepts

“Media failures during LOGONLY recovery”
Related tasks

“Establishing a recovery cycle by using RESTORE SYSTEM LOGONLY” on
page 720
“Restoring data from image copies and archive logs” on page 704

Media failures during LOGONLY recovery
If an I/O error occurs during a LOGONLY recovery, you can recover the object by
using the image copies and logs after you correct the media failure.

If an entire volume is corrupted and you are using DB2 storage groups, you cannot
use the ALTER STOGROUP statement to remove the corrupted volume and add
another. (This is possible, however, for a non-tracker system.) Instead, you must
remove the corrupted volume and re-initialize another volume with the same
volume serial number before you invoke the RECOVER utility for all table spaces
and indexes on that volume.

Maintaining a tracker site
If you want to have a tracker site for possible disaster recovery needs, you need to
maintain it so that it can operate as required.

To maintain a tracker site:
1. Keep the tracker site and primary site be at the same maintenance level to

avoid unexpected problems.
2. Between recovery cycles, apply maintenance as you normally do, by stopping

and restarting the DB2 subsystem or a DB2 data sharing member.
3. If a tracker site fails, restart it as you normally do.
4. Save your complete tracker site prior to testing a takeover site. This step is

necessary because bringing up a tracker site as the takeover site destroys the
tracker site environment. After testing the takeover site, you can restore the
tracker site and resume the recovery cycles.

724 Administration Guide



When restarting a data sharing group, the first member that starts during a
recovery cycle puts the ENDLRSN value in the shared communications area (SCA)
of the coupling facility. If an SCA failure occurs during a recovery cycle, you must
go through the recovery cycle again, using the same ENDLRSN value for your
conditional restart.

Making the tracker site be the takeover site
If a disaster occurs at the primary site, the tracker site must become the takeover
site.

Save your complete tracker site prior to testing a takeover site.

To make the tracker site be the takeover site:
1. Restart the takeover site.
2. Apply log data or image copies that were en route when the disaster occurred.
3. Follow the appropriate procedure for making the tracker site a takeover site,

depending on whether you use RESTORE SYSTEM LOGONLY or the
RECOVER utility in your tracker site recovery cycles.
Related tasks

“Maintaining a tracker site” on page 724

Recovering at a tracker site that uses the RESTORE SYSTEM utility:

One way that you can make the tracker site be the takeover site is by using the
RESTORE SYSTEM utility with the LOGONLY option in the recovery cycles at the
tracker site.

To make the tracker site be the takeover site by using the RESTORE SYSTEM
utility with the LOGONLY option:
1. If log data for a recovery cycle is en route or is available but has not yet been

used in a recovery cycle, perform the procedure in “Establishing a recovery
cycle by using RESTORE SYSTEM LOGONLY” on page 720.

2. Ensure that the TRKSITE NO subsystem parameter is specified.
3. For scenarios other than data sharing, continue with step 4.

Data sharing
If this is a data sharing system, delete the coupling facility structures.

4. Start DB2 at the same RBA or ENDLSRN that you used in the most recent
tracker site recovery cycle. Specify FORWARD=YES and BACKOUT=YES in the
CRESTART statement; this takes care of uncommitted work.

5. Restart the objects that are in GRECP or LPL status by issuing the START
DATABASE(*) SPACENAM(*) command.

6. If you used the DSN1COPY utility to create a copy of SYSUTILX in the last
recovery cycle, use DSN1COPY to restore that copy.

7. Terminate any in-progress utilities by using the following procedure:
a. Enter the DISPLAY UTILITY(*) command .
b. Run the DIAGNOSE utility with DISPLAY SYSUTIL to get the names of

objects on which utilities are being run.
c. Terminate in-progress utilities in the correct order by using the TERM

UTILITY(*) command.
8. Rebuild indexes, including IBM and user-defined indexes on the DB2 catalog

and user-defined indexes on table spaces.

Chapter 20. Recovering from different DB2 for z/OS problems 725



Related tasks

“Recovering at a tracker site that uses the RECOVER utility”
“Restoring data from image copies and archive logs” on page 704

Recovering at a tracker site that uses the RECOVER utility:

One way that you can make the tracker site be the takeover site is by using the
RECOVER utility in the recovery cycles at your tracker site.

To make the tracker site be the takeover site by using the RECOVER utility:
1. Restore the BSDS, and register the archive log from the last archive log that you

received from the primary site.
2. For environments that do not use data sharing, continue with step 3.

Data sharing
If this is a data sharing system, delete the coupling facility structures.

3. Ensure that the DEFER ALL and TRKSITE NO subsystem parameters are
specified.

4. Take the appropriate action, which depends on whether you received more logs
from the primary site. If this is a non-data-sharing DB2 subsystem, the log
truncation point varies depending on whether you have received more logs
from the primary site since the last recovery cycle:
v If you did not receive more logs from the primary site:

Start DB2 using the same ENDRBA that you used on the last tracker cycle.
Specify FORWARD=YES and BACKOUT=YES; this takes care of
uncommitted work. If you have fully recovered the objects during the
previous cycle, they are current except for any objects that had outstanding
units of recovery during restart. Because the previous cycle specified NO for
both FORWARD and BACKOUT and you have now specified YES, affected
data sets are placed in the LPL. Restart the objects that are in LPL status by
using the following command:
START DATABASE(*) SPACENAM(*)

After you issue the command, all table spaces and indexes that were
previously recovered are now current. Remember to rebuild any indexes that
were not recovered during the previous tracker cycle, including user-defined
indexes on the DB2 catalog.

v If you received more logs from the primary site:
Start DB2 using the truncated RBA nnnnnnnnn000, which equals the value of
the ENDRBA of the latest archive log plus 1. Specify FORWARD=YES and
BACKOUT=YES. Run your recoveries as you did during recovery cycles.

Data sharing
You must restart every member of the data sharing group; use the
following CRESTART statement:
CRESTART CREATE,ENDLRSN=nnnnnnnnnnnn,FORWARD=YES,BACKOUT=YES

In this statement, nnnnnnnnnnnn is the LRSN of the last log record that
is to be used during restart. Specify one of the following values for the
ENDLRSN:
v If you receive the ENDLRSN from the output of the print log map

utility (DSNJU004) or from message DSNJ003I at the console logs use
ENDLRSN -1 as the input to the conditional restart.

726 Administration Guide



v If you receive the ENDLRSN from the output of the DSN1LOGP
utility (DSN1213I message), use the displayed value.

The ENDLRSN or ENDRBA value indicates the end log point for data
recovery and for truncating the archive log. With ENDLRSN, the
missing log records between the lowest and highest ENDLRSN values
for all the members are applied during the next recovery cycle.

The takeover DB2 sites must specify conditional restart with a common
ENDLRSN value to allow all remote members to logically truncate the
logs at a consistent point.

5. As described for a tracker recovery cycle, recover SYSUTILX from an image
copy from the primary site, or from a previous DSN1COPY copy that was
taken at the tracker site.

6. Terminate any in-progress utilities by using the following procedure:
a. Enter the command DISPLAY UTILITY(*).
b. Run the DIAGNOSE utility with DISPLAY SYSUTIL to get the names of

objects on which utilities are being run.
c. Terminate in-progress utilities by using the command TERM UTILITY(*).

7. Continue with your recoveries either with the LOGONLY option or with image
copies. Remember to rebuild indexes, including IBM and user-defined indexes
on the DB2 catalog and user-defined indexes on table spaces.
Related tasks

“Recovering at a tracker site that uses the RESTORE SYSTEM utility” on page
725
“Restoring data from image copies and archive logs” on page 704

Using data mirroring for disaster recovery
Data mirroring is the automatic replication of current data from your primary site
to a secondary site. To recover after a disaster, you can use this secondary site for
your recovery site without the need to restore DB2 image copies. You also do not
need to apply DB2 logs to bring DB2 data to the current point in time.

The procedures for data mirroring are intended for environments that mirror an
entire DB2 subsystem or data sharing group, which includes the catalog, directory,
user data, BSDS, and active logs. You must mirror all volumes in such a way that
they terminate at exactly the same point. You can achieve this final condition by
using consistency groups.

Follow the appropriate procedure for recovering from a disaster by using data
mirroring.

Role of data mirroring in recovery from a rolling disaster
In a real disaster, your local site gradually and intermittently fails for a duration of
several seconds. This kind of DB2 failure is known as a rolling disaster. You can
recover from a rolling disaster by using data mirroring.

To use data mirroring for disaster recovery, you must mirror data from your local
site with a method that does not reproduce a rolling disaster at your recovery site.
To recover a DB2 subsystem and data with data integrity, you must use volumes
that end at a consistent point in time for each DB2 subsystem or data sharing
group. Mirroring a rolling disaster causes volumes at your recovery site to end
over a span of time rather than at one single point.

Chapter 20. Recovering from different DB2 for z/OS problems 727



The following figure shows how a rolling disaster can cause data to become
inconsistent between two subsystems.

Example: In a rolling disaster, the following events at the primary site cause data
inconsistency at your recovery site. This data inconsistency example follows the
same scenario that the preceding figure depicts.
1. Some time prior to 12:00: A table space is updated in the buffer pool.
2. 12:00 The log record is written to disk on logical storage subsystem 1.
3. 12:01: Logical storage subsystem 2 fails.
4. 12:02: The update to the table space is externalized to logical storage subsystem

2 but is not written because subsystem 2 failed.
5. 12:03: The log record that indicates that the table space update was made is

written to disk on logical storage subsystem 1.
6. 12:03: Logical storage subsystem 1 fails.

Because the logical storage subsystems do not fail at the same point in time, they
contain inconsistent data. In this scenario, the log indicates that the update is
applied to the table space, but the update is not applied to the data volume that
holds this table space.

Important: Any disaster recovery solution that uses data mirroring must guarantee
that all volumes at the recovery site contain data for the same point in time.

Role of consistency groups in recovery
Generally a consistency group is a collection of volumes that contain consistent,
related data. Consistency groups play an important role in DB2 recovery.

A consistency group, which is a collection of related data, can span logical storage
subsystems and disk subsystems. For DB2 specifically, a consistency group contains
an entire DB2 subsystem or an entire DB2 data sharing group.

1. 12:00 log update

2. 12:01 update
database

3. 12:02 mark log
complete

Log
Device

Secondary

Disk fails
at 12:00

Primary

Disk fails
at 12:03

Database
Device

Log
Device

Database
Device

connection
is severed

Figure 64. Data inconsistency caused by a rolling disaster

728 Administration Guide



The following DB2 elements comprise a consistency group:
v Catalog tables
v Directory tables
v BSDS
v Logs
v All user data
v ICF catalogs

Additionally, all objects within a consistency group must represent the same point
in time in at least one of the following situations:
v At the time of a backup
v After a normal DB2 restart

You can use the following methods to create consistency groups:
v XRC I/O timestamping and system data mover
v FlashCopy consistency groups
v GDPSfreeze policies
v The DB2 SET LOG SUSPEND command
v The DB2 BACKUP SYSTEM utility

When a rolling disaster strikes your primary site, consistency groups guarantee
that all volumes at the recovery site contain data for the same point in time. In a
data mirroring environment, you must perform both of the following actions for
each consistency group that you maintain:
v Mirror data to the secondary volumes in the same sequence that DB2 writes data

to the primary volumes.
In many processing situations, DB2 must complete one write operation before it
begins another write operation on a different disk group or a different storage
server. A write operation that depends on a previous write operation is called a
dependent write. Do not mirror a dependent write if you have not mirrored the
write operation on which the dependent write depends. If you mirror data out
of sequence, your recovery site will contain inconsistent data that you cannot
use for disaster recovery.

v Temporarily suspend and queue write operations to create a group point of
consistency when an error occurs between any pair of primary and secondary
volumes.
When an error occurs that prevents the update of a secondary volume in a
single-volume pair, this error might mark the beginning of a rolling disaster. To
prevent your secondary site from mirroring a rolling disaster, you must suspend
and queue data mirroring by taking the following steps after a write error
between any pairs:
1. Suspend and queue all write operations in the volume pair that experiences

a write error.
2. Invoke automation that temporarily suspends and queues data mirroring to

all your secondary volumes.
3. Save data at the secondary site at a point of consistency.
4. If a rolling disaster does not strike your primary site, resume normal data

mirroring after some amount of time that you define. If a rolling disaster
does strike your primary site, follow the recovery procedure in “Recovering
in a data mirroring environment” on page 730.

Chapter 20. Recovering from different DB2 for z/OS problems 729



Recovering in a data mirroring environment
In a data mirroring environment, you can recover data at your secondary site from
a disaster at your primary site.

This procedure applies to all DB2 data mirroring scenarios except those that use
Extended Remote Copy (XRC). This general procedure is valid only if you have
established and maintained consistency groups before the disaster struck the
primary site. If you use data mirroring to recover, you must recover your entire
DB2 subsystem or data sharing group with data mirroring.

You do not need to restore DB2 image copies or apply DB2 logs to bring DB2 data
to the current point in time when you use data mirroring. However, you might
need image copies at the recovery site if the LOAD or RECOVER utility was active
at the time of the disaster.

To recover at the secondary site after a disaster:
1. At your recovery site, IPL all z/OS images that correspond to the z/OS

images that you lost at your primary site.
2. For environments that do not use data sharing, continue with step 3.

Data sharing
For data sharing groups, you must remove old information from the
coupling facility.
a. Enter the following z/OS command to display the structures for

this data sharing group:
D XCF,STRUCTURE,STRNAME=grpname*

b. For group buffer pools and the lock structure, enter the following
command to force off the connections in those structures:
SETXCF FORCE,CONNECTION,STRNAME=strname,CONNAME=ALL

c. Delete all the DB2 coupling facility structures by using the
following command for each structure:
SETXCF FORCE,STRUCTURE,STRNAME=strname

3. If you are using the distributed data facility, set LOCATION and LUNAME in
the BSDS to values that are specific to your new primary site. To set
LOCATION and LUNAME, run the stand-alone change log inventory utility
(DSNJU003) with the following control statement:
DDF LOCATION=locname, LUNAME=luname

4. Start all DB2 members by using local DSNZPARM data sets and perform a
normal restart.

Data sharing
For data sharing groups, DB2 performs group restart. Shared data sets
are set to GRECP (group buffer pool RECOVER-pending) status, and
pages are added to the LPL (logical page list).

5. For scenarios other than data sharing, continue to step 6 on page 731.

Data sharing
For data sharing groups, perform the following procedure:
a. Display all data sets with GRECP or LPL status with the following

DB2 command:
-DISPLAY DATABASE(*) SPACENAM(*) RESTRICT(GRECP, LPL) LIMIT(*)

Record the output that this command generates.
b. Start the DB2 directory with the following DB2 command:

730 Administration Guide



-START DATABASE(DSNDB01) SPACENAM(*)

c. Start the DB2 catalog with the following DB2 command:
-START DATABASE(DSNDB06) SPACENAM(*)

6. Use the following DB2 command to display all utilities that the failure
interrupted:
-DISPLAY UTILITY(*)

If utilities are pending, record the output from this command, and continue to
the next step. You cannot restart utilities at a recovery site. You will terminate
these utilities in step 8. If no utilities are pending, continue to step number 9.

7. Use the DIAGNOSE utility to access the SYSUTILX directory table. You cannot
access this directory table by using normal SQL statements (as you can with
most other directory tables). You can access SYSUTILX only by using the
DIAGNOSE utility, which is normally intended to be used under the direction
of IBM Software Support.
Use the following control statement to run the DIAGNOSE utility job:
DIAGNOSE DISPLAY SYSUTILX

To stop the utility, issue this control statement:
END DIAGNOSE

Examine the output. Record the phase in which each pending utility was
interrupted, and record the object on which each utility was operating.

8. Terminate all pending utilities with the following command:
-TERM UTILITY(*)

9. For environments that do not use data sharing, continue to step 10.

Data sharing
For data sharing groups, use the following START DATABASE
command on each database that contains objects that are in GRECP or
LPL status:
-START DATABASE(database) SPACENAM(*)

When you use the START DATABASE command to recover objects,
you do not need to provide DB2 with image copies.

Tip: Use up to 10 START DATABASE commands for each DB2
subsystem to increase the speed at which DB2 completes this
operation. Multiple commands that run in parallel complete faster
than a single command that specifies the same databases.

10. Start all remaining database objects with the following START DATABASE
command:
START DATABASE(*) SPACENAM(*)

11. For each object that the LOAD utility places in a restrictive status, take one of
the following actions:
v If the object was a target of a LOAD utility control statement that specified

SHRLEVEL CHANGE, restart the LOAD utility on this object at your
convenience. This object contains valid data.

v If the object was a target of a LOAD utility control statement that specified
SHRLEVEL REFERENCE and the LOAD job was interrupted before the
RELOAD phase, rebuild the indexes on this object.

Chapter 20. Recovering from different DB2 for z/OS problems 731



v If the object was a target of a LOAD utility control statement that specified
SHRLEVEL REFERENCE and the LOAD job was interrupted during or after
the RELOAD phase, recover this object to a point in time that is before this
utility ran.

v Otherwise, recover the object to a point in time that is before the LOAD job
ran.

12. For each object that the REORG utility places in a restrictive status, take one
of the following actions:
v When the object was a target of a REORG utility control statement that

specified SHERLEVEL NONE:
– If the REORG job was interrupted before the RELOAD phase, no further

action is required. This object contains valid data, and the indexes on this
object are valid.

– If the REORG job was interrupted during the RELOAD phase, recover
this object to a point in time that is before this utility ran.

– If the REORG job was interrupted after the RELOAD phase, rebuild the
indexes on the object.

v When the object was a target of a REORG utility control statement that does
not specify SHRLEVEL NONE:
– If the REORG job was interrupted before the SWITCH phase, no further

action is required. This object contains valid data, and the indexes on this
object are valid.

– If the REORG job was interrupted during the SWITCH phase, no further
action is required. This object contains valid data, and the indexes on this
object are valid.

– If the REORG job was interrupted after the SWITCH phase, you might
need to rebuild non-partitioned secondary indexes.

Managing DFSMShsm default settings when using the BACKUP
SYSTEM, RESTORE SYSTEM, and RECOVER utilities
In some data mirroring situations, you might need to set or override the
DFSMShsm default settings for the BACKUP SYSTEM, RESTORE SYSTEM, and
RECOVER utilities.

The following prerequisites apply:
v You must be running on z/OS Version 1 Release 8 or later.
v You must apply APAR OA23849 to enable the DFSMShsm FRBACKUP and

FRRECOV functions to support PPRC primary volumes.
v You must apply APAR OA24814 so that DFSMShsm supports IBM Remote Pair

FlashCopy in FRBACKUP and FRRECOV operations in an SMS copy pool
environment.

For example, consider that the source volumes in the SMS storage groups for your
database or log copy pools are mirrored, or that the target volumes in the SMS
backup storage groups for your copy pools are mirrored. You can use IBM Remote
Pair FlashCopy (Preserve Mirror) for Peer-to-Peer Remote Copy (PPRC). Also, you
can allow FlashCopy to PPRC primary volumes. However, you might need to set
or override the DFSMShsm default settings for the BACKUP SYSTEM, RESTORE
SYSTEM, and RECOVER utilities.

To manage the DFSMShsm default settings for these utilities:

Issue the DFSMShsm FRBACKUP PREPARE command.

732 Administration Guide

|
|
|
|
|

|

|

|
|

|
|
|

|
|
|
|
|
|
|

|

|



v To set the DFSMShsm defaults for the BACKUP SYSTEM utility, the RESTORE
SYSTEM utility, and the RECOVER utility, issue the following command:
FRBACKUP CP cp-name PREPARE ALLOWPPRCP (FRBACKUP (x) FRRECOV (x))

v To override the DFSMShsm defaults for the RESTORE SYSTEM utility or the
RECOVER utility, issue the following command:
FRBACKUP CP cp-name PREPARE ALLOWPPRCP (FRRECOV (x))

Related reference

z/OS DFSMS Storage Administration Reference

Recovering with Extended Remote Copy
One method that ensures that data volumes remain consistent at your recovery site
involves Extended Remote Copy (XRC). In XRC remote mirroring, the DFSMS
Advanced Copy services function automatically replicates current data from your
primary site to a secondary site and establishes consistency groups.

This procedure assumes that you are familiar with basic use of XRC.

To recover at an XRC secondary site after a disaster:
1. Issue the TSO command XEND XRC to end the XRC session.
2. Issue the TSO command XRECOVER XRC. This command changes your

secondary site to your primary site and applies the XRC journals to recover
data that was in transit when your primary site failed.

3. Complete the procedure in “Recovering in a data mirroring environment” on
page 730.
Related information

z/OS Internet Library

Scenarios for resolving problems with indoubt threads
Indoubt threads can cause a variety of problems, but you can recover from these
problems.

The recovery scenarios for indoubt threads are based on a sample environment,
which this topic describes. System programmer, operator, and database
administrator actions are indicated for the examples as appropriate. In these
descriptions, the term “administrator” refers to the database administrator (DBA) if
not otherwise specified.

Configuration
The configuration includes four systems at three geographic locations:
Seattle (SEA), San Jose (SJ) and Los Angeles (LA). The system descriptions
are as follows.
v DB2 subsystem at Seattle, Location name = IBMSEADB20001, Network

name = IBM.SEADB21
v DB2 subsystem at San Jose, Location name = IBMSJ0DB20001, Network

name = IBM.SJDB21
v DB2 subsystem at Los Angeles, Location name = IBMLA0DB20001,

Network name = IBM.LADB21
v IMS subsystem at Seattle, Connection name = SEAIMS01

Applications
The following IMS and TSO applications run at Seattle and access both
local and remote data.

Chapter 20. Recovering from different DB2 for z/OS problems 733

|
|

|

|
|

|

|

|

http://publib.boulder.ibm.com/infocenter/zos/v1r9/topic/com.ibm.zos.r9.idas200/dgt2s260.htm
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/


v IMS application, IMSAPP01, at Seattle, accesses local data and remote
data by DRDA access at San Jose, which accesses remote data on behalf
of Seattle by DB2 private protocol access at Los Angeles.

v TSO application, TSOAPP01, at Seattle, accesses data by DRDA access at
San Jose and at Los Angeles.

Threads
The following threads are described and keyed to Figure 65. Database
access threads (DBAT) access data on behalf of a thread (either allied or
DBAT) at a remote requester.
v Allied IMS thread A at Seattle accesses data at San Jose by DRDA access.

– DBAT at San Jose accesses data for Seattle by DRDA access 1 and
requests data at Los Angeles by DB2 private protocol access 2.

– DBAT at Los Angeles accesses data for San Jose by DB2 private
protocol access 2.

v Allied TSO thread B at Seattle accesses local data and remote data at San
Jose and Los Angeles, by DRDA access.
– DBAT at San Jose accesses data for Seattle by DRDA access 3.
– DBAT at Los Angeles accesses data for Seattle by DRDA access 4.

The results of issuing the DISPLAY THREAD TYPE(ACTIVE) command to
display the status of threads at all DB2 locations are summarized in the
boxes of the preceding figure. The logical unit of work IDs (LUWIDs) have
been shortened for readability, as follows:

3

DB2 at SJ
IBMSJ0DB20001

DBAT
CONNID=SEAINS01
CORRID=xyz
PLAN=IMSAPP01
LUWID=15,TOKEN=8

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=6

DB2 at SEA
IBMSEADB20001

Allied Thread
CONNID=SEAIMS01
CORRID=xyz
PLAN=IMSAPP01
NID=A5
LUWID=15,TOKEN=1

Allied Thread
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=2

A

IMS

TSO

B

DB2 at LA
IBMLA0DB20001

DBAT
CONNID=SERVER
CORRID=xyz
PLAN=IMSAPP01
LUWID=15,TOKEN=4

2

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=5

4

1

Figure 65. Resolution of indoubt threads. Results of issuing DISPLAY THREAD
TYPE(ACTIVE) at each DB2 subsystem.

734 Administration Guide



v LUWID=15 is IBM.SEADB21.15A86A876789.0010.
v LUWID=16 is IBM.SEADB21.16B57B954427.0003.

For the purposes of procedures that are based on this configuration,
assume that both applications have updated data at all DB2 locations. In
the following problem scenarios, the error occurs after the coordinator has
recorded the commit decision, but before the affected participants have
recorded the commit decision. These participants are therefore indoubt.

Read one or more of the scenarios to learn how best to handle problems with
indoubt threads in your own environment.

Scenario: Recovering from communication failure
A communication failure can cause an indoubt thread.

Symptoms

A communication failure occurred between Seattle (SEA) and Los Angeles (LA)
after the database access thread (DBAT) at LA completed phase 1 of commit
processing. At SEA, the TSO thread, LUWID=16 and TOKEN=2 B, cannot complete
the commit with the DBAT at LA4.

At SEA, NetView alert A006 is generated, and message DSNL406 is displayed,
indicating that an indoubt thread at LA because of a communication failure. At LA,
alert A006 is generated, and message DSNL405 is displayed, to indicate that a
thread is in an indoubt state because of a communication failure with SEA.

Causes

A communication failure caused the indoubt thread.

Environment

The following figure illustrates the environment for this scenario.

Chapter 20. Recovering from different DB2 for z/OS problems 735



At SEA, an IFCID 209 trace record is written. After the alert is generated and the
message is displayed, the thread completes the commit, which includes the DBAT
at SJ 3. Concurrently, the thread is added to the list of threads for which the SEA
DB2 subsystem has an indoubt resolution responsibility. The thread shows up in a
DISPLAY THREAD report for indoubt threads. The thread also shows up in a
DISPLAY THREAD report for active threads until the application terminates.

The TSO application is informed that the commit succeeded. If the application
continues and processes another SQL request, it is rejected with an SQL code to
indicate that it must roll back before any more SQL requests can be processed. This
is to ensure that the application does not proceed with an assumption based on
data that is retrieved from LA, or with the expectation that cursor positioning at
LA is still intact.

At LA, an IFCID 209 trace record is written. After the alert is generated and the
message displayed, the DBAT 4 is placed in the indoubt state. All locks remain
held until resolution occurs. The thread shows up in a DISPLAY THREAD report
for indoubt threads.

The DB2 subsystems, at both SEA and LA, periodically attempt to reconnect and
automatically resolve the indoubt thread. If the communication failure affects only
the session that is being used by the TSO application, and other sessions are
available, automatic resolution occurs in a relatively short time. At this time,
message DSNL407 is displayed by both DB2 subsystems.

Resolving the problem

3

DB2 at SJ
IBMSJ0DB20001

DBAT
CONNID=SEAINS01
CORRID=xyz
PLAN=IMSAPP01
LUWID=15,TOKEN=8

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=6

DB2 at SEA
IBMSEADB20001

Allied Thread
CONNID=SEAIMS01
CORRID=xyz
PLAN=IMSAPP01
NID=A5
LUWID=15,TOKEN=1

Allied Thread
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=2

A

IMS

TSO

B

DB2 at LA
IBMLA0DB20001

DBAT
CONNID=SERVER
CORRID=xyz
PLAN=IMSAPP01
LUWID=15,TOKEN=4

2

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=5

4

1

Figure 66. Resolution of indoubt threads. “Scenarios for resolving problems with indoubt threads” on page 733
contains a detailed description of the scenario depicted in this figure.

736 Administration Guide



Operator response: If message DSNL407 or DSNL415 for the thread that is
identified in message DSNL405 is not issued in a reasonable period of time, contact
the system programmer. A communication failure is making database resources
unavailable.

System programmer response: Determine and correct the cause of the
communication failure. When the problem is corrected, automatic resolution of the
indoubt thread occurs within a short time. If the failure cannot be corrected for a
long time, call the database administrator. The database administrator might want
to make a heuristic decision to release the database resources that are held for the
indoubt thread.

Related troubleshooting information

“Scenario: Making a heuristic decision about whether to commit or abort an
indoubt thread”

Scenario: Making a heuristic decision about whether to
commit or abort an indoubt thread

An organization might need to make a heuristic decision about whether to commit
or abort an indoubt thread.

Symptoms

In this scenario, an indoubt thread at Los Angeles (LA) holds database resources
that are needed by other applications. The organization makes a heuristic decision
about whether to commit or abort an indoubt thread.

Many symptoms are possible, including:
v Message DSNL405 to indicate a thread in the indoubt state
v A DISPLAY THREAD report of active threads showing a larger-than-normal

number of threads
v A DISPLAY THREAD report of indoubt threads continuing to show the same

thread
v A DISPLAY DATABASE LOCKS report that shows a large number of threads

that are waiting for the locks that are held by the indoubt thread
v Some threads terminating due to timeout
v IMS and CICS transactions not completing

Environment

The following figure illustrates the environment for this scenario.

Chapter 20. Recovering from different DB2 for z/OS problems 737



Resolving the problem

Database administrator response: Determine whether to commit or abort the
indoubt thread. First, determine the name of the commit coordinator for the
indoubt thread. This name matches the location name of the DB2 subsystem at
SEA, and it is included in the DB2 indoubt thread DISPLAY THREAD report at
LA. Then, have an authorized person at SEA perform one of the following actions:
v If the coordinator DB2 subsystem is active, or if it can be started, request a

DISPLAY THREAD report for indoubt threads, specifying the LUWID of the
thread. (Remember that the token that is used at LA is different than the token
that is used at SEA). If no report entry exists for the LUWID, the proper action
is to abort. If a report entry for the LUWID exists, it shows the proper action to
take.

v If the coordinator DB2 subsystem is not active and cannot be started, and if
statistics class 4 was active when DB2 was active, search the SEA SMF data for
an IFCID 209 event entry that contains the indoubt LUWID. This entry indicates
whether the commit decision was commit or abort.

v If statistics class 4 is not available, run the DSN1LOGP utility, and request a
summary report. The volume of log data that is to be searched can be restricted
if you can determine the approximate SEA log RBA value that was in effect at
the time of the communication failure. A DSN1LOGP entry in the summary
report for the indoubt LUWID indicates whether the decision was commit or
abort.

After determining the correct action to take, issue the RECOVER INDOUBT
command at the LA DB2 subsystem, specifying the LUWID and the correct action.

3

DB2 at SJ
IBMSJ0DB20001

DBAT
CONNID=SEAINS01
CORRID=xyz
PLAN=IMSAPP01
LUWID=15,TOKEN=8

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=6

DB2 at SEA
IBMSEADB20001

Allied Thread
CONNID=SEAIMS01
CORRID=xyz
PLAN=IMSAPP01
NID=A5
LUWID=15,TOKEN=1

Allied Thread
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=2

A

IMS

TSO

B

DB2 at LA
IBMLA0DB20001

DBAT
CONNID=SERVER
CORRID=xyz
PLAN=IMSAPP01
LUWID=15,TOKEN=4

2

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=5

4

1

Figure 67. Resolution of indoubt threads. “Scenarios for resolving problems with indoubt threads” on page 733
contains a detailed description of the scenario depicted in this figure.

738 Administration Guide



System action: Issuing the RECOVER INDOUBT command at LA results in
committing or aborting the indoubt thread. Locks are released. The thread does not
disappear from the indoubt thread display until resolution with SEA is completed.
The RECOVER INDOUBT report shows that the thread is either committed or
aborted by heuristic decision. An IFCID 203 trace record is written, recording the
heuristic action.

Scenario: Recovering from an IMS outage that results in an
IMS cold start

An IMS outage can result in an IMS cold start. An organization that experiences
this situation can recover.

Symptoms

When IMS is cold started and later reconnects with the SEA DB2 subsystem, IMS is
not able to resolve the indoubt thread with DB2. Message DSNM004I is displayed
at the IMS master terminal.

Environment

The following figure illustrates the environment for this scenario.

The abnormal termination of IMS has left one allied thread A at the SEA DB2
subsystem indoubt. This is the thread whose LUWID=15. Because the SEA DB2
subsystem still has effective communication with the DB2 subsystem at SJ, the
LUWID=15 DBAT 1 at this subsystem is waiting for the SEA DB2 to communicate

3

DB2 at SJ
IBMSJ0DB20001

DBAT
CONNID=SEAINS01
CORRID=xyz
PLAN=IMSAPP01
LUWID=15,TOKEN=8

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=6

DB2 at SEA
IBMSEADB20001

Allied Thread
CONNID=SEAIMS01
CORRID=xyz
PLAN=IMSAPP01
NID=A5
LUWID=15,TOKEN=1

Allied Thread
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=2

A

IMS

TSO

B

DB2 at LA
IBMLA0DB20001

DBAT
CONNID=SERVER
CORRID=xyz
PLAN=IMSAPP01
LUWID=15,TOKEN=4

2

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=5

4

1

Figure 68. Resolution of indoubt threads. “Scenarios for resolving problems with indoubt threads” on page 733
contains a detailed description of the scenario depicted in this figure.

Chapter 20. Recovering from different DB2 for z/OS problems 739



the final decision and is not aware that IMS has failed. Also, the LUWID=15 DBAT
at LA 2, which is connected to SJ, is also waiting for SJ to communicate the final
decision. This cannot be done until SEA communicates the decision to SJ.
v The connection remains active.
v IMS applications can still access DB2 databases.
v Some DB2 resources remain locked out.

If the indoubt thread is not resolved, the IMS message queues can start to back up.
If the IMS queues fill to capacity, IMS terminates. Therefore, users must be aware
of this potential difficulty and must monitor IMS until the indoubt units of work
are fully resolved.

Resolving the problem

System programmer response: Issue the RECOVER INDOUBT command to
resolve the indoubt thread at the SEA DB2 subsystem. This completes the
two-phase commit process with the DB2 subsystems at SJ and LA, and the unit of
work either commits or aborts.
1. Force the IMS log closed by using the /DBR FEOV command, and then archive

the IMS log. Use the command DFSERA10 to print the records from the
previous IMS log tape for the last transaction that was processed in each
dependent region. Record the PSB and the commit status from the X’37’ log
that contains the recovery ID.

2. Run the DL/I batch job to back out each PSB that is involved and that has not
reached a commit point. The process might take some time because transactions
are still being processed. The process might also lock up a number of records,
which could affect the rest of the processing and the rest of the message
queues.

3. Enter the DB2 command DISPLAY THREAD (imsid) TYPE (INDOUBT).
4. Compare the NIDs (IMSID + OASN in hexadecimal) that is displayed in the

DISPLAY THREAD messages with the OASNs (4 bytes decimal) as shown in
the DFSERA10 output. Decide whether to commit or roll back.

5. Use DFSERA10 to print the X’5501FE’ records from the current IMS log tape.
Every unit of recovery that undergoes indoubt resolution processing is
recorded; each record with an ’IDBT’ code is still indoubt. Note the correlation
ID and the recovery ID, for use during the next step.

6. Enter the following DB2 command, choosing to commit or roll back, and
specify the correlation ID:
-RECOVER INDOUBT (imsid) ACTION(COMMIT|ABORT) NID (nid)

If the command is rejected because network IDs are associated, use the same
command again, substituting the recovery ID for the network ID.
Related concepts

“Duplicate IMS correlation IDs” on page 463

Scenario: Recovering from a DB2 outage at a requester that
results in a DB2 cold start

When an outage at a DB2 requester results in a cold start, the organization that has
this situation can recover.

Symptoms

The DB2 subsystem at SEA is started with a conditional restart record in the BSDS
to indicate a cold start:

740 Administration Guide



v When the IMS subsystem reconnects, it attempts to resolve the indoubt thread
that is identified in IMS as NID=A5. IMS has a resource recovery element (RRE)
for this thread. The SEA DB2 subsystem informs IMS that it has no knowledge
of this thread. IMS does not delete the RRE, and the RRE can be displayed by
using the IMS DISPLAY OASN command. The SEA DB2 subsystem also:
– Generates message DSN3005 for each IMS RRE for which DB2 has no

knowledge
– Generates an IFCID 234 trace event

v When the DB2 subsystems at SJ and LA reconnect with SEA, each detects that
the SEA DB2 subsystem has cold started. Both the SJ DB2 and the LA DB2
subsystem:
– Display message DSNL411
– Generate alert A001
– Generate an IFCID 204 trace event

v A DISPLAY THREAD report of indoubt threads at both the SJ and LA DB2
subsystems shows the indoubt threads and indicates that the coordinator has
cold started.

Causes

An abnormal termination of the SEA DB2 subsystem caused the outage.

Environment

The following figure illustrates the environment for this scenario.

Chapter 20. Recovering from different DB2 for z/OS problems 741



The abnormal termination of the SEA DB2 subsystem has left the two DBATs at SJ
1, 3, and the LUWID=16 DBAT at LA 4 indoubt. The LUWID=15 DBAT at LA 2,
connected to SJ, is waiting for the SJ DB2 subsystem to communicate the final
decision.

The IMS subsystem at SEA is operational and has the responsibility of resolving
indoubt units with the SEA DB2 subsystem.

The DB2 subsystems at both SJ and LA accept the cold start connection from SEA.
Processing continues, waiting for the heuristic decision to resolve the indoubt
threads.

Resolving the problem

Database administrator response: At this point:
v Neither the SJ nor the LA administrator know if the SEA coordinator was a

participant of another coordinator. In this scenario, the SEA DB2 subsystem
originated LUWID=16. However, the SEA DB2 subsystem was a participant for
LUWID=15, which was being coordinated by IMS.

v The administrator at LA also does not know is the fact that SEA distributed the
LUWID=16 thread to SJ, where it is also indoubt. Likewise, the administrator at
SJ does not know that LA has an indoubt thread for the LUWID=16 thread. Both
SJ and LA need to make the same heuristic decision. The administrators at SJ
and LA also need to determine the originator of the two-phase commit.

v The recovery log of the originator indicates whether the decision was commit or
abort. The originator might have more accessible functions to determine the

3

DB2 at SJ
IBMSJ0DB20001

DBAT
CONNID=SEAINS01
CORRID=xyz
PLAN=IMSAPP01
LUWID=15,TOKEN=8

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=6

DB2 at SEA
IBMSEADB20001

Allied Thread
CONNID=SEAIMS01
CORRID=xyz
PLAN=IMSAPP01
NID=A5
LUWID=15,TOKEN=1

Allied Thread
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=2

A

IMS

TSO

B

DB2 at LA
IBMLA0DB20001

DBAT
CONNID=SERVER
CORRID=xyz
PLAN=IMSAPP01
LUWID=15,TOKEN=4

2

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=5

4

1

Figure 69. Resolution of indoubt threads. “Scenarios for resolving problems with indoubt threads” on page 733
contains a detailed description of the scenario depicted in this figure.

742 Administration Guide



decision. Even though the SEA DB2 subsystem cold started, you might be able
to determine the decision from its recovery log. Alternatively, if the failure
occurred before the decision was recorded, you might be able to determine the
name of the coordinator, if the SEA DB2 subsystem was a participant. You can
obtain a summary report of the SEA DB2 recovery log by running the
DSN1LOGP utility.

v The LUWID contains the name of the logical unit (LU) where the distributed
logical unit of work originated. This logical unit is most likely in the system that
originated the two-phase commit.

v If an application is distributed, any distributed piece of the application can
initiate the two-phase commit. In this type of application, the originator of
two-phase commit can be at a different system than the site that is identified by
the LUWID. With DB2 private protocol access, the two-phase commit can flow
only from the system that contains the application that initiates distributed SQL
processing. In most cases, this is where the application originates.

v The administrator must determine if the LU name that is contained in the
LUWID is the same as the LU name of the SEA DB2 subsystem. If this is not the
case (it is the case in this example), the SEA DB2 subsystem is a participant in
the logical unit of work, and it is being coordinated by a remote system. The
DBA must communicate with that system and request that facilities of that
system be used to determine if the logical unit of work is to be committed or
aborted.

v If the LUWID contains the LU name of the SEA DB2 subsystem, the logical unit
of work originated at SEA and can be an IMS, CICS, TSO, or batch allied thread
of the SEA DB2 subsystem. The DISPLAY THREAD report for indoubt threads at
a DB2 participant includes message DSNV458 if the coordinator is remote. This
line provides external information that is provided by the coordinator to assist in
identifying the thread. A DB2 coordinator provides the following identifier:
connection-name.correlation-id

where connection-name is:
– SERVER: the thread represents a remote application to the DB2 coordinator

and uses DRDA access.
– BATCH: the thread represents a local batch application to the DB2

coordinator.
v Anything else represents an IMS or CICS connection name. The thread

represents a local application, and the commit coordinator is the IMS or CICS
system by using this connection name.

v In this example, the administrator at SJ sees that both indoubt threads have an
LUWID with the LU name that match the SEA DB2 subsystem LU name, and
furthermore, that one thread (LUWID=15) is an IMS thread and the other thread
(LUWID=16) is a batch thread. The LA administrator sees that the LA indoubt
thread (LUWID=16) originates at the SEA DB2 subsystem and is a batch thread.

v The originator of a DB2 batch thread is DB2. To determine the commit or abort
decision for the LUWID=16 indoubt threads, the SEA DB2 recovery log must be
analyzed, if possible. Run the DSN1LOGP utility against the SEA DB2 recovery
log, and look for the LUWID=16 entry. Three possibilities exist:
1. No entry is found. That portion of the DB2 recovery log is not available.
2. An entry is found but incomplete.
3. An entry is found, and the status is committed or aborted.

v In the third case, the heuristic decision at SJ and LA for indoubt thread
LUWID=16 is indicated by the status that is indicated in the SEA DB2 recovery
log. In the other two cases, the recovery procedure that is used when cold

Chapter 20. Recovering from different DB2 for z/OS problems 743



starting DB2 is important. If recovery was to a previous point in time, the
correct action is to abort. If recovery included repairing the SEA DB2 database,
the SEA administrator might know what decision to make.

v The recovery logs at SJ and LA can help determine what activity took place. If
the administrator determines that updates were performed at SJ, LA, or both
(but not SEA), and if both SJ and LA make the same heuristic action, data
inconsistency probably exists. If updates were also performed at SEA, the
administrator can look at the SEA data to determine what action to take. In any
case, both SJ and LA should make the same decision.

v For the indoubt thread with LUWID=15 (the IMS coordinator), several
alternative paths to recovery are available. The SEA DB2 subsystem has been
restarted. When it reconnects with IMS, message DSN3005 is issued for each
thread that IMS is trying to resolve with DB2. The message indicates that DB2
has no knowledge of the thread that is identified by the IMS-assigned NID. The
outcome for the thread, either commit or abort, is included in the message. Trace
event IFCID=234 is also written to statistics class 4, which contains the same
information.

v If only one such message exists, or if one such entry is in statistics class 4, the
decision for indoubt thread LUWID=15 is known and can be communicated to
the administrator at SJ. If multiple such messages exist, or if multiple such trace
events exist, the administrator must match the IMS NID with the network
LUWID. Again, the administrator should use DSN1LOGP to analyze the SEA
DB2 recovery log if possible. Now four possibilities exist:
1. No entry is found. That portion of the DB2 recovery log was not available.
2. An entry is found but is incomplete because of lost recovery log data.
3. An entry is found, and the status is indoubt.
4. An entry is found, and the status is committed or aborted.

v In the fourth case, the heuristic decision at SJ for the indoubt thread LUWID=15
is determined by the status that is indicated in the SEA DB2 recovery log. If an
entry is found and its status is indoubt, DSN1LOGP also reports the IMS NID
value. The NID is the unique identifier for the logical unit of work in IMS and
CICS. Knowing the NID enables correlation to the DSN3005 message, or to the
234 trace event, either of which provides the correct decision.

v If an incomplete entry is found, the NID might have been reported by
DSN1LOGP. If it was reported, use it as previously discussed.

v Determine if any of the following conditions exists:
– No NID is found.
– The SEA DB2 subsystem has not been started.
– Reconnecting to IMS has not occurred.

If any of these conditions exists, the administrator must use the correlation-id that
is used by IMS to correlate the IMS logical unit of work to the DB2 thread in a
search of the IMS recovery log. The SEA DB2 site provided this value to the SJ
DB2 subsystem when distributing the thread to SJ. The SJ DB2 site displays this
value in the report that is generated by the DISPLAY THREAD
TYPE(INDOUBT) command.

v For IMS, the correlation-id is:
pst#.psbname

v In CICS, the correlation-id consists of four parts:
Byte 1 - Connection type - G=Group, P=Pool
Byte 2 - Thread type - T=transaction, G=Group, C=Command
Bytes 3-4 - Thread number
Bytes 5—8 - Transaction-id

Related concepts

744 Administration Guide



“Scenario: What happens when the wrong DB2 subsystem is cold started”

Scenario: What happens when the wrong DB2 subsystem is
cold started

When one DB2 subsystem, instead of another DB2 subsystem, is cold started,
threads are left indoubt. An organization that faces this situation can recover.

The following figure illustrates the environment for this scenario.

If the DB2 subsystem at SJ is cold started instead of the DB2 at SEA, the LA DB2
subsystem has the LUWID=15 2 thread indoubt. The administrator can see that
this thread did not originate at SJ, but that it did originate at SEA. To determine
the commit or abort action, the LA administrator requests that DISPLAY THREAD
TYPE(INDOUBT) be issued at the SEA DB2 subsystem, specifying LUWID=15. IMS
does not have any indoubt status for this thread because it completes the
two-phase commit process with the SEA DB2 subsystem.

The DB2 subsystem at SEA tells the application that the commit succeeded.

When a participant cold starts, a DB2 coordinator continues to include in the
display of information about indoubt threads all committed threads where the cold
starting participant was believed to be indoubt. These entries must be explicitly
purged by issuing the RESET INDOUBT command. If a participant has an indoubt

3

DB2 at SJ
IBMSJ0DB20001

DBAT
CONNID=SEAINS01
CORRID=xyz
PLAN=IMSAPP01
LUWID=15,TOKEN=8

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=6

DB2 at SEA
IBMSEADB20001

Allied Thread
CONNID=SEAIMS01
CORRID=xyz
PLAN=IMSAPP01
NID=A5
LUWID=15,TOKEN=1

Allied Thread
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=2

A

IMS

TSO

B

DB2 at LA
IBMLA0DB20001

DBAT
CONNID=SERVER
CORRID=xyz
PLAN=IMSAPP01
LUWID=15,TOKEN=4

2

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=5

4

1

Figure 70. Resolution of indoubt threads. “Scenarios for resolving problems with indoubt threads” on page 733
contains a detailed description of the scenario depicted in this figure.

Chapter 20. Recovering from different DB2 for z/OS problems 745



thread that cannot be resolved because of coordinator cold start, the administrator
can request a display of indoubt threads at the DB2 coordinator to determine the
correct action.
Related information

“Scenario: Recovering from a DB2 outage at a requester that results in a DB2 cold
start” on page 740
“Scenario: Recovering from communication failure” on page 735

Scenario: Correcting damage from an incorrect heuristic
decision about an indoubt thread

If an incorrect heuristic decision is made regarding an indoubt thread, an
organization can recover from this incorrect decision.

Symptoms

When the DB2 subsystem at SEA reconnects with the DB2 at LA, indoubt
resolution occurs for LUWID=16. Both systems detect heuristic damage, and both
generate alert A004; each writes an IFCID 207 trace record. Message DSNL400 is
displayed at LA, and message DSNL403 is displayed at SEA.

Causes

This scenario is based on the conditions described in “Scenario: Recovering from
communication failure” on page 735.

The LA administrator is called to make an heuristic decision and decides to abort
the indoubt thread with LUWID=16. The decision is made without communicating
with SEA to determine the proper action. The thread at LA is aborted, whereas the
threads at SEA and SJ are committed. Processing continues at all systems. The DB2
subsystem at SEA has indoubt resolution responsibility with LA for LUWID=16.

Environment

The following figure illustrates the environment for this scenario.

746 Administration Guide



In this scenario, processing continues. Indoubt thread resolution responsibilities
have been fulfilled, and the thread completes at both SJ and LA.

Resolving the problem

Database administrator response: Correct the damage. This is not an easy task.
Since the time of the heuristic action, the data at LA might have been read or
written by many applications. Correcting the damage can involve reversing the
effects of these applications, also. The available tools are:
v DSN1LOGP utility, which generates a summary report that identifies the table

spaces that were modified by the LUWID=16 thread.
v The statistics trace class 4, which contains an IFCID 207 entry. This entry

identifies the recovery log RBA for the LUWID=16 thread.

Notify IBM Software Support about the problem.

3

DB2 at SJ
IBMSJ0DB20001

DBAT
CONNID=SEAINS01
CORRID=xyz
PLAN=IMSAPP01
LUWID=15,TOKEN=8

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=6

DB2 at SEA
IBMSEADB20001

Allied Thread
CONNID=SEAIMS01
CORRID=xyz
PLAN=IMSAPP01
NID=A5
LUWID=15,TOKEN=1

Allied Thread
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=2

A

IMS

TSO

B

DB2 at LA
IBMLA0DB20001

DBAT
CONNID=SERVER
CORRID=xyz
PLAN=IMSAPP01
LUWID=15,TOKEN=4

2

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=5

4

1

Figure 71. Resolution of indoubt threads. “Scenarios for resolving problems with indoubt threads” on page 733
contains a detailed description of the scenario depicted in this figure.

Chapter 20. Recovering from different DB2 for z/OS problems 747



748 Administration Guide



Chapter 21. Reading log records

Reading DB2 log records is useful for diagnostic and recovery purposes.

This information discusses three approaches to writing programs that read log
records.

Contents of the log
The log contains the information that is needed to recover the results of program
execution, the contents of the database, and the DB2 subsystem. The log does not
contain information for accounting, statistics, traces, or performance evaluation.

PSPI The three main types of log records are unit of recovery, checkpoint, and
database page set control records.

Each log record has a header that indicates its type, the DB2 subcomponent that
made the record, and, for unit-of-recovery records, the unit-of-recovery identifier.
The log records can be extracted and printed by the DSN1LOGP utility.

The log relative byte address and log record sequence number

The DB2 log can contain up to 248 bytes, where 248 is 2 to the 48th power. Each
byte is addressable by its offset from the beginning of the log. That offset is known
as its relative byte address (RBA).

A log record is identifiable by the RBA of the first byte of its header; that RBA is
called the relative byte address of the record. The record RBA is like a timestamp
because it uniquely identifies a record that starts at a particular point in the
continuing log.

In the data sharing environment, each member has its own log. The log record
sequence number (LRSN) uniquely identifies the log records of a data sharing
member. The LRSN is a 6-byte hexadecimal value derived from a store clock
timestamp. DB2 uses the LRSN for recovery in the data sharing environment.

Effects of ESA data compression

Log records can contain compressed data if a table contains compressed data. For
example, if the data in a DB2 row are compressed, all data logged because of
changes to that row (resulting from inserts, updates and deletes) are compressed. If
logged, the record prefix is not compressed, but all of the data in the record are in
compressed format. Reading compressed data requires access to the dictionary that

was in use when the data was compressed. PSPI

Related reference

DSN1LOGP (DB2 Utilities)

Unit of recovery log records
Most of the log records describe changes to the DB2 database. All such changes are
made within units of recovery.

© Copyright IBM Corp. 1982, 2009 749

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1logp.htm#db2z_utl_dsn1logp


This section describes changes to the DB2 database, the effects of these changes,
and the log records that correspond to the changes.

Undo and redo records
When a change is made to the database, DB2 logs an undo/redo record that
describes the change.

PSPI The redo information is required if the work is committed and later must
be recovered. The undo information is used to back out work that is not
committed.

If the work is rolled back, the undo/redo record is used to remove the change. At
the same time that the change is removed, a new redo/undo record is created that
contains information, called compensation information, that is used if necessary to
reverse the change. For example, if a value of 3 is changed to 5, redo compensation
information changes it back to 3.

If the work must be recovered, DB2 scans the log forward and applies the redo
portions of log records and the redo portions of compensation records, without
keeping track of whether the unit of recovery was committed or rolled back. If the
unit of recovery had been rolled back, DB2 would have written compensation redo
log records to record the original undo action as a redo action. Using this
technique, the data can be completely restored by applying only redo log records
on a single forward pass of the log.

DB2 also logs the creation and deletion of data sets. If the work is rolled back, the
operations are reversed. For example, if a table space is created using
DB2-managed data sets, DB2 creates a data set; if rollback is necessary, the data set
is deleted. If a table space using DB2-managed data sets is dropped, DB2 deletes
the data set when the work is committed, not immediately. If the work is rolled

back, DB2 does nothing. PSPI

Database exception table records
Database exception table (DBET) log records register different types of information:
exception states and image copies of special table spaces.

PSPI DBET log records also register exception information that is not related to
units of recovery.

Exception states

DBET log records register whether any database, table space, index space, or
partition is in an exception state. To list all objects in a database that are in an
exception state, use the command DISPLAY DATABASE (database name) RESTRICT.

Image copies of special table spaces

Image copies of DSNDB01.SYSUTILX, DSNDB01.DBD01, and DSNDB06.SYSCOPY
are registered in the DBET log record rather than in SYSCOPY. During recovery,
they are recovered from the log, and then image copies of other table spaces are

located from the recovered SYSCOPY. PSPI

750 Administration Guide



Related reference

“Other exception information” on page 755
Related information

DSNT392I (DB2 Messages)

Typical unit of recovery log records
A typical sequence of log records is written for an insert of one row through TSO.

PSPI The following record types are included:

Begin_UR
The first request to change a database begins a unit of recovery. The log
record of that event is identified by its log RBA. That same RBA serves as
an ID for the entire unit of recovery (the URID). All records related to that
unit have that RBA in their log record headers (LRH). For rapid backout,
the records are also linked by a backward chain in the LRH.

Undo/Redo
Log records are written for each insertion, deletion, or update of a row.
They register the changes to the stored data, but not the SQL statement
that caused the change. Each record identifies one data or index page and
its changes.

End Phase 2 records
The end of a UR is marked by log records that tell whether the UR was
committed or rolled back, and whether DB2 has completed the work
associated with it. If DB2 terminates before a UR has completed, it
completes the work at the next restart.

Table 108. Example of a log record sequence for an INSERT of one row using TSO

Type of record Information recorded

1. Begin_UR Beginning of the unit of recovery. Includes the connection
name, correlation name, authorization ID, plan name, and
LUWID.

2. Undo/Redo for data Insertion of data. Includes the database ID (DBID), page set
ID, page number, internal record identifier (RID), and the
data inserted.

3. Undo/Redo for Index Insertion of index entry. Includes the DBID, index space
object ID, page number, and index entry to be added.

4. Begin Commit 1 The beginning of the commit process. The application has
requested a commit either explicitly (EXEC SQL COMMIT)
or implicitly (for example, by ending the program).

5. Phase 1-2 Transition The agreement to commit in TSO. In CICS and IMS, an End
Phase 1 record notes that DB2 agrees to commit. If both
parties agree, a Begin Phase 2 record is written; otherwise, a
Begin Abort record is written, noting that the unit of
recovery is to be rolled back.

6. End Phase 2 Completion of all work required for commit.

Table 109 on page 752 shows the log records for processing and rolling back an
insertion.

Chapter 21. Reading log records 751

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.msgs/dsnt392i.htm#dsnt392i


Table 109. Log records written for rolling back an insertion

Type of record Information recorded

1. Begin_UR Beginning of the unit of recovery.

2. Undo/Redo for data Insertion of data. Includes the database ID (DBID), page set
ID, page number, internal record identifier, and the data
inserted.

3. Begin_Abort Beginning of the rollback process.

4. Compensation Redo/Undo Backing-out of data. Includes the database ID (DBID), page
set ID, page number, internal record ID (RID), and data to
undo the previous change.

5. End_Abort End of the unit of recovery, with rollback complete.

PSPI

Types of changes to data
The three basic types of changes to a data page are changes to control information,
changes to database pointers, and changes to the data.

PSPI

Changes to control information
Those changes include pages that map available space and indicators that
show that a page has been modified. The COPY utility uses that
information when making incremental image copies.

Changes to database pointers
Pointers are used in two situations:
v The DB2 catalog and directory, but not user databases, contain pointers

that connect related rows. Insertion or deletion of a row changes
pointers in related data rows.

v When a row in a user database becomes too long to fit in the available
space, it is moved to a new page. An address, called an overflow pointer,
that points to the new location is left in the original page. With this
technique, index entries and other pointers do not have to be changed.
Accessing the row in its original position gives a pointer to the new
location.

Changes to data
In DB2, a row is confined to a single page. Each row is uniquely identified
by a RID containing:
v The number of the page.
v A 1-byte ID that identifies the row within the page. A single page can

contain up to 255 rows. (A page in a catalog table space that has links
can contain up to 127 rows.) IDs are reused when rows are deleted.

The log record identifies the RID, the operation (insert, delete, or update), and the
data. Depending on the data size and other variables, DB2 can write a single log
record with both undo and redo information, or it can write separate log records
for undo and redo.

The following table summarizes the information logged for data and index
changes.

752 Administration Guide



Table 110. Information logged for database changes

Operation Information logged

Insert data The new row.
v On redo, the row is inserted with its original RID.
v On undo, the row is deleted and the RID is made available for

another row.

Delete data The deleted row.
v On redo, the RID is made available for another row.
v On undo, the row is inserted again with its former RID.

Update data1 The old and new values of the changed data.
v On redo, the new data is replaced.
v On undo, the old data is replaced.

Insert index entry The new key value and the data RID.

Delete index entry The deleted key value and the data RID.

Add column The information about the column being added, if the table was
defined with DATA CAPTURE(CHANGES).

Alter column The information about the column being altered, if the table was
defined with DATA CAPTURE(CHANGES).

Roll back to a savepoint Information about the savepoint.

Modify table space Information about the table space version.

LOAD SHRLEVEL
NONE RESUME YES

The database ID (DBID) and the page set ID (PSID) of the table
space on which the operation was run.

LOAD SHRLEVEL
NONE RESUME NO
REPLACE

The database ID (DBID) and the page set ID (PSID) of the table
space on which the operation was run.

REORG TABLESPACE
DISCARD

The database ID (DBID) and the page set ID (PSID) of the table
space on which the operation was run.

CHECK DATA DELETE
YES

The database ID (DBID) and the page set ID (PSID) of the table
space on which the operation was run.

Point-in-time recovery
by using the RECOVER
utility with the
following options:
v TOCOPY
v TOLASTCOPY
v TOLASTFULLCOPY
v TORBA
v TOLOGPOINT

The database ID (DBID) and the page set ID (PSID) of the table
space on which the operation was run.

EXCHANGE DATA on
a clone table space

The database ID (DBID) and the page set ID (PSID) of the table
space on which the operation was run.

REPAIR SET DELETE The database ID (DBID) and the page set ID (PSID) of the table
space on which the operation was run.

Note:

1. If an update occurs to a table defined with DATA CAPTURE(CHANGES), the entire
before-image and after-image of the data row is logged.

PSPI

Chapter 21. Reading log records 753

||
|

||
|

||

||

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

||
|



Checkpoint log records
DB2 takes periodic checkpoints during normal operation in order to reduce restart
time.

PSPI DB2 takes checkpoints in the following circumstances:
v When a predefined number of log records have been written or a predetermined

amount of time in minutes has elapsed.
This number is defined by field CHECKPOINT FREQ on installation panel
DSNTIPL.

v When switching from one active log data set to another
v At the end of a successful restart
v At normal termination

At a checkpoint, DB2 logs its current status and registers the log RBA of the
checkpoint in the bootstrap data set (BSDS). At restart, DB2 uses the information in
the checkpoint records to reconstruct its state when it terminated.

Many log records can be written for a single checkpoint. DB2 can write one to
begin the checkpoint; others can then be written, followed by a record to end the
checkpoint. The following table summarizes the information logged.

Table 111. Contents of checkpoint log records

Type of log record Information logged

Begin_Checkpoint Marks the start of the summary information. All later records in
the checkpoint have type X’0100’ (in the LRH).

Unit of Recovery
Summary

Identifies an incomplete unit of recovery (by the log RBA of the
Begin_UR log record). Includes the date and time of its creation,
its connection ID, correlation ID, authorization ID, the plan
name it used, and its current state (inflight, indoubt, in-commit,
or in-abort).

Page Set Summary Contains information for allocating and opening objects at
restart, and identifies (by the log RBA) the earliest checkpoint
interval containing log records about data changes that have not
been applied to the DASD version of the data or index. There is
one record for each open page set (table space or index space).

Page Set Exception
Summary

Identifies the type of exception state. For descriptions of the
states, see “Database page set control records.” There is one
record for each database and page set with an exception state.

Page Set UR Summary
Record

Identifies page sets modified by any active UR (inflight,
in-abort, or in-commit) at the time of the checkpoint.

End_Checkpoint Marks the end of the summary information about a checkpoint.

PSPI

Related reference

Active log data set parameters: DSNTIPL (DB2 Installation and Migration)

Database page set control records
Page set control records primarily register the allocation, opening, and closing of
every page set (table space or index space).

754 Administration Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.inst/db2z_dsntipl.htm#db2z_dsntipl


PSPI The same information is in the DB2 directory (SYSIBM.SYSLGRNX). It is

also registered in the log so that it is available at restart. PSPI

Other exception information
Entries for data pages that are logically in error (logical page list, or LPL entries) or
physically in error (write error page range, or WEPR entries) are registered in the
database exception table (DBET) log record.

The physical structure of the log
The active log consists of VSAM data sets with certain required characteristics.

PSPI The physical output unit written to the active log data set is a control

interval (CI) of 4096 bytes (4 KB). Each CI contains one VSAM record. PSPI

Physical and logical log records
The VSAM control interval (CI) provides 4089 bytes to hold DB2 information. That
space is called a physical record. The information that is to be logged at a particular
time forms a logical record, whose length varies independently of the space that is
available in the CI.

PSPI One physical record can contain several logical records, one or more logical
records and part of another, or only part of one logical record. The physical record
must also contain 21 bytes of DB2 control information, called the log control interval
definition (LCID).

Figure 72 on page 756 shows a VSAM CI containing four log records or segments,
namely:
v The last segment of a log record of 768 bytes (X’0300’). The length of the

segment is 100 bytes (X’0064’).
v A complete log record of 40 bytes (X’0028’).
v A complete log record of 1024 bytes (X’0400’).
v The first segment of a log record of 4108 bytes (X’100C’). The length of the

segment is 2911 bytes (X’0B5F’).

Chapter 21. Reading log records 755



The term log record refers to a logical record, unless the term physical log record is
used. A part of a logical record that falls within one physical record is called a

segment. PSPI

Related reference

“The log control interval definition (LCID)” on page 757

The log record header
Each logical record includes a prefix, called a log record header (LRH), which
contains control information.

PSPI The first segment of a log record must contain the header and some bytes
of data. If the current physical record has too little room for the minimum segment
of a new record, the remainder of the physical record is unused, and a new log
record is written in a new physical record.

The log record can span many VSAM CIs. For example, a minimum of nine CIs are
required to hold the maximum size log record of 32815 bytes. Only the first
segment of the record contains the entire LRH; later segments include only the first
two fields. When a specific log record is needed for recovery, all segments are
retrieved and presented together as if the record were stored continuously.

Table 112. Contents of the log record header

Hex offset Length Information

00 2 Length of this record or segment

0064 8000 Data from last segment of log record 1

0028 0064 Data from log record 2

0400 0028 Data from log record 3

0B5F 4400 Data from first segment of log

Record 4

FF 100C 0300 048C Log RBA 00 Timestamp

Log control interval definition (LCID)

VSAM record
ends here

For data sharing, the LRSN of
the last log record in this CI

Offset of last segment in this CI
(beginning of log record 4)

Total length of spanned record that
ends in this CI (log record 1)

Total length of spanned record that
begins in this CI (log record 4)

Figure 72. A VSAM CI and its contents

756 Administration Guide



Table 112. Contents of the log record header (continued)

Hex offset Length Information

02 2 Length of any previous record or segment in this CI; 0 if
this is the first entry in the CI. The two high-order bits tell
the segment type:
B’00’ A complete log record
B’01’ The first segment
B’11’ A middle segment
B’10’ The last segment

04 2 Type of log record

06 2 Subtype of the log record

08 1 Resource manager ID (RMID) of the DB2 component that
created the log record

09 1 Flags

0A 6 Unit of recovery ID, if this record relates to a unit of
recovery; otherwise, 0

10 6 Log RBA of the previous log record, if this record relates to
a unit of recovery; otherwise, 0

16 1 Release identifier

17 1 Length of header

18 6 Undo next LSN

1E 8 LRHTIME

PSPI

Related concepts

“Unit of recovery log records” on page 749
Related reference

“Log record type codes” on page 759
“Log record subtype codes” on page 760

The log control interval definition (LCID)
Each physical log record includes a suffix called the log control interval definition
(LCID), which tells how record segments are placed in the physical control
interval.

PSPI The following table describes the contents of the LCID.

Table 113. Contents of the log control interval definition

Hex offset Length Information

00 1 An indication of whether the CI contains free space: X’00’
= Yes, X’FF’ = No

01 2 Total length of a segmented record that begins in this CI; 0
if no segmented record begins in this CI

03 2 Total length of a segmented record that ends in this CI; 0 if
no segmented record ends in this CI

05 2 Offset of the last record or segment in the CI

07 6 Log RBA of the start of the CI

Chapter 21. Reading log records 757



Table 113. Contents of the log control interval definition (continued)

Hex offset Length Information

0D 6 Timestamp, reflecting the date and time that the log buffer
was written to the active log data set. The timestamp is the
high-order 7 bytes of the store clock value (STCK).

13 2 Reserved

Each recovery log record consists of two parts: a header, which describes the record,
and data. The following illustration shows the format schematically; the following
list describes each field.

The fields are:

Length of this record
The total length of the record in bytes.

Length of previous record
The total length of the previous record in bytes.

Type The code for the type of recovery log record.

Subtype
Some types of recovery log records are further divided into subtypes.

Resource manager ID
Identifier of the resource manager that wrote the record into the log. When
the log is read, the record can be given for processing to the resource
manager that created it.

Unit of recovery ID
A unit of recovery to which the record is related. Other log records can be
related to the same unit of recovery; all of them must be examined to

Figure 73. Format of a DB2 recovery log record

758 Administration Guide



recover the data. The URID is the RBA (relative byte address) of the
Begin-UR log record, and indicates the start of that unit of recovery in the
log.

LINK Chains all records written using their RBAs. For example, the link in an
end checkpoint record links the chains back to the begin checkpoint record.

Release identifier
Identifies in which release the log was written.

Log record header length
The total length of the header of the log record.

Undo next LSN
Identifies the log RBA of the next log record to be undone during
backwards (UNDO processing) recovery.

STCK, or LRSN+member ID
In a non-data-sharing environment, this is a 6-byte store clock value
(STCK) reflecting the date and time the record was placed in the output
buffer. The last 2 bytes contain zeros.

In a data sharing environment, this contains a 6-byte log record sequence
number (LRSN) followed by a 2-byte member ID.

Data Data associated with the log record. The contents of the data field depend
on the type and subtype of the recovery log record.

PSPI

Related reference

“Log record type codes”
“Log record subtype codes” on page 760

Log record type codes
The type code of a log record tells what kind of DB2 event the record describes.

PSPI

Code Type of event

0002 Page set control

0004 SYSCOPY utility

0010 System event

0020 Unit of recovery control

0100 Checkpoint

0200 Unit of recovery undo

0400 Unit of recovery redo

0800 Archive log command

1000 to 8000
Assigned by DB2

2200 Savepoint

4200 End of rollback to savepoint

4400 Alter or modify recovery log record

Chapter 21. Reading log records 759

||

||



A single record can contain multiple type codes that are combined. For example,
0600 is a combined UNDO/REDO record; F400 is a combination of four
DB2-assigned types plus a REDO. A diagnostic log record for the TRUNCATE
IMMEDIATE statement is type code 4200, which is a combination of a diagnostic

log record (4000) and an UNDO record (0200). PSPI

Log record subtype codes
The log record subtype code provides a more granular definition of the event that
occurred and that generated the log record. Log record subtype codes are unique
only within the scope of the corresponding log record type code.

PSPI Log record type 0004 (SYSCOPY utility) has log subtype codes that
correspond to the page set ID values of the table spaces that have their SYSCOPY
records in the log (SYSIBM.SYSUTILX, SYSIBM.SYSCOPY and DSNDB01.DBD01).

Log record type 0800 (quiesce) does not have subtype codes.

Some log record types (1000 to 8000 assigned by DB2) can have proprietary log
record subtype codes assigned.

Subtypes for type 0002 (page set control)

Code Type of event

0001 Page set open

0002 Data set open

0003 Page set close

0004 Data set close

0005 Page set control checkpoint

0006 Page set write

0007 Page set write I/O

0008 Page set reset write

0009 Page set status

Subtypes for type 0010 (system event)

Code Type of event

0001 Begin checkpoint

0002 End checkpoint

0003 Begin current status rebuild

0004 Begin historic status rebuild

0005 Begin active unit of recovery backout

0006 Pacing record

Subtypes for type 0020 (unit of recovery control)

Code Type of event

0001 Begin unit of recovery

760 Administration Guide

|
|
|
|

|



0002 Begin commit phase 1 (Prepare)

0004 End commit phase 1 (Prepare)

0008 Begin commit phase 2

000C Commit phase 1 to commit phase 2 transition

0010 End commit phase 2

0020 Begin abort

0040 End abort

0081 End undo

0084 End todo

0088 End redo

Subtypes for type 0100 (checkpoint)

Code Type of event

0001 Unit of recovery entry

0002 Restart unit of recovery entry

Subtypes for type 2200 (savepoint)

Code Type of event

0014 Rollback to savepoint

000E Release to savepoint

Subtypes for type 4200 (end of rollback to savepoint)

Code Type of event

0084 End of savepoint

0085 End of savepoint

Subtypes for type 4200 (diagnostic log record for TRUNCATE
IMMEDIATE)

Code Type of event

0085 Special begin for TRUNCATE IMMEDIATE

0086 Special commit for TRUNCATE IMMEDIATE

Subtypes for type 4400 (alter or modify log record)

Code Type of event

0083 Alter or modify log record used for DB2 replication

PSPI

Related reference

DSN1LOGP (DB2 Utilities)

Interpreting data change log records
For specific log record types, DB2 provides the mapping and description that you
can use to interpret data changes that are made to DB2 tables from the log.

Chapter 21. Reading log records 761

|

||

||

||

|
|

||

||

||

|

||

||

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.ugref/db2z_utl_dsn1logp.htm#db2z_utl_dsn1logp


PSPI The macros are contained in the data set library prefix SDSNMACS and
are documented by comments in the macros themselves.

Log record formats for the record types and subtypes are detailed in the mapping
macro DSNDQJ00. DSNDQJ00 provides the mapping of specific data change log
records, UR control log records, and page set control log records that you need to
interpret data changes by the UR. DSNDQJ00 also explains the content and usage

of the log records. PSPI

Related reference

“Log record subtype codes” on page 760

Reading log records with IFI
You can use the READA (read asynchronously) request of the instrumentation
facility interface (IFI) to read log records into a buffer. Use the READS (read
synchronously) request to read specific log control intervals from a buffer. You can
use these requests online while DB2 is running.

PSPI You can write a program that uses IFI to capture log records while DB2 is
running. You can read the records asynchronously, by starting a trace that reads
the log records into a buffer and then issuing an IFI call to read those records out
of the buffer. Alternatively, you can read those log records synchronously, by using
an IFI call that returns those log records directly to your IFI program.

Restriction: Either the primary or one of the secondary authorization IDs must
have the MONITOR2 privilege. For details on how to code an IFI program, see

DB2 Performance Monitoring and Tuning Guide. PSPI

Gathering active log records into a buffer
To begin gathering active log records into a buffer, use the START TRACE
command.

PSPI Issuing the following START TRACE command in an IFI program causes
DB2 to begin gathering active log records into a buffer:

-START TRACE(P) CLASS(30) IFCID(126) DEST(OPX)

where:
v P signifies to start a DB2 performance trace. Any of the DB2 trace types can be

used.
v CLASS(30) is a user-defined trace class (31 and 32 are also user-defined classes).
v IFCID(126) activates DB2 log buffer recording.
v DEST(OPX) starts the trace to the next available DB2 online performance (OP)

buffer. The size of this OP buffer can be explicitly controlled by the BUFSIZE
keyword of the START TRACE command. Valid sizes range from 256 KB to 16
MB. The number must be evenly divisible by 4.

When the START TRACE command takes effect, from that point forward until DB2
terminates, DB2 begins writing 4-KB log buffer VSAM control intervals (CIs) to the
OP buffer as well as to the active log. As part of the IFI COMMAND invocation,
the application specifies an ECB to be posted and a threshold to which the OP

762 Administration Guide



buffer is filled when the application is posted to obtain the contents of the buffer.

The IFI READA request is issued to obtain OP buffer contents. PSPI

Reading specific log records (IFCID 0129)
You can use IFCID 129 with an IFI READS (read synchronously) request to return
a specific range of log records from the active log into the return area that is
initialized by your program.

PSPI Enter the following command into your IFI program:
CALL DSNWLI(READS,ifca,return_area,ifcid_area,qual_area)

IFCID 129 must appear in the IFCID area.

To retrieve the log control interval, your program must initialize certain fields in
the qualification area:

WQALLTYP
This is a 3-byte field in which you must specify CI (with a trailing blank),
which stands for “control interval”.

WQALLMOD
In this 1-byte field, you specify whether you want the first log CI of the
restarted DB2 subsystem, or whether you want a specific control interval as
specified by the value in the RBA field.

F The “first” option is used to retrieve the first log CI of this DB2 instance.
This option ignores any value in WQALLRBA and WQALLNUM.

P The “partial” option is used to retrieve partial log CIs for the log capture
exit routine. DB2 places a value in field IFCAHLRS of the IFI
communication area, as follows:
v The RBA of the log CI given to the log capture exit routine, if the last CI

written to the log was not full.
v 0, if the last CI written to the log was full.

When you specify option P, DB2 ignores values in WQALLRBA and
WQALLNUM.

R The “read” option is used to retrieve a set of up to 7 continuous log CIs. If
you choose this option, you must also specify the WQALLRBA and
WQALLNUM options, which the following text details.

WQALLRBA
In this 8-byte field, you specify the starting log RBA of the control intervals to
be returned. This value must end in X’000’ to put the address on a valid
boundary. This field is ignored when using the WQALLMOD=F option.

If you specify an RBA that is not in the active log, reason code 00E60854 is
returned in the field IFCARC2, and the RBA of the first CI of the active log is
returned in field IFCAFCI of the IFCA. These 6 bytes contain the IFCAFCI
field.

WQALLNUM
In this 2-byte field, specify the number of control intervals you want returned.
The valid range is from X’0001’ through X’0007’, which means that you can
request and receive up to seven 4-KB log control intervals. This field is ignored
when using the WQALLMOD=F option. For a complete description of the
qualification area, see DB2 Performance Monitoring and Tuning Guide.

Chapter 21. Reading log records 763



If you specify a range of log CIs, but some of those records have not yet been
written to the active log, DB2 returns as many log records as possible. You can find
the number of CIs returned in field QWT02R1N of the self-defining section of the
record. For information about interpreting trace output, see DB2 Performance

Monitoring and Tuning Guide. PSPI

Related concepts

“Log capture routines” on page 837

Reading complete log data (IFCID 0306)
Several benefits are associated with use of IFCID 0306 to read log data.

PSPI

v IFCID 0306 can request DB2 to decompress log records if compressed, before
passing them to the return area of your IFI program.

v In a data sharing environment, DB2 merges log records if the value of the IFI
READS qualification WQALFLTR is X’00’. If WQALFLTR is X’01’, log records
are not merged.

v IFCID can retrieve log records from the archive data sets.
v Complete log records are always returned.

To use IFCID 0306:

Use the same call that you use for IFCID 0129. IFCID 0306 must appear in the
IFCID area. IFCID 0306 returns complete log records and the spanned record
indicators in bytes 2 will have no meaning, if present. Multi-segmented control

interval log records are combined for a complete log record. PSPI

Related tasks

“Reading specific log records (IFCID 0129)” on page 763

Specifying the return area
You must specify the return area for IFCID 0306 requests.

PSPI For IFCID 0306 requests, your program’s return area must reside in ECSA
key 7 storage. The IFI application program must set the eye-catcher to ’I306’ at
offset 4 in the Return Area before making the IFCID 0306 call. There is an
additional 60 byte area that must be included after the 4-byte length indicator and
the ’I306’ eye-catcher. This area is used by DB2 between successive application calls
and must not be modified by the application. The return area mapping is
documented later in this section.

The IFI application program needs to run in supervisor state to request the ECSA
key 7 return area. The storage size of the return area must be a minimum of the
largest DB2 log record returned plus the additional area defined in DSNDQW04.
Minimize the number of IFI calls required to get all log data but do not over use
ECSA by the IFI program. The other IFI storage areas can remain in user storage
key 8. The IFI application must be in supervisor state and key 0 when making
IFCID 0306 calls.

IFCID 0306 has a unique return area format. The first section is mapped by
QW0306OF instead of the write header DSNDQWIN. See DB2 Performance

Monitoring and Tuning Guide for details. PSPI

764 Administration Guide



Qualifying log records
To retrieve IFCID 0306 log records, your program must initialize certain fields in
the qualification area that is mapped by DSNDWQAL.

PSPI These qualification fields are:

WQALLMOD
In this 1-byte field, specify one of the following modes:

D Retrieves the single log record whose RBA value and member id is
specified in WQALLRBA. Issuing a D request while holding a position in
the log, causes the request to fail and terminates the log position held.

F Used as a first call to request log records beyond the LRSN or RBA
specified in WQALLRBA that meet the criteria specified in WQALLCRI.

H Retrieves the highest LRSN or log RBA in the active log. The value is
returned in field IFCAHLRS of the IFI communications area (IFCA). There
is no data returned in the return area and the return code for this call will
indicate that no data was returned.

N Used following mode F or N calls to request any remaining log records
that meet the criteria specified in WQALLCRI. * and any option specified
in WQALLOPT. As many log records as fit in the program’s return area are
returned.

T Terminates the log position that was held by any previous F or N request.
This allows held resources to be released.

Mode R is not used for IFCID 0306.

For both F or N requests, each log record returned contains a record-level
feedback area recorded in QW0306L. The number of log records retrieved is in
QW0306CT. The ending log RBA or LRSN of the log records to be returned is
in QW0306ES.

WQALLRBA
In this 8-byte field, specify the starting log RBA or LRSN of the control records
to be returned. For IFCID 0306, this is used on the “first” option (F) request to
request log records beyond the LRSN or RBA specified in this field. Determine
the RBA or LRSN value from the H request. For RBAs, the value plus one
should be used. For IFCID 0306 with D request of WQALLMOD, the
high-order 2 bytes must specify member id and the low order 6 bytes contain
the RBA.

WQALLCRI
In this 1-byte field, indicate what types of log records you want:

X’00’
Tells DB2 to retrieve only log records for changed data capture and unit of
recovery control.

X’FF’
Tells DB2 to retrieve all types of log records. Use of this option can retrieve
large data volumes and degrade DB2 performance.

WQALLOPT
In this 1-byte field, indicate whether you want the returned log records to be
decompressed.

X’01’
Tells DB2 to decompress the log records before they are returned.

Chapter 21. Reading log records 765



X’00’
Tells DB2 to leave the log records in the compressed format.

A typical sequence of IFCID 0306 calls is:

WQALLMOD=H
This is only necessary if you want to find the current position in the log. The
LRSN or RBA is returned in IFCAHLRS. The return area is not used.

WQALLMOD=F
The WQALLRBA, WQALLCRI and WQALLOPT should be set. If 00E60812 is
returned, you have all the data for this scope. You should wait a while before
issuing another WQALLMOD=F call. In data sharing, log buffers are flushed
when the F request is issued.

WQALLMOD=N
If the 00E60812 has not been returned, you issue this call until it is. You should
wait a while before issuing another WQALLMOD=F call.

WQALLMOD=T
This should only be used if you do not want to continue with the
WQALLMOD=N before the end is reached. It has no use if a position is not
held in the log.

PSPI

Reading log records with OPEN, GET, and CLOSE
You can use the assembler language DSNJSLR macro to submit OPEN, GET, and
CLOSE functions. Use this stand-alone method to capture log records that you
cannot read with the instrumentation facility interface (IFI) when DB2 stops
running.

PSPI DB2 provides the following stand-alone log services that user-written
application programs can use to read DB2 recovery log records and control
intervals even when DB2 is not running:
v The OPEN function initializes stand-alone log services.
v The GET function returns a pointer to the next log record or log record control

interval.
v The CLOSE function deallocates data sets and frees storage.

To invoke these services, use the assembler language DSNJSLR macro and specify
one of the preceding functions.

These log services use a request block, which contains a feedback area in which
information for all stand-alone log GET calls is returned. The request block is
created when a stand-alone log OPEN call is made. The request block must be
passed as input to all subsequent stand-alone log calls (GET and CLOSE). The
request block is mapped by the DSNDSLRB macro, and the feedback area is
mapped by the DSNDSLRF macro.

When you issue an OPEN request, you can indicate whether you want to get log
records or log record control intervals. Each GET request returns a single logical
record or control interval depending on which you selected with the OPEN

766 Administration Guide



request. If neither is specified, the default, RECORD, is used. DB2 reads the log in
the forward direction of ascending relative byte addresses or log record sequence
numbers (LRSNs).

If a bootstrap data set (BSDS) is allocated before stand-alone services are invoked,
appropriate log data sets are allocated dynamically by z/OS. If the bootstrap data
set is not allocated before stand-alone services are invoked, the JCL for your
user-written application to read a log must specify and allocate the log data sets to
be read.

Important: Use one of the following methods to read active logs while the DB2
subsystem that owns the logs is active:
v IFCID 0129
v IFCID 0306
v Log capture exit

There are no restrictions on reading archive logs. PSPI

JCL DD statements for DB2 stand-alone log services
Stand-alone services, such as OPEN, GET, and CLOSE, use a variety of JCL DD
statements as they operate.

PSPI The following tables list and describe the JCL DD statements that are used
by stand-alone services.

Table 114. JCL DD statements for DB2 stand-alone log services

JCL DD
statement Explanation

BSDS Specifies the bootstrap data set (BSDS). Optional. Another ddname can
be used for allocating the BSDS, in which case the ddname must be
specified as a parameter on the FUNC=OPEN. Using the ddname in this
way causes the BSDS to be used. If the ddname is omitted on the
FUNC=OPEN request, the processing uses DDNAME=BSDS when
attempting to open the BSDS.

ARCHIVE Specifies the archive log data sets to be read. Required if an archive data
set is to be read and the BSDS is not available (the BSDS DD statement
is omitted). Should not be present if the BSDS DD statement is present.
If multiple data sets are to be read, specify them as concatenated data
sets in ascending log RBA order.

ACTIVEn (Where n is a number from 1 to 7). Specifies an active log data set that is
to be read. Should not be present if the BSDS DD statement is present. If
only one data set is to be read, use ACTIVE1 as the ddname. If multiple
active data sets are to be read, use DDNAMEs ACTIVE1, ACTIVE2, ...
ACTIVEn to specify the data sets. Specify the data sets in ascending log
RBA order with ACTIVE1 being the lowest RBA and ACTIVEn being the
highest.

Chapter 21. Reading log records 767



Table 115. JCL DD statements for DB2 stand-alone log services in a data-sharing
environment

JCL DD
statement Explanation

GROUP If you are reading logs from every member of a data sharing group in
LRSN sequence, you can use this statement to locate the BSDSs and log
data sets needed. You must include the data set name of one BSDS in
the statement. DB2 can find the rest of the information from that one
BSDS.

All members’ logs and BSDS data sets must be available. If you use this
DD statement, you must also use the LRSN and RANGE parameters on
the OPEN request. The GROUP DD statement overrides any MxxBSDS
statements that are used.

(DB2 searches for the BSDS DD statement first, then the GROUP
statement, and then the MxxBSDS statements. If you want to use a
particular member’s BSDS for your own processing, you must call that
DD statement something other than BSDS.)

MxxBSDS Names the BSDS data set of a member whose log must participate in the
read operation and whose BSDS is to be used to locate its log data sets.
Use a separate MxxBSDS DD statement for each DB2 member. xx can be
any two valid characters.

Use these statements if logs from selected members of the data sharing
group are required and the BSDSs of those members are available. These
statements are ignored if you use the GROUP DD statement.

For one MxxBSDS statement, you can use either RBA or LRSN values to
specify a range. If you use more than one MxxBSDS statement, you must
use the LRSN to specify the range.

MyyARCHV Names the archive log data sets of a member to be used as input. yy can
be any two valid characters that do not duplicate any xx used in an
MxxBSDS DD statement.

Concatenate all required archived log data sets of a given member in
time sequence under one DD statement. Use a separate MyyARCHV DD
statement for each member. You must use this statement if the BSDS
data set is unavailable or if you want only some of the log data sets
from selected members of the group.

If you name the BSDS of a member by a MxxBSDS DD statement, do not
name the log of the same member by an MyyARCHV statement. If both
MyyARCHV and MxxBSDS identify the same log data sets, the service
request fails. MyyARCHV statements are ignored if you use the GROUP
DD statement.

768 Administration Guide



Table 115. JCL DD statements for DB2 stand-alone log services in a data-sharing
environment (continued)

JCL DD
statement Explanation

MyyACTn Names the active log data set of a member to be used as input. yy can
be any two valid characters that do not duplicate any xx used in an
MxxBSDS DD statement. Use the same characters that identify the
MyyARCHV statement for the same member; do not use characters that
identify the MyyARCHV statement for any other member. n is a number
from 1 to 16. Assign values of n in the same way as for ACTIVEn DD
statements.

You can use this statement if the BSDS data sets are unavailable or if
you want only some of the log data sets from selected members of the
group.

If you name the BSDS of a member by a MxxBSDS DD statement, do not
name the log of the same member by an MyyACTn statement.
MyyACTn statements are ignored if you use the GROUP DD statement.

The DD statements must specify the log data sets in ascending order of log RBA
(or LRSN) range. If both ARCHIVE and ACTIVEn DD statements are included, the
first archive data set must contain the lowest log RBA or LRSN value. If the JCL
specifies the data sets in a different order, the job terminates with an error return
code with a GET request that tries to access the first record breaking the sequence.
If the log ranges of the two data sets overlap, this is not considered an error;
instead, the GET function skips over the duplicate data in the second data set and
returns the next record. The distinction between out-of-order and overlap is as
follows:
v An out-of-order condition occurs when the log RBA or LRSN of the first record

in a data set is greater than that of the first record in the following data set.
v An overlap condition occurs when the out-of-order condition is not met but the

log RBA or LRSN of the last record in a data set is greater than that of the first
record in the following data set.

Gaps within the log range are permitted. A gap is created when one or more log
data sets containing part of the range to be processed are not available. This can
happen if the data set was not specified in the JCL or is not reflected in the BSDS.
When the gap is encountered, an exception return code value is set, and the next
complete record after the gap is returned.

Normally, the BSDS DD name is supplied in the JCL, rather than a series of
ACTIVE DD names or a concatenated set of data sets for the ARCHIVE ddname.

This is commonly referred to as “running in BSDS mode”. PSPI

Related reference

“Stand-alone log OPEN request” on page 771
“Stand-alone log GET request” on page 772
“Stand-alone log CLOSE request” on page 774

Data sharing members that participate in a read
The number of data sharing members whose logs participate in a particular read
request varies based on what statements are used.

Chapter 21. Reading log records 769



PSPI If you use the GROUP DD statement, then the determinant is the number
of members in the group. Otherwise, the number of different xxs and yys used in
the Mxx and Myy type DD statements.

For example, assume you need to read log records from members S1, S2, S3, S4, S5
and S6.
v S1 and S2 locate their log data sets by their BSDSs.
v S3 and S4 need both archive and active logs.
v S4 has two active log data sets.
v S5 needs only its archive log.
v S6 needs only one of its active logs.

You then need the following DD statements to specify the required log data sets:

MS1BSDS MS2BSDS MS3ARCHV
MS3ACT1

MS4ARCHV
MS4ACT1
MS4ACT2

MS5ARCHV MS6ACT1

The order of the DD statements in the JCL stream is not important. PSPI

Registers and return codes
DB2 uses registers to store important information and return codes to help you
determine the status of stand-alone log activity.

PSPI The request macro invoking these services can be used by reentrant
programs. The macro requires that register 13 point to an 18-word save area at
invocation. In addition, registers 0, 1, 14, and 15 are used as work and linkage
registers. A return code is passed back in register 15 at the completion of each
request. When the return code is nonzero, a reason code is placed in register 0.
Return codes identify a class of errors, while the reason code identifies a specific
error condition of that class. The stand-alone log return codes are shown in the
following table.

Table 116. Stand-alone log return codes

Return code Explanation

0 Successful completion.

4 Exception condition (for example, end of file), not an error. This return
code is not applicable for OPEN and CLOSE requests.

8 Unsuccessful completion due to improper user protocol.

12 Unsuccessful completion. Error encountered during processing of a valid
request.

The stand-alone log services invoke executable macros that can execute only in
24-bit addressing mode and reference data below the 16-MB line. User-written

applications should be link-edited as AMODE(24), RMODE(24). PSPI

770 Administration Guide



Stand-alone log OPEN request
A stand-alone log OPEN request initializes the stand-alone log services.

PSPI The syntax for the stand-alone log OPEN request is:
{label} DSNJSLR FUNC=OPEN

,LRSN=YES³NO
,DDNAME= address or (Reg. 2-12) optional
,RANGE= address or (Reg. 2-12) optional
,PMO=CI or RECORD

Keyword
Explanation

FUNC=OPEN
Requests the stand-alone log OPEN function.

LRSN
Tells DB2 how to interpret the log range:

NO: the log range is specified as RBA values. This is the default.
YES: the log range is specified as LRSN values.

DDNAME
Specifies the address of an 8-byte area which contains the ddname to be
used as an alternate to a ddname of the BSDS when the BSDS is opened,
or a register that contains that address.

RANGE
Specifies the address of a 12-byte area containing the log range to be
processed by subsequent GET requests against the request block generated
by this request, or a register that contains that address.

If LRSN=NO, then the range is specified as RBA values. If LRSN=YES,
then the range is specified as LRSN values.

The first 6 bytes contain the low RBA or LRSN value. The first complete
log record with an RBA or LRSN value equal to or greater than this value
is the record accessed by the first log GET request against the request
block. The last 6 bytes contain the end of the range or high RBA or LRSN
value. An end-of-data condition is returned when a GET request tries to
access a record with a starting RBA or LRSN value greater than this value.
A value of 6 bytes of X’FF’ indicates that the log is to be read until either
the end of the log (as specified by the BSDS) or the end of the data in the
last JCL-specified log data set is encountered.

If BSDS, GROUP, or MxxBSDS DD statements are used for locating the log
data sets to be read, the RANGE parameter is required. If the JCL
determines the log data sets to be read, the RANGE parameter is optional.

PMO Specifies the processing mode. You can use OPEN to retrieve either log
records or control intervals in the same manner. Specify PMO=CI or
RECORD, then use GET to return the data you have selected. The default
is RECORD.

The rules remain the same regarding control intervals and the range
specified for the OPEN function. Control intervals must fall within the
range specified on the RANGE parameter.

Output
Explanation

GPR 1 General-purpose register 1 contains the address of a request block on

Chapter 21. Reading log records 771



return from this request. This address must be used for subsequent
stand-alone log requests. When no more log GET operations are required
by the program, this request block should be used by a FUNC=CLOSE
request.

GPR 15
General-purpose register 15 contains a return code upon completion of a
request. For nonzero return codes, a corresponding reason code is
contained in register 0.

GPR 0 General-purpose register 0 contains a reason code associated with a
nonzero return code in register 15.

Log control interval retrieval

You can use the PMO option to retrieve log control intervals from archive log data
sets. DSNJSLR also retrieves log control intervals from the active log if the DB2
system is not active. During OPEN, if DSNJSLR detects that the control interval
range is not within the archive log range available (for example, the range purged
from BSDS), an error condition is returned.

Specify CI and use GET to retrieve the control interval you have chosen. The rules
remain the same regarding control intervals and the range specified for the OPEN
function. Control intervals must fall within the range specified on the RANGE
parameter.

Log control interval format

A field in the last 7 bytes of the control interval, offset 4090, contains a 7-byte
timestamp. This field reflects the time at which the control interval was written to
the active log data set. The timestamp is in store clock (STCK) format and is the

high-order 7 bytes of the 8-byte store clock value. PSPI

Related reference

“JCL DD statements for DB2 stand-alone log services” on page 767
“Registers and return codes” on page 770

Stand-alone log GET request
A stand-alone log GET request returns a pointer to a buffer that contains the next
log record, based on position information in the request block.

PSPI A log record is available in the area pointed to by the request block until
the next GET request is issued. At that time, the record is no longer available to
the requesting program. If the program requires reference to a log record’s content
after requesting a GET of the next record, the program must move the record into
a storage area that is allocated by the program.

The first GET request, after a FUNC=OPEN request that specified a RANGE
parameter, returns a pointer in the request feedback area. This points to the first
record with a log RBA value greater than or equal to the low log RBA value
specified by the RANGE parameter. If the RANGE parameter was not specified on
the FUNC=OPEN request, then the data to be read is determined by the JCL
specification of the data sets. In this case, a pointer to the first complete log record
in the data set that is specified by the ARCHIVE, or by ACTIVE1 if ARCHIVE is
omitted, is returned. The next GET request returns a pointer to the next record in
ascending log RBA order. Subsequent GET requests continue to move forward in

772 Administration Guide



log RBA sequence until the function encounters the end of RANGE RBA value, the
end of the last data set specified by the JCL, or the end of the log as determined
by the bootstrap data set.

The syntax for the stand-alone log GET request is:
{label} DSNJSLR FUNC=GET

,RBR=(Reg. 1-12)

Keyword
Explanation

FUNC=GET
Requests the stand-alone log GET function.

RBR Specifies a register that contains the address of the request block this
request is to use. Although you can specify any register between 1 and 12,
using register 1 (RBR=(1)) avoids the generation of an unnecessary load
register and is therefore more efficient. The pointer to the request block
(that is passed in register n of the RBR=(n) keyword) must be used by
subsequent GET and CLOSE function requests.

Output
Explanation

GPR 15
General-purpose register 15 contains a return code upon completion of a
request. For nonzero return codes, a corresponding reason code is
contained in register 0.

GPR 0 General-purpose register 0 contains a reason code associated with a
nonzero return code in register 15.

Reason codes 00D10261 - 00D10268 reflect a damaged log. In each case, the RBA of
the record or segment in error is returned in the stand-alone feedback block field
(SLRFRBA). A damaged log can impair DB2 restart; special recovery procedures
are required for these circumstances.

Information about the GET request and its results is returned in the request
feedback area, starting at offset X’00’. If there is an error in the length of some
record, the control interval length is returned at offset X’0C’ and the address of the
beginning of the control interval is returned at offset X’08’.

On return from this request, the first part of the request block contains the
feedback information that this function returns. Mapping macro DSNDSLRF
defines the feedback fields which are shown in the following table. The
information returned is status information, a pointer to the log record, the length
of the log record, and the 6-byte log RBA value of the record.

Table 117. Stand-alone log get feedback area contents

Field name
Hex
offset

Length
(bytes) Field contents

SLRFRC 00 2 Log request return code

SLRFINFO 02 2 Information code returned by dynamic allocation.
Refer to the z/OS SPF job management publication
for information code descriptions

SLRFERCD 04 2 VSAM or dynamic allocation error code, if register
15 contains a nonzero value.

SLRFRG15 06 2 VSAM register 15 return code value.

Chapter 21. Reading log records 773



Table 117. Stand-alone log get feedback area contents (continued)

Field name
Hex
offset

Length
(bytes) Field contents

SLRFFRAD 08 4 Address of area containing the log record or CI

SLRFRCLL 0C 2 Length of the log record or RBA

SLRFRBA 0E 6 Log RBA of the log record

SLRFDDNM 14 8 ddname of data set on which activity occurred

PSPI

Related tasks

Chapter 20, “Recovering from different DB2 for z/OS problems,” on page 621
Related reference

“JCL DD statements for DB2 stand-alone log services” on page 767
“Registers and return codes” on page 770

Stand-alone log CLOSE request
A stand-alone log CLOSE request deallocates any log data sets that were
dynamically allocated by previous processing. In addition, all storage that was
obtained by previous functions, including the request block that is specified on the
request, is freed.

PSPI The syntax for the stand-alone log CLOSE request is:
{label} DSNJSLR FUNC=CLOSE

,RBR=(Reg. 1-12)

Keyword
Explanation

FUNC=CLOSE
Requests the CLOSE function.

RBR Specifies a register that contains the address of the request block that this
function uses. Although you can specify any register between 1 and 12,
using register 1 (RBR=(1)) avoids the generation of an unnecessary load
register and is therefore more efficient.

Output
Explanation

GPR 15
Register 15 contains a return code upon completion of a request. For
nonzero return codes, a corresponding reason code is contained in register
0.

GPR 0 Register 0 contains a reason code that is associated with a nonzero return
code that is contained in register 15. The only reason code used by the
CLOSE function is 00D10030.

PSPI

774 Administration Guide



Related reference

“JCL DD statements for DB2 stand-alone log services” on page 767
“Registers and return codes” on page 770
Related information

00D10030 (DB2 Codes)

Sample application that uses stand-alone log services
Sample segments of an assembler program use three stand-alone log services
(OPEN, GET, and CLOSE) to process one log record.

PSPI For example:

Chapter 21. Reading log records 775

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.codes/00d10030.htm#d10030


PSPI

Reading log records with the log capture exit routine
You can use the log capture exit routine to capture DB2 log data in real time. You
can use this exit routine online while DB2 is running.

TSTJSLR5 CSECT...
OPENCALL EQU *

LA R2,NAME GET BSDS DDNAME ADDRESS
LA R3,RANGER GET ADDRESS OF RBA RANGE
DSNJSLR FUNC=OPEN,DDNAME=(R2),RANGE=(R3)
LTR R15,R15 CHECK RETURN CODE FROM OPEN
BZ GETCALL OPEN OK, DO GET CALLS...

*****************************************************************
* HANDLE ERROR FROM OPEN FUNCTION AT THIS POINT *
*****************************************************************...
GETCALL EQU *

DSNJSLR FUNC=GET,RBR=(R1)
C R0,=X'00D10020' END OF RBA RANGE ?
BE CLOSE YES, DO CLEANUP
C R0,=X'00D10021' RBA GAP DETECTED ?
BE GAPRTN HANDLE RBA GAP
LTR R15,R15 TEST RETURN CODE FROM GET
BNZ ERROR...

...
******************************************************************
* PROCESS RETURNED LOG RECORD AT THIS POINT. IF LOG RECORD *
* DATA MUST BE KEPT ACROSS CALLS, IT MUST BE MOVED TO A *
* USER-PROVIDED AREA. *
******************************************************************

USING SLRF,1 BASE SLRF DSECT
L R8,SLRFFRAD GET LOG RECORD START ADDR
LR R9,R8
AH R9,SLRFRCLL GET LOG RECORD END ADDRESS
BCTR R9,R0...

CLOSE EQU *
DSNJSLR FUNC=CLOSE,RBR=(1)...

NAME DC C'DDBSDS'
RANGER DC X'00000000000000000005FFFF'...

DSNDSLRB
DSNDSLRF
EJECT

R0 EQU 0
R1 EQU 1
R2 EQU 2...
R15 EQU 15

END

Figure 74. Excerpts from a sample program using stand-alone log services

776 Administration Guide



PSPI This installation exit routine presents log data to a log capture exit routine
when the data is written to the DB2 active log. Do not use this exit routine for
general purpose log auditing or tracking. The IFI interface is designed for this
purpose.

The log capture exit routine executes in an area of DB2 that is critical for
performance. As such, it is primarily intended as a mechanism to capture log data
for recovery purposes. In addition, the log capture exit routine operates in a very
restrictive z/OS environment, which severely limits its capabilities as a stand-alone
routine.

To capture log records with the log capture exit routine:

You must write an exit routine (or use the one that is provided by the preceding
program offering) that can be loaded and called under the various processing

conditions and restrictions that are required by this exit routine. PSPI

Related concepts

“Contents of the log” on page 749
“Log capture routines” on page 837
Related tasks

“Reading log records with IFI” on page 762
Related reference

“The physical structure of the log” on page 755

Chapter 21. Reading log records 777



778 Administration Guide



Part 4. Appendixes

© Copyright IBM Corp. 1982, 2009 779



780 Administration Guide



Appendix A. Exit routines

DB2 provides installation-wide exit points to the routines that you provide. These
exit routines are described in the following sections:
v “Connection routines and sign-on routines”
v “Access control authorization exit routines” on page 792
v “Edit routines” on page 812
v “Validation routines” on page 815
v “Date and time routines” on page 819
v “Conversion procedures” on page 822
v “Field procedures” on page 825
v “Log capture routines” on page 837
v “Routines for dynamic plan selection in CICS” on page 840
v “Routine for the CICS transaction invocation stored procedure” on page 840.

Connection routines and sign-on routines
Your DB2 subsystem has two exit points for authorization routines, one in
connection processing and one in sign-on processing. Both exit points perform
crucial steps in the assignment of values to primary IDs, secondary IDs, and SQL
IDs.

PSPI You must have a routine for each exit. Default routines are provided for
both. DSN3@ATH is the default exit routine for connections, and DSN3@SGN is
the default exit routine for sign-ons.

If your installation has a connection exit routine and you plan to use CONNECT
with the USER/USING clause, you should examine your exit routine and take the
following into consideration. DB2 does not update the following to reflect the user
ID and password that are specified in the USER/USING clause of the CONNECT
statement:
v The security-related control blocks that are normally associated with the thread
v The address space that your exit routine can access

This topic describes the interfaces for those routines and the functions that they
provide. If you want to use secondary authorization IDs, you must replace the
default routines with the sample routines, or with routines of your own.

“General guidelines for writing exit routines” on page 840 applies to these
routines. One exception to the description of execution environments is that the

routines execute in non-cross-memory mode. PSPI

© Copyright IBM Corp. 1982, 2009 781



Related tasks

“Using sample connection and sign-on exit routines for CICS transactions” on page
281
“Specifying connection and sign-on routines”
“Debugging connection and sign-on routines” on page 790
Related reference

“Processing of connection requests” on page 277
“Processing of sign-on requests” on page 279
“Sample connection and sign-on routines”
“Exit parameter list for connection and sign-on routines” on page 784

Specifying connection and sign-on routines
Your connection routine must have a CSECT name and entry point of DSN3@ATH.
The connection routine’s load module name can be the same, or it can be a
different name. Your sign-on routine must have a CSECT name and entry point of
DSN3@SGN. The sign-on routine’s load module name can be the same, or it can be
a different name.

PSPI You can use an ALIAS statement of the linkage editor to provide the
entry-point name.

Default routines exist in library prefix.SDSNLOAD. To use your routines instead,
place your routines in library prefix.SDSNEXIT. You can use the install job
DSNTIJEX to assemble and link-edit the routines and place them in the new
library. If you use any other library, you might need to change the STEPLIB or
JOBLIB concatenations in the DB2 start-up procedures.

You can combine both routines into one CSECT and load module if you wish, but
the module must include both entry points, DSN3@ATH and DSN3@SGN. Use
standard assembler and linkage editor control statements to define the entry
points. DB2 loads the module twice at startup, by issuing the z/OS LOAD macro
first for entry point DSN3@ATH and then for entry point DSN3@SGN. However,
because the routines are reentrant, only one copy of each remains in virtual

storage. PSPI

Related concepts

“Connection routines and sign-on routines” on page 781
Related reference

“Processing of connection requests” on page 277
“Processing of sign-on requests” on page 279
“Sample connection and sign-on routines”
“Exit parameter list for connection and sign-on routines” on page 784

Sample connection and sign-on routines
The sample exit routines provide examples of the functions and interfaces that are
described in this topic. These exit routines are provided in source code as members
of prefix.SDSNSAMP.

PSPI To examine the sample connection routine, list or assemble member
DSN3SATH. To examine the sample sign-on routine, list or assemble member

782 Administration Guide



DSN3SSGN. Because both routines use features that are not available in Assembler
XF, you must use Assembler H to assemble them.

Change required for some CICS users: You must change the sample sign-on exit
routine (DSN3SSGN) before assembling and using it, if the following conditions
are true:
v You attach to DB2 with an AUTH parameter other than AUTH=GROUP.
v You have the RACF list-of-groups option active.
v You have transactions whose initial primary authorization ID is not defined to

RACF

To change the sample sign-on exit routine (DSN3SSGN), perform the following
steps:
1. Locate the following statement in DSN3SSGN as a reference point:

SSGN035 DS OH BLANK BACKSCAN LOOP REENTRY

2. Locate the following statement, which comes after the reference point:
B SSGN037 ENTIRE NAME IS BLANK, LEAVE

3. Replace the statement with the following statement:
B SSGN090 NO GROUP NAME... BYPASS RACF CHECK

By changing the statement, you avoid an abend with SQLCODE -922. The routine
with the new statement provides no secondary IDs unless you use AUTH=GROUP.

PSPI

Related concepts

“Connection routines and sign-on routines” on page 781
Related tasks

“Using sample connection and sign-on exit routines for CICS transactions” on page
281
“Specifying connection and sign-on routines” on page 782
“Debugging connection and sign-on routines” on page 790

When connection and sign-on routines are taken
Different local processes enter the access control procedure at different points,
depending on the environment from which they originate. Different criteria apply
to remote requests.

PSPI The following processes go through connection processing only:
v Requests that originate in TSO foreground and background (including online

utilities and requests through the call attachment facility)
v JES-initiated batch jobs
v Requests through started task control address spaces (from the MVS START

command)

The following processes go through connection processing, and can later go
through the sign-on exit:
v The IMS control region
v The CICS recovery coordination task
v DL/I batch
v Requests through the Resource Recovery Services attachment facility (RRSAF)

Appendix A. Exit routines 783



The following processes go through sign-on processing:
v Requests from IMS-dependent regions (including MPP, BMP, and Fast Path)

v CICS transaction subtasks. PSPI

Exit parameter list for connection and sign-on routines
The parameter list of connection and sign-on routines contains pointers to other
information, such as the authorization ID list.

PSPI The following diagram shows how the parameter list points to other
information.

Connection routines and sign-on routines use 28 more bytes of the exit parameter
list EXPL than other routines. The following table shows the entire list of
connection routines and sign-on routines. The exit parameter list is described by
macro DSNDEXPL.

Table 118. Exit parameter list for connection routines and sign-on routines

Name Hex offset Data type Description

EXPLWA 0 Address Address of a 8192-byte work area to be
used by the routine.

Figure 75. How a connection or sign-on parameter list points to other information

784 Administration Guide



Table 118. Exit parameter list for connection routines and sign-on routines (continued)

Name Hex offset Data type Description

EXPLWL 4 Signed 4-byte
integer

Length of the work area, in bytes; value is
8192.

EXPLRSV1 8 Signed 2-byte
integer

Reserved.

EXPLRC1 A Signed 2-byte
integer

Not used.

EXPLRC2 C Signed 4-byte
integer

Not used.

EXPLARC 10 Signed 4-byte
integer

Access return code. Values can be:
0 Access allowed; DB2 continues

processing.
12 Access denied; DB2 terminates

processing with an error.

EXPLSSNM 14 Character, 8
bytes

DB2 subsystem name, left justified; for
example, ’DSN ’.

EXPLCONN 1C Character, 8
bytes

Connection name for requesting location.

EXPLTYPE 24 Character, 8
bytes

Connection type for requesting location. For
DDF threads, the connection type is
’DIST ’.

EXPLSITE 2C Character, 16
bytes

For SNA protocols, this is the location name
of the requesting location or <luname>. For
TCP/IP protocols, this is the dotted decimal
IP address of the requester.

EXPLLUNM 3C Character, 8
bytes

For SNA protocols, this is the locally known
LU name of the requesting location. For
TCP/IP protocols, this is the character
string ’TCPIP’.

EXPLNTID 44 Character, 17
bytes

For SNA protocols, the fully qualified
network name of the requesting location.
For TCP/IP protocols, this field is reserved.

EXPLVIDS DB2 version identifier

PSPI

Related concepts

“Connection routines and sign-on routines” on page 781
Related tasks

“Using sample connection and sign-on exit routines for CICS transactions” on page
281
“Specifying connection and sign-on routines” on page 782
“Debugging connection and sign-on routines” on page 790

Authorization ID parameter list for connection and sign-on
routines

An authorization ID list contains information that is specific to connection routines
and sign-on routines.

Appendix A. Exit routines 785

||||



The following table includes the authorization ID list for a connection or sign-on
exit routine.

PSPI

Table 119. Authorization ID list for a connection or sign-on exit routine

Name Hex offset Data type Description

AIDLPRIM 0 Character, 8
bytes

Primary authorization ID for input and
output; see descriptions in the text.

AIDLCODE 8 Character, 2
bytes

Control block identifier.

AIDLTLEN A Signed 2-byte
integer

Total length of control block.

AIDLEYE C Character, 4
bytes

Eyecatcher for block, “AIDL”.

AIDLSQL 10 Character, 8
bytes

On output, the current SQL ID.

AIDLSCNT 18 Signed 4-byte
integer

Number of entries allocated to secondary
authorization ID list. Always equal to 1012.

AIDLSAPM 1C Address For a sign-on routine only, the address of
an 8-character additional authorization ID.
If RACF is active, the ID is the user ID’s
connected group name. If the address was
not provided, the field contains zero.

AIDLCKEY 20 Character, 1 byte Storage key of the ID pointed to by
AIDLSAPM. To move that ID, use the
“move with key” (MVCK) instruction,
specifying this key.

AIDLRSV1 21 Character, 3
bytes

Reserved

AIDLRSV2 24 Signed 4-byte
integer

Reserved

AIDLACEE 28 Signed 4-byte
integer

The address of the ACEE structure, if
known; otherwise, zero

AIDLRACL 2C Signed 4-byte
integer

Length of data area returned by RACF, plus
4 bytes

AIDLRACR 30 26 bytes Reserved

AIDLSEC 4A Character,
maximum x 8
bytes

List of the secondary authorization IDs, 8
bytes each

PSPI

Input values for connection routines
The input values for a connection routine are as follows:

v
PSPI The initial primary authorization ID for a local request can be obtained

from the z/OS address space extension block (ASXB).
The ASXB contains at most only a seven-character value. That is always
sufficient for a TSO user ID or a user ID from an z/OS JOB statement, and the
ASXB is always used for those cases.

786 Administration Guide



For CICS, IMS, or other started tasks, z/OS can also pass an eight-character ID.
If an eight-character ID is available, and if its first seven characters agree with
the ASXB value, then DB2 uses the eight-character ID. Otherwise it uses the
ASXB value.
You can alter the sample exit routine to use the ASXB value always. For
instructions, see “Processing in sample connection and sign-on routines” on page
788.
If RACF is active, the field used contains a verified RACF user ID; otherwise, it
contains blanks.

v The primary ID for a remote request is the ID passed in the conversation attach
request header (SNA FMH5) or in the DRDA SECCHK command.

v The SQL ID contains blanks.

v The list of secondary IDs contains blanks. PSPI

Input values for sign-on routines
The input values for a sign-on routine are as follows:

v
PSPI The initial primary ID depends on the sign-on method.

v The SQL ID and all secondary IDs contain blanks.
v Field AIDLSAPM in the authorization ID list can contain the address of an

8-character additional authorization ID, obtained by the CICS attachment facility
using the RACROUTE REQUEST=EXTRACT service with the requester’s user
ID. If RACF is active, this ID is the RACF-connected group name from the ACEE
corresponding to the requester’s user ID. Otherwise, this field contains blanks.
IMS does not pass this parameter.

v Field AIDLCKEY contains the storage key of the identifier pointed to by
AIDLSAPM. To move that ID, use the “move with key” (MVCK) instruction,
specifying this key.

v Field AIDLACEE contains the ACEE address only for a sign-on through the
CICS attachment facility and only when the CICS RCT uses AUTH=GROUP.

PSPI

Expected output for connection and sign-on routines
DB2 uses the output values of the primary ID, the SQL ID, and the secondary IDs.
Your routines can set these IDs to any value that is an SQL short identifier.

PSPI Important: If your identifier does not meet the 8-character criteria, the
request fails. Therefore, when necessary, add blanks to the end of short identifiers
to ensure that they meet the criteria.

If the values that are returned are not blank, DB2 interprets them in the following
ways:
v The primary ID becomes the primary authorization ID.
v The list of secondary IDs, down to the first blank entry or to a maximum of 1012

entries, becomes the list of secondary authorization IDs. The space allocated for
the secondary ID list is only large enough to contain the maximum number of
authorization IDs. This number is in field AIDLSCNT.
Attention: If you allow more than 1012 secondary authorization IDs, abends
and storage overlays can occur.

Appendix A. Exit routines 787



v The SQL ID is checked to see if it is the same as the primary or one of the
secondary IDs. If it is not, the connection or sign-on process fails. Otherwise, the
validated ID becomes the current SQL ID.

If the returned value of the primary ID is blank, DB2 takes the following steps:
v In connection processing, the default ID that is defined when DB2 is installed

(UNKNOWN AUTHID on panel DSNTIPP) is substituted as the primary
authorization ID and the current SQL ID. The list of secondary IDs is set to
blanks.

v Sign-on processing abends. No default value exists for the primary ID.

If the returned value of the SQL ID is blank, DB2 makes it equal to the value of the
primary ID. If the list of secondary IDs is blank, it remains blank. No default
secondary IDs exist.

Your routine must also set a return code in word 5 of the exit parameter list to
allow or deny access (field EXPLARC). By those means you can deny the
connection altogether. The code must have one of the values that are shown in
Table 120.

Table 120. Required return code in EXPLARC

Value Meaning

0 Access allowed; continue processing.

12 Access denied; terminate.

Any other value will cause an abend. PSPI

Processing in sample connection and sign-on routines
The sample routines provided by IBM can serve as models for the processing that
is required in connection routines and sign-on routines.

PSPI Recommendation: Consider using the sample routines as a starting point
when you write your own routines.

Both the sample connection routine (DSN3SATH) and the sample sign-on routine
have similar sections for setup, constants, and storage areas. Both routines set
values of the primary ID, the SQL ID, and the secondary IDs in three numbered
sections.

In the sample connection routine (DSN3SATH): The three sections of the sample
connection routine perform the following functions:

Section 1
Section 1 provides the same function as in the default connection routine.
It determines whether the first character of the input primary ID has a
value that is greater than blank (hex 40), and performs the following
operations:
v If the first character is greater than hex 40, the value is not changed.
v If the first character is not greater than hex 40, the value is set according

to the following rules:
– If the request is from a TSO foreground address space, the primary ID

is set to the logon ID.
– If the request is not from a TSO foreground address space, the

primary ID is set to the job user ID from the JES job control table.

788 Administration Guide



– If no primary ID is located, Section 2 is bypassed.

Section 2
At the beginning of Section 2, you can restore one commented-out
instruction, which then truncates the primary authorization ID to 7
characters. (The instruction is identified by comments in the code.)

Section 2 next tests RACF options and makes the following changes in the
list of secondary IDs, which is initially blank:
v If RACF is not active, the list remains blank.
v If the list of groups option is not active, but an ACEE exists, the

connected group name is copied as the only secondary ID.
v If the list of groups option is active, the list of group names from the

ICHPCGRP block is copied into AIDLSEC in the authorization ID list.

Section 3
Section 3 performs the following steps:
1. The SQL ID is set equal to the primary ID.
2. If the TSO data set name prefix is a valid primary or secondary ID, the

SQL ID is replaced with the TSO data set name prefix. Otherwise, the
SQL ID remains set to the primary ID.

In the sample sign-on routine (DSN3SSGN): The three sections of the sample
sign-on routine perform the following functions:

Section 1
Section 1 does not change the primary ID.

Section 2
Section 2 sets the SQL ID to the value of the primary ID.

Section 3
Section 3 tests RACF options and makes the following changes in the list
of secondary IDs, which is initially blank:
v If RACF is not active, the list remains blank.
v If the list of groups option is active, section 3 attempts to find an

existing ACEE from which to copy the authorization ID list.
– If AIDLACEE contains a valid ACEE, it is used.

Otherwise, look for a valid ACEE chained from the TCB or from the
ASXB or, if no usable ACEE exists, issue RACROUTE to have RACF
build an ACEE structure for the primary ID.
Copy the list of group names from the ACEE structure into the
secondary authorization list.

– If the exit issued RACROUTE to build an ACEE, another RACROUTE
macro is issued and the structure is deleted.

v If a list of secondary authorization IDs has not been built, and
AIDLSAPM is not zero, the data that is pointed to by AIDLSAPM is

copied into AIDLSEC. PSPI

Performance considerations for connection and sign-on
routines

Your sign-on exit routine is part of the critical path for transaction processing in
IMS and CICS, so you want it to execute as quickly as possible.

Appendix A. Exit routines 789



PSPI Avoid writing SVC calls like GETMAIN, FREEMAIN, and ATTACH. Also
avoid I/O operations to any data set or database. To improve performance, you
might be able to delete the list of groups that process in Section 3 of the sample
sign-on exit routine.

The sample sign-on exit routine can issue the RACF RACROUTE macro with the
default option SMC=YES. If another product issues RACROUTE with SMC=NO, a
deadlock might occur.

Your routine can also enhance the performance of later authorization checking.
Authorization for dynamic SQL statements is checked first for the CURRENT
SQLID, then for the primary authorization ID, and then for the secondary
authorization IDs. If you know that a user’s privilege most often comes from a
secondary authorization ID, then set the CURRENT SQLID to this secondary ID

within your exit routine. PSPI

Related concepts

“General guidelines for writing exit routines” on page 840

Debugging connection and sign-on routines
The diagnostic aids can assist you in debugging connection exit routines and
sign-on exit routines.

PSPI Subsystem support identify recovery: The identify ESTAE recovery routine,
DSN3IDES, generates the VRADATA entries that are shown in Table 121. The last
entry, key VRAIMO, is generated only if the abend occurred within the connection
exit routine.

Table 121. VRADATA entries that are generated by DSN3IDES

VRA
keyname

Key hex
value Data length Content

VRAFPI 22 8 Constant ’IDESTRAK’

VRAFP 23 24 v 32-bit recovery tracking flags

v 32-bit integer AGNT block unique identifier

v AGNT block address

v AIDL block address

v Initial primary authorization ID as copied from
ASXBUSER

VRAIMO 7C 10 v Connection exit load module load point address

v Connection exit entry point address

v Offset of failing address in the PSW from the
connection exit entry point address

Subsystem support sign-on recovery: The sign-on ESTAE recovery routine
DSN3SIES generates the VRADATA entries that are shown in Table 122 on page
791. The last entry, key VRAIMO, is generated only if the abend occurred within
the sign-on exit routine.

790 Administration Guide



Table 122. VRADATA entries that are generated by DSN3SIES

VRA
keyname

Key hex
value Data length Content

VRAFPI 22 8 Constant ’SIESTRAK’

VRAFP 23 20 v Primary authorization ID (CCBUSER)
v AGNT block address
v Identify-level CCB block address
v Sign-on-level CCB block address

VRAIMO 7C 10 v Sign-on exit load module load point address

v Sign-on exit entry point address

v Offset of failing address in the PSW from the
sign-on exit entry point address

Diagnostics for connection exit routines and sign-on exit routines: The connection
(identify) recovery routine and the sign-on recovery routine provide diagnostics for
the corresponding exit routines. The diagnostics are produced only when the
abend occurs in the exit routine. The following diagnostics are available:

Dump title
The component failing module name is “DSN3@ATH” for a connection exit
or “DSN3@SGN” for a sign-on exit.

z/OS and RETAIN symptom data
SDWA symptom data fields SDWACSCT (CSECT/) and SDWAMODN
(MOD/) are set to “DSN3@ATH” or “DSN3@SGN”, as appropriate.

Summary dump additions
The AIDL, if addressable, and the SADL, if present, are included in the
summary dump for the failing allied agent. If the failure occurred in
connection or sign-on processing, the exit parameter list (EXPL) is also
included. If the failure occurred in the system services address space, the

entire SADL storage pool is included in the summary dump. PSPI

Related concepts

“Connection routines and sign-on routines” on page 781
Related reference

“Processing of connection requests” on page 277
“Processing of sign-on requests” on page 279
“Sample connection and sign-on routines” on page 782
“Exit parameter list for connection and sign-on routines” on page 784

Session variables in connection and sign-on routines
DB2 supplies default session variables. In addition, the connection exit routine and
the sign-on exit routine support up to 10 more session variables. You can define
these additional session variables and use them to provide information to
applications by using the GETVARIABLE function.

PSPI The session variable structure: The connection exit routine and the sign-on
exit routine point to the session variable structure (DSNDSVS). DSNDSVS specifies
the maximum number of entries in the session array, the actual number of entries
in the session array, and a pointer to the session variable array. The default value
for the actual number of session variables is zero.

Appendix A. Exit routines 791



Defining session variables: To define session variables, use the session variable
array (DSNDSVA) to list up to 10 session variables as name and value pairs. The
session variables that you establish in the connection exit routine and the sign-on
exit routine are defined in the SESSION schema. The values that the exit routine
supplies in the session variable array replace the previous values.

Example: The session variable array that is shown in Table 123 lists six session
variables.

Table 123. Sample session variable array

Name Value

default_database DATAXM

default_driver PZN4Y7

location Kyoto

member_of GROUP_42

filename report.txt

account_number A1-X142783

The unqualified names are defined as VARCHAR(128), and the values are defined
as VARCHAR(255). The exit routines must provide these values in Unicode CCSID

1208. PSPI

For more information about the default session variables that DB2 supplies, see
DB2 SQL Reference

Access control authorization exit routines
You can provide your own access control authorization exit routine by using an
exit point that DB2 provides. Alternatively, after you carefully consider several
important factors, you might choose to let RACF perform DB2 authorization
checking for you.

PSPI

Is the access control authorization exit routine right for you?

Using the RACF (Security Server for z/OS) to perform access control is not the
best choice for every customer. Consider the following points before choosing
RACF to perform access control:
v If you want the database administrators to manage security, integration with

DB2 is very important. Using RACF access control provides less integration with
DB2. In most of these cases, DB2 authorization provides advantages.

v If you want security administrators to manage security, integration with the
security server is more important. In most of these cases, using RACF for access
control provides advantages. Furthermore, if you want a security group to
define authorization and a centralized security control point, RACF access
control is an excellent match.

If you change from DB2 authorization to RACF access control, you must change to
RACF methods for some authorization techniques, and you must understand how
DB2 and RACF work together. Expect to make the following changes when you
implement RACF access control:

792 Administration Guide



v Plan to use RACF facilities (such as groups and patterns) more.
v Plan to use patterns instead of individual item access profiles and permissions.
v Plan to use DB2 roles, RACF groups, or both, instead of secondary authorization

IDs, which are not implemented in RACF. OWNER generally must be a valid
group or a DB2 role.

v Plan to use DB2 roles for BINDAGENT processing. BINDAGENT based on
secondary authorizations IDs is not implemented in RACF.

v Understand how SET CURRENT SQLID works with RACF. SET CURRENT
SQLID can set a qualifier, but does not change authorization.

v Know that authorizations are not dropped when objects are dropped or
renamed.

v Be aware of the relationship between objects and revoked privileges. Plans and
packages are not invalidated when authorizations are revoked. Views are not
dropped when authorizations are revoked.

How the access control authorization routine works

Your routine specifies whether the authorization checking should all be done by
RACF only, or by both RACF and DB2. (Also, the routine can be called and still let
all checking be performed by DB2.)

When DB2 invokes the routine, it passes three possible functions to the routine:
v Initialization (DB2 startup)
v Authorization check
v Termination (DB2 shutdown)

The bulk of the work in the routine is for authorization checking. When DB2 must
determine the authorization for a privilege, it invokes your routine. The routine
determines the authorization for the privilege and then indicates to DB2 whether
the privilege is authorized or not authorized, or whether DB2 should do its own
authorization check, instead.

When you write an access control authorization routine, use the general guidelines
for writing exit routines, with the following exceptions to the environment
description:
v The routine executes in non-cross-memory mode during initialization and

termination (XAPLFUNC of 1 or 3).
v During authorization checking, the routine can execute under a TCB or SRB in

cross-memory or non-cross-memory mode.

Bypass of the access control authorization routine

In the following situations, the access control authorization routine is not called to
check authorization:
v The authorization ID that DB2 uses to determine access has installation

SYSADM or installation SYSOPR authority (where installation SYSOPR authority
is sufficient to authorize the request). This authorization check is made strictly
within DB2. For example, if the execute privilege is being checked on a package,
DB2 performs the check on the plan owner that this package is in. If the plan
owner has installation SYSADM, the routine is not called.

v DB2 security has been disabled. (You can disable DB2 security by specifying NO
on the USE PROTECTION field of installation panel DSNTIPP).

v Authorization has been cached from a prior check.

Appendix A. Exit routines 793

|
|
|

|
|



v In a prior invocation of the exit routine, the routine indicated that it should not
be called again.

v GRANT statements.

The routine executes in the ssnmDBM1 address space of DB2.

PSPI

Related reference

“Parameter list for access control authorization routines” on page 799
Related information

DB2 RACF Access Control Module Guide

Specifying access control authorization routines
Your access control authorization routine must have a CSECT name and an entry
point of DSNX@XAC. The load module name or alias name must also be
DSNX@XAC. A default routine with this name and entry point exists in library
prefix.SDSNLOAD.

PSPI To use your routine instead, place it in the prefix.SDSNEXIT library. Use
installation job DSNTIJEX to assemble and link-edit the routine and to place it in
the prefix.SDSNEXIT library. If you use any other library, you might need to change
the STEPLIB or JOBLIB concatenations in the DB2 start-up procedures.

The source code for the default routine is in prefix.SDSNSAMP as DSNXSXAC. You
can use it to write your own exit routine. To assemble it, you must use Assembler
H.

RACF provides a sample exit routine DSNXRXAC, which is shipped with DB2. It

can be found in prefix.SDSNSAMP. PSPI

The default access control authorization routine
The default exit routine returns a code to the DB2 authorization module. The code
indicates that a user-defined access control authorization exit routine is not
available. DB2 then performs normal authorization checking and does not attempt
to invoke this exit routine again.

When access control authorization routines are taken
DB2 can take the access control authorization routine when it starts up, shuts
down, or performs an authorization check on a privilege.

PSPI The access control authorization routine is taken in the following three
instances:

At DB2 startup
This exit routine is taken when DB2 starts to allow the external
authorization checking application to perform any required setup prior to
authorization checking. For example, loading authorization profiles into
storage is a required setup task. DB2 uses the reason code that the exit
routine sets during startup to determine how to handle exception
situations.

794 Administration Guide

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/


When an authorization check is to be performed on a privilege
This exit routine is taken when DB2 accesses security tables in the catalog
to check authorization on a privilege. The exit routine is taken only if none
of the prior invocations have indicated that the exit routine must not be
called again.

At DB2 shutdown
This exit routine is taken when DB2 is stopping, to let the external
authorization checking application perform its cleanup before DB2 stops.

PSPI

Considerations for access control authorization routines
You need to take additional factors into consideration when you use the access
control authorization exit routine.
Related concepts

“General guidelines for writing exit routines” on page 840

When DB2 cannot provide an ACEE
Sometimes DB2 cannot provide an ACEE. For example, if you do not use external
security in CICS (that is, SEC=NO is specified in the DFHSIT), CICS does not pass
an ACEE to the CICS attachment facility. The ACEE address is passed for CICS
transactions, if available.

PSPI When DB2 does not have an ACEE, it passes zeros in the XAPLACEE field.
If this happens, your routine can return a 4 in the EXPLRC1 field, and let DB2
handle the authorization check.

DB2 does not pass the ACEE address for IMS transactions. The ACEE address is
passed for CICS transactions, if available.

DB2 does pass the ACEE address when it is available for DB2 commands that are
issued from a logged on z/OS console. DB2 does not pass the ACEE address for
DB2 commands that are issued from a console that is not logged on, or for the
START DB2 command, or commands issued automatically during DB2 startup.

PSPI

Authorization IDs and ACEEs
XAPL has two authorization ID fields, XAPLUPRM (the primary authorization ID)
and XAPLUCHK (the authorization ID that DB2 uses to perform the
authorization). These two fields might have different values.

PSPI The ACEE passed in XAPLACEE is that of the primary authorization ID,
XAPLUPRM.

The implications of the XAPLUPRM and XAPLUCHK relationship need to be
clearly understood. XAPLUCHK, the authorization ID that DB2 uses to perform
authorization may be the primary authorization ID (XAPLUPRM), a secondary
authorization ID, or another authorization ID such as a package owner.

If the RACF access control module is used, the following rules apply:
v RACF uses the ACEE of the primary authorization ID (XAPLUPRM) to perform

authorization.

Appendix A. Exit routines 795



v Secondary authorization IDs are not implemented in RACF. DB2 roles or RACF
groups should be used instead.

Examples: The following examples show how the rules apply:
v A plan or package may be bound successfully by using the privileges of the

binder (XAPLUPRM). Then only the EXECUTE privilege on the plan or package
is needed to execute it. If at some point this plan or package is marked invalid
(for instance, if a table it depends upon is dropped and recreated), the next
execution of it will cause an AUTOBIND, which will usually fail. In this case,
AUTOBIND checks the runner for the necessary authorization, but the runner
does not have the required privileges for a successful rebind. However, if the
owner of the plan or package is a DB2 role, and the role has the necessary
authorization, AUTOBIND will succeed.

v If the OWNER on the BIND command is based on secondary authorization IDs,
which are not supported by RACF. RACF groups should be used instead.

v SET CURRENT SQLID can set a qualifier, but it cannot change authorization.
v The DYNAMICRULES settings have a limited effect on which authorization ID

is checked. Only the primary authorization ID and secondary IDs that are valid
RACF groups for this user are considered. For dynamic statements with the
DYNAMICRULES(BIND) option to work, for example, the package owner must
be the primary authorization ID or one of the RACF groups of the user who
executes the statements.
However, the DYNAMICRULES settings will have the desired effect on which
authorization is checked if the authorization is based on a DB2 role. For
example, the dynamic statements with the DYNAMICRULES(BIND) option will
work if a DB2 role is the owner of a plan or package or the definer of a stored
procedure.

v User-defined function and stored procedure authorizations involve several
authorization IDs, such as implementer, definer, invoker, and so forth. Only the
primary authorization ID and secondary IDs that are DB2 roles or RACF groups

are considered. PSPI

Invalid and inoperative plans and packages
In DB2, when a privilege that is required by a plan or package is revoked, the plan
or package is invalidated. DB2 can automatically rebind an invalidated plan or
package if proper privileges are granted.

PSPI However, if you use an authorization access control routine, it cannot tell
DB2 that a privilege is revoked. Therefore, DB2 cannot know to invalidate the plan
or package.

If the revoked privilege is the EXECUTE privilege on a user-defined function, DB2
marks the plan or package inoperative, instead of invalid; you will need to
manually rebind the inoperative plan or package.

If a privilege that the plan or package depends on is revoked, and if you want to
invalidate the plan or package or make it inoperative, you must use the SQL
GRANT statement to grant the revoked privilege and then use the SQL REVOKE

statement to revoke it. PSPI

Automatic rebind with DB2 roles
If you execute a plan or package that is marked invalid, DB2 will attempt to rebind
it.

796 Administration Guide

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|



If the plan or package contains static SQL statements, DB2 will check the owner for
the required authorization for a successful rebind. If RACF access control is used
and if the owner of the plan or package is a DB2 role, DB2 will be able to complete
the rebind.

DB2 roles for the DYNAMICRULES(BIND) Option
The DYNAMICRULES(BIND) option provides the flexibility for you to specify the
owner of a plan or a package that DB2 checks for the required authorization for
dynamic SQL statements. Because RACF does not support secondary IDs, you can
use DB2 roles to exploit this flexibility.

To use DB2 roles with the DYNAMICRULES(BIND) option, the owner of the plan
or package must be a DB2 role. Similarly, for the define and invoke behavior of the
DYNAMICRULES BIND options, the definer or invoker must be a DB2 role. In
order to make the owner of the plan, package, or stored procedure a DB2 role, you
need to create the plan, package, or stored procedure in a trusted context that is
defined with the ROLE AS OBJECT OWNER AND QUALIFIER clause.

Using DB2 roles for BINDAGENT
You can bind plans and packages on the behalf of the owner by using the RACF
BINDAGENT privilege through a DB2 role.

PSPI RACF provides support for BINDAGENT through DB2 roles. To use
BINDAGENT, you must specify a role, instead of a secondary ID, as the owner of
a plan or package and perform the BIND task within a trusted context. Suppose
you want role ROLEOWNER to own package COLLECTION01.PACKAGE01, but
will have role ROLEBINDAGENT perform the BIND on behalf of role
ROLEOWNER.

To have ROLEBINDAGENT perform the BIND on behalf of ROLEOWNER:
1. Create role ROLEOWNER and role ROLEBINDAGENT. Make sure that the

ROLEOWNER role is the owner of the package and that the binder is
associated with the ROLEBINDAGENT role and will bind the package.

2. Create trusted context CTX1 with the WITH ROLE AS OBJECT OWNER AND
QUALIFIER clause. Specify ROLEBINDAGENT as the default role and set
JOB=BINDPKG (which is the bind job name) and SYSTEM AUTHID=UBINDER
(which is the binder’s userid).

3. Create a RACF profile V91A.ROLEOWNER.BINDAGENT to control
BINDAGENT access

4. Permit role ROLEBINDAGENT access to profile
V91A.ROLEOWNER.BINDAGENT by issuing a RACF PERMIT command:
PERMIT V91A.ROLEOWNER.BINDAGENT ID(*) +

WHEN(CRITERIA(SQLROLE('ROLEBINDAGENT'))) CL(MDSNSM)

5. Set up appropriate RACF profiles and give role ROLEOWNER the BINDADD
and CREATE IN privileges on the package collection:
PERMIT V91A.BINDADD ID(*) CL(MDSNTB) +

WHEN(CRITERIA(SQLROLE('ROLEOWNER')))

PERMIT V91A.COLLECTION01.CREATEIN ID(*) CL(MDSNTB) +
WHEN(CRITERIA(SQLROLE('ROLEOWNER')))

6. Permit role ROLEOWNER all the required privileges for executing SQL
statements in the application as shown in the following example:
PERMIT V91A.USRT007.TABL01.SELECT ID(*) CL(MDSNTB) +

WHEN(CRITERIA(SQLROLE('ROLEOWNER')))

Appendix A. Exit routines 797

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|



7. Have UBINDER submit bind job BINDPKG that will run in trusted context
CTX1 with role ROLEBINDAGENT and perform the BIND on behalf of role
ROLEOWNER:
BIND PACKAGE(COLLECTION01) MEMBER(PACKAGE01) ACTION(REP) OWNER(ROLEOWNER)

RACF performs the BINDAGENT check on binder UBINDER, its role
ROLEBINDAGENT, and its RACF groups. It then perform all the remaining
checks on role ROLEOWNER and allows the BIND command to complete.

PSPI

View authorization
DB2 passes specific base table information to an access control authorization exit
(ACAE) routine. This information helps the routine to effectively control data
access through views.

For the DELETE and INSERT privileges, DB2 passes the schema and name of the
base table in the XAPLBSCM and XAPLBSNAM fields, along with the information
about the view itself. For the UPDATE privilege, DB2 additionally passes the name
of the base table column in the XAPLBCOL field that is being updated.

For any view in a nested stack, DB2 passes the base table information in addition
to that of the view itself. All the intermediate views between the base table and the
view that is being processed are ignored.

In the cases when the view is not updatable, the view information will be repeated
in the XAPLBSCM, XAPLBSNAM, and XAPLBCOL fields. For example, if the view
is specified with the Instead of Trigger, the base table of the view is not being
updated using the view because all processing is based on the content of the
trigger package. The view information is repeated in the base table fields to
facilitate any view authorization check.

When a view is created, DB2 checks whether the owner of the view has the
INSERT, UPDATE and DELETE privileges on the underlying base table. DB2
performs this check to determine what privileges should be granted to the view
owner. This processing occurs whether or not an ACAE routine, like the RACF
access control module, is in effect. If an ACAE routine is in effect, the result of the
DB2 authorization check does not impact the creation of the view or the privileges
that the view owner gets on the view. In the case when the view is created based
on another view, the base view information will be repeated in the XAPLBSCM,
XAPLBSNAM, and XAPLBCOL fields.

Dropping views
When a privilege that is required to create a view is revoked, the view is dropped.
Similar to the revocation of plan privileges, such an event is not communicated to
DB2 by the authorization checking routine. If you want DB2 to drop the view
when a privilege is revoked, you must use the SQL statements GRANT and
REVOKE.

Caching of EXECUTE on plans, packages, and routines
The results of authorization checks on the EXECUTE privilege for plans are not
cached when those checks are performed by the exit routine. The results of
authorization checks on the EXECUTE privilege for packages and routines are
cached if the package and routine authorization caching is enabled on your system.

798 Administration Guide

|
|
|

|

|
|
|

|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|



PSPI If this privilege is revoked in the exit routine, the cached information is not
updated to reflect the revoke. You must use the GRANT statement and the

REVOKE statement to update the cached information. PSPI

Caching of dynamic SQL statements
Dynamic statements can be cached when they have passed the authorization
checks if the dynamic statement caching is enabled on your system.

PSPI If the privileges that this statement requires are revoked from the
authorization ID that is cached with the statement, this cached statement must be
invalidated. If the privilege is revoked in the exit routine this does not happen, and
you must use the SQL statements GRANT and REVOKE to refresh the cache.

PSPI

Resolution of user-defined functions
The create timestamp for the user-defined function must be older than the bind
timestamp for the package or plan in which the user-defined function is invoked.
If DB2 authorization checking is in effect, and DB2 performs an automatic rebind
on a plan or package that invokes a user-defined function, any user-defined
functions that were created after the original BIND or REBIND of the invoking
plan or package are not candidates for execution.

PSPI If you use an access control authorization exit routine, some user-defined
functions that were not candidates for execution before the original BIND or
REBIND of the invoking plan or package might become candidates for execution
during the automatic rebind of the invoking plan or package. If a user-defined
function is invoked during an automatic rebind, and that user-defined function is
invoked from a trigger body and receives a transition table, the form of the
invoked function that DB2 uses for function selection includes only the columns of
the transition table that existed at the time of the original BIND or REBIND of the

package or plan for the invoking program. PSPI

Creating materialized query tables
When a materialized query table is created, a CRTVUAUTT authorization check is
performed. The CRTVUAUTT check is used to determine whether the creator of a
materialized query table can provide the required SELECT privileges on base
tables to the owner of the materialized query table.

PSPI If the owner of the materialized query table has the required privileges, the
CRTVUAUTT authorization check proves redundant. However, the check is
performed before the owner of the materialized query table’s privileges are
determined. Therefore, if the materialized query table owner holds the necessary
privileges and the creator of the materialized query table does not, the
CRTVUAUTT check can produce unwanted error messages.

For an ACA exit routine to suppress unwanted error messages during the creation

of materialized query tables, XAPLFSUP is turned on. PSPI

Parameter list for access control authorization routines
The parameter list of access control authorization routines contains pointers to
other information, such as the work area and the authorization ID list.

Appendix A. Exit routines 799



PSPI The following diagram shows how the parameter list points to other
information.

The work area (4096 bytes) is obtained once during the startup of DB2 and only
released when DB2 is shut down. The work area is shared by all invocations to the
exit routine.

At invocation, registers are set as described in “Registers at invocation for exit
routines” on page 841, and the authorization checking routine uses the standard
exit parameter list (EXPL) described there. Table 124 shows the exit-specific
parameter list, described by macro DSNDXAPL. Field names indicated by an
asterisk (*) apply to initialization, termination, and authorization checking. Other
fields apply to authorization checking only.

Table 124. Parameter list for access control authorization routines

Name
Hex
offset Data type

Input or
output Description

XAPLCBID* 0 Character,
2-bytes

Input Control block identifier; value X’216A’.

XAPLLEN * 2 Signed,
2-byte
integer

Input Length of XAPL; value X’100’ (decimal 256).

XAPLEYE * 4 Character, 4
bytes

Input Control block eye catcher; value “XAPL”.

XAPLLVL * 8 Character, 8
bytes

Input DB2 version and level; for example, “VxRxMx ”.

XAPLSTCK * 10 Character, 8
bytes

Input The store clock value when the exit is invoked. Use this to
correlate information to this specific invocation.

XAPLSTKN * 18 Character, 8
bytes

Input STOKEN of the address space in which XAPLACEE resides.
Binary zeroes indicate that XAPLACEE is in the home address
space.

Register 1
Address of EXPL

Address of XAPL
authorization
checking list

EXPL

Address of work area

Length of work area

Return code--EXPLRC1

Reason code--EXPLRC2

Work area
(4096 bytes)

Parameter list for DSNX@XAC routine

Control block information

DB2 level information

Store clock value at exit invocation

STOKEN of ACEE address space

Primary authorization ID

ACEE address of primary authorization ID

.

..

Figure 76. How an authorization routine’s parameter list points to other information

800 Administration Guide



Table 124. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLACEE * 20 Address, 4
bytes

Input ACEE address:

v Of the DB2 address space (ssnmDBM1) when XAPLFUNC is
1 or 3.

v Of the primary authorization ID associated with this agent
when XAPLFUNC is 2.

There may be cases were an ACEE address is not available
for an agent. In such cases this field contains binary zeroes.

XAPLUPRM * 24 Character, 8
bytes

Input One of the following IDs:

v When XAPLFUNC is 1 or 3, it contains the User ID of the
DB2 address space (ssnmDBM1)

v When XAPLFUNC is 2, it contains the primary authorization
ID associated with the agent

XAPLFUNC * 2C Signed,
2-byte
integer

Input Function to be performed by exit routine:

1 Initialization

2 Authorization Check

3 Termination

XAPLGPAT * 2E Character, 4
bytes

Input DB2 group attachment name for data sharing. The DB2
subsystem name if not data sharing.

XAPLUCKT 32 Character, 1
byte

Input Type of the authorization ID on which DB2 performs the check:

’ ’ An authorization ID

L A role

XAPLONRT 33 Character, 1
byte

Input Type of the authorization ID that owns the object in
XAPLOWNR:

’ ’ An authorization ID

L A role

XAPLRSV1 34 Character, 4
bytes

Reserved

XAPLPRIV 38 Signed,
2-byte
integer

Input DB2 privilege being checked.

Appendix A. Exit routines 801

|
|

|

|

|||



Table 124. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLTYPE 3A Character, 1 Input DB2 object type:

B Buffer pool

C Collection

D Database

E Distinct typeDistinct type

F User-defined functionUser-defined function

J JAR

K Package

L Role

M Schema

N Trusted context

O Stored procedure

P Application plan

Q Sequence

R Table space

S Storage group

T Table

U System privilege

V View

XAPLFLG1 3B Character, 1 Input The highest-order bit, bit 8, (XAPLCHKS) is on if the secondary
IDs associated with this authorization ID (XAPLUCHK) are
included in DB2’s authorization check. If it is off, only this
authorization ID is checked.

Bit 7 (XAPLUTB) is on if this is a table or view privilege
(SELECT, INSERT, and so on) and if SYSCTRL is not sufficient
authority to perform the specified operation on a table or view.
SYSCTRL does not have the privilege of accessing user data
unless the privilege is specifically granted to it.

Bit 6 (XAPLAUTO) is on if this is an AUTOBIND.

Bit 5 (XAPLCRVW) is on if the installation parameter DBADM
CREATE AUTH is set to YES.

Bit 4 (XAPLRDWR) is on if the privilege is a write privilege. If
the privilege is a read-only privilege, bit 4 is off.

Bit 3 (XAPLFSUP) is on to suppress error messages from the
CRTVUAUTT authorization check during the creation of a
materialized query table. These error messages are caused by
intermediate checks that do not affect the final result.

Bit 2 (XAPLRAOO) is on if this operation is in a trusted context
that is defined with the ROLE AS OBJECT OWNER clause.

Bit 1 (XAPLIMPD) is on if authorization checking involves an
implicitly created database.

802 Administration Guide

||

||

|
|

|
|
|
|

|
|

|
|



Table 124. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLUCHK 3C Address, 4
bytes

Input Address to the authorization ID on which DB2 performs the
check. It could be the primary, secondary, or some other ID.
This is a VARCHAR(128) field.

XAPLOBJN 40 Address, 4
bytes

Input Address to the unqualified name of the object with which the
privilege is associated. This is a VARCHAR(128) field.It is one
of the following names:

Name Length

Application plan
8

Buffer pool
8

Collection
VARCHAR(128)

Database
8

Distinct type
VARCHAR(128)

JAR VARCHAR(128)

Package
VARCHAR(128)

Role VARCHAR(128)

Schema
VARCHAR(128)

Sequence
VARCHAR(128)

Storage group
VARCHAR(128)

Table VARCHAR(128)

Table space
8

Trusted context
VARCHAR(128)

User-defined function
VARCHAR(128)

View VARCHAR(128)

For special system privileges (SYSADM, SYSCTRL, and so on)
this field might contain binary zeroes.

XAPLOWNQ 44 Address, 4
bytes

Input Address of the object owner (creator) or object qualifier. The
contents of this parameter depends on either the privilege
being checked or the object. This is a VARCHAR(128) field.

If this field is not applicable, it contains binary zeros.

Appendix A. Exit routines 803

||

|
|



Table 124. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLREL1 48 Address, 4
bytes

Input Address of other related information 1. The contents of this
parameter depend on either the privilege being checked or the
object. This is a VARCHAR(128) field.

If this field is not applicable, it contains binary zeros.

XAPLREL2 4C Address, 4
bytes

Input Address of other related information 2. The contents of this
parameter depends on the privilege being checked. This is a
VARCHAR(128) field.

If this field is not applicable, it contains binary zeros.

XAPLDBSP 50 Address, 4
bytes

Input Address of database information. This information is passed for
CREATE VIEW and CREATE ALIAS.

If this field is not applicable, it contains binary zeros.

XAPLOWNR 54 Address, 4
bytes

Input Address of the object owner. This is a VARCHAR(128) field.

If this field is not applicable, it contains binary zeros.

XAPLROLE 58 Address, 4
bytes

Input Address of the user’s role when operating in a trusted context.
If this field is not applicable, it contains binary zeros.

XAPLOONM 5C Address, 4
byte

Input Address of other object name

XAPLOOON 60 Address, 4
byte

Input Address of other object owner

XAPLBSCM 64 Address, 4
byte

Input Address of base table qualifier of a view or repeated view
qualifier

XAPLBNAM 68 Address, 4
byte

Input Address of base table name of a view or repeated view name

XAPLBCOL 6C Address, 4
byte

Input Address of base table column name of a view or repeated view
column name

XAPLRSV2 70 Character, 49
bytes

Reserved.

XAPLOOTP A1 Character, 1
byte

Input Other object type or the owner of the base table of a view

XAPLOOOT A2 Character, 1
byte

Input Other object owner type or the owner type of the base table of
a view

XAPLFROM A3 Character, 1
byte

Input Source of the request:

S Remote request that uses DB2 private protocol.

’ ’ Not a remote request that uses DB2 private protocol.

DB2 authorization restricts remote requests that use
DB2 private protocol to the SELECT, UPDATE,
INSERT and DELETE privileges.

XAPLXBTS A4 Timestamp,
10 bytes

Input The function resolution timestamp. Authorizations received
prior to this timestamp are valid.

Applicable to functions and procedures.

804 Administration Guide

|||
|
||

|

|
|

||

||

|||
|
||
|

|||
|
||

|||
|
||
|

|||
|
||

|||
|
||

|||
|
||
|



Table 124. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLONWT AE Character, 1
byte

Output Information required by DB2 from the exit routine for the
UPDATE and REFERENCES table privileges:

Value Explanation

’ ’ Requester has privilege on the entire table

* Requester has privilege on just this column

XAPLRSV3 AF Character, 1
byte

Reserved.

XAPLDIAG B0 Character, 80
bytes

Output Information returned by the exit routine to help diagnose
problems.

Table 125 has database information for determining authorization for creating a
view. The address to this parameter list is in XAPLREL2.

Table 125. Parameter list for access control authorization routines—database information

Name Hex offset Data type
Input or
output Description

XAPLDBNP 0 Address Input Address of information for the next
database. X’00000000’ indicates no next
database exists.

XAPLDBNM 4 Character, 8 bytes Input Database name.

XAPLDBDA C Character, 1 byte Output
Required by DB2 from the exit routine for
CREATE VIEW.

A value of Y and EXPLRC1=0 indicate that
the user ID in field XAPLUCHK has
database administrator authority on the
database in field XAPLDBNM.

When the exit checks if XAPLUCHK can
create a view for another authorization ID, it
first checks for SYSADM or SYSCTRL
authority. If the check is successful, no more
checking is necessary because SYSCTRL
authority (for non-user tables) or SYSADM
authority satisfies the requirement that the
view owner has the SELECT privilege for all
tables and views that the view might be
based on. This is indicated by a blank value
and EXPLRC1=0.

If the authorization ID does not have
SYSADM or SYSCTRL authority, the exit
checks if the view creator has DBADM on
each database of the tables that the view is
based on because the DBADM authority on
the database of the base table satisfies the
requirement that the view owner has the
SELECT privilege for all base tables in that
database.

XAPLDBIM D Character, 1 bytes Input A value of ’Y’ indicates that the database is
implicitly created.

Appendix A. Exit routines 805

|||||
|



Table 125. Parameter list for access control authorization routines—database information (continued)

Name Hex offset Data type
Input or
output Description

XAPLRSV5 E Character, 2 bytes none Reserved.

XAPLOWNQ, XAPLREL1 and XAPLREL2 might further qualify the object or may
provide additional information that can be used in determining authorization for
certain privileges. These privileges and the contents of XAPLOWNQ, XAPLREL1
and XAPLREL2 are shown in Table 126.

Table 126. Related information for certain privileges

Privilege
Object type
(XAPLTYPE) XAPLOWNQ XAPLREL1 XAPLREL2 XAPLOWNR

0263 (USAGE) E Address of
schema name

Address of
distinct type
owner

Contains
binary zeroes

Address of
distinct type
owner

0064 (EXECUTE)
0265 (START)
0266 (STOP)
0267 (DISPLAY)

F Address of
schema name

Address of
user-defined
function owner

Contains
binary zeroes

Address of
user-defined
function owner

0263 (USAGE) J Address of
schema name

Address of JAR
owner

Contains
binary zeroes

Address of JAR
owner

0064 (EXECUTE) K Address of
collection ID

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0065 (BIND) K Address of
collection ID

Address of
package owner

Contains
binary zeroes

Address of
package owner

0073 (DROP) K Address of
collection ID

Contains binary
zeroes

Address of
version ID

Contains binary
zeroes

0097 (COMMENT) K Address of
collection ID

Address of
package owner

Contains
binary zeroes

Address of
package owner

0225 (COPY ON PKG) K Address of
collection ID

Address of
package owner

Contains
binary zeroes

Address of
package owner

0228 (ALLPKAUT) K Address of
collection ID

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0229 (SUBPKAUT) K Address of
collection ID

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0252 (ALTERIN)
0097 (COMMENT)
0252 (DROPIN)

M Address of
schema name

Address of
object owner

Contains
binary zeroes

Address of object
owner

0064 (EXECUTE)
0265 (START)
0266 (STOP)
0267 (DISPLAY)

O Address of
schema name

Address of
procedure
owner

Contains
binary zeroes

Address of
procedure owner

0065 (BIND) P Address of plan
owner

Contains binary
zeroes

Contains
binary zeroes

Address of plan
owner

0097 (COMMENT) P Address of plan
owner

Contains binary
zeroes

Contains
binary zeroes

Address of plan
owner

0061 (ALTER)
0263 (USAGE)

Q Address of
schema name

Address of
sequence name

Contains
binary zeroes

Contains binary
zeroes

0061 (ALTER) R Address of
database name

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

806 Administration Guide

|||||

||

|
|
|||||

|||
|
|
|
|

|
|
|
|
|

|
|
|
|

||
|
|
|
|

|
|
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|
|
|

||
|
|
|
|
|
|
|

|
|
|
|

||
|
|
|
|

|
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|
|
||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|



Table 126. Related information for certain privileges (continued)

Privilege
Object type
(XAPLTYPE) XAPLOWNQ XAPLREL1 XAPLREL2 XAPLOWNR

0073 (DROP) R Address of
database name

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0087 (USE) R Address of
database name

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0053 (UPDATE)
0054 (REFERENCES)

T Address of table
owner qualifier

Address of
column name, if
applicable

Address of
database name

Address of table
owner

0022 (CATMAINT
CONVERT)

0050 (SELECT)
0051 (INSERT)
0052 (DELETE)
0055 (TRIGGER)
0056 (CREATE INDEX)
0061 (ALTER)
0073 (DROP)
0075 (LOAD)
0076 (CHANGE NAME

QUALIFIER)
0097 (COMMENT)
0098 (LOCK)
0233 (ANY TABLE

PRIVILEGE)
0251 (RENAME)
0275 (REFRESH)

T Address of table
owner qualifier

Contains binary
zeroes

Address of
database name

Address of table
owner

0020 (DROP ALIAS)
0104 (DROP SYNONYM)

T Address of table
owner qualifier

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0103 (ALTER INDEX)
0105 (DROP INDEX)
0274 (COMMENT ON

INDEX)
0283 (RENAME INDEX)

T Address of table
owner qualifier

Contains binary
zeroes

Address of
database name

Address of index
owner

0227 (BIND AGENT) U Address of
package owner

Contains binary
zeroes

Contains
binary zeroes

Address of
package owner

0015 (CREATE ALIAS) U Contains binary
zeroes

Contains binary
zeroes

Address of
database name,
if the alias is
on a table

Contains binary
zeroes

0053 (UPDATE) V Address of view
owner qualifier

Address of
column name, if
applicable

Address of the
database name
of the view’s
base table, if
applicable

Address of view
owner

0051 (INSERT)
0052 (DELETE)

V Address of view
owner qualifier

Contains binary
zeroes

Address of the
database name
of the view’s
base table, if
applicable

Address of view
owner

Appendix A. Exit routines 807

|

|
|
|||||

|||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|
|
||
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|

|
|
||
|
|
|
|
|
|
|

|
|
|
|
|

||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|
|

|||
|
|
|
|

|
|
|
|
|

|
|

|
|
||
|
|
|
|
|
|
|
|

|
|



Table 126. Related information for certain privileges (continued)

Privilege
Object type
(XAPLTYPE) XAPLOWNQ XAPLREL1 XAPLREL2 XAPLOWNR

0050 (SELECT)
0073 (DROP)
0097 (COMMENT)
0233 (ANY TABLE

PRIVILEGE)

V Address of view
owner qualifier

Contains binary
zeroes

Contains
binary zeroes

Address of view
owner

0055 (TRIGGER) V Address of view
owner qualifier

Contains binary
zeroes

Contains
binary zeroes

Address of view
owner

0061 (ALTER) V Address of view
owner qualifier

Contains binary
zeroes

Contains
binary zeroes

Address of view
owner

The data types and field lengths of the information shown in Table 126 on page
806 is shown in Table 127.

Table 127. Data types and field lengths

Resource name or other Type Length

Database name Character 8

Table name qualifier Character VARCHAR(128)

Object name qualifier Character VARCHAR(128)

Column name Character VARCHAR(128)

Collection ID Character VARCHAR(128)

Plan owner Character VARCHAR(128)

Package owner Character VARCHAR(128)

Package version ID Character VARCHAR(64)

Schema name Character VARCHAR(128)

Distinct typeowner Character VARCHAR(128)

JAR owner Character VARCHAR(128)

User-defined function owner Character VARCHAR(128)

Procedure owner Character VARCHAR(128)

View name qualifier Character VARCHAR(128)

Sequence owner Character VARCHAR(128)

Sequence name Character VARCHAR(128)

PSPI

Expected output for access control authorization routines
Your authorization exit routine is expected to return certain fields when it is called.
If an unexpected value is returned in any of these fields an abend occurs.

PSPI

The output fields are indicated in Table 124 on page 800. Register 3 points to the
field in error, and abend code 00E70009 is issued.

808 Administration Guide

|

|
|
|||||

|
|
|
|
|

||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|
|



Table 128. Output fields for the access control authorization routine

Field Required or optional

EXPLRC1 Required

EXPLRC2 Optional

XAPLONWT Required only for UPDATE and
REFERENCES table privileges

XAPLDIAG Optional

PSPI

Handling return codes
Place return codes from the exit routine in the EXPL field named EXPLRC1.

PSPI EXPLRC1 must have one of the values that are shown in Table 129 during
initialization.

Table 129. Required values in EXPLRC1 during initialization

Value Meaning

0 Initialization successful.

12 Unable to service request; don’t call exit again.

DB2 does not check EXPLRC1 on return from the exit routine.

Make sure that EXPLRC1 has one of the values that are shown in Table 130 during
the authorization check.

Table 130. Required values in EXPLRC1 during authorization check

Value Meaning

0 Access permitted.

4 Unable to determine; perform DB2 authorization checking.

8 Access denied.

12 Unable to service request; don’t call exit routine again.

See “Exception processing” on page 810 for an explanation of how the EXPLRC1
value affects DB2 processing. On authorization failures, the return code is included
in the IFCID 0140 trace record.

PSPI

Handling reason codes
The reason code (EXPLRC2) that the exit routine returns after initialization
determines how DB2 processes the return code (EXPLRC1) that the exit returns
during initialization and authorization checking.

Appendix A. Exit routines 809



PSPI The reason codes are shown in Table 131.

Table 131. Reason codes during initialization

Value Meaning

-1 Identifies the default exit routine shipped with DB2. If you replace or
modify the default exit, you should not use this value.

16 Indicates to DB2 that it should terminate if the exit routine returns
EXPLRC1=12, an invalid EXPLRC1 or abnormally terminates during
initialization or authorization checking. When the exit routine sets the
reason code to 16, DB2 does an immediate shutdown, without waiting
for tasks to end. For long-running tasks, an immediate shutdown can
mean that recovery times are long.

Other Ignored by DB2.

Field EXPLRC2 lets you put in any code that would be of use in determining why
the authorization check in the exit routine failed. On authorization failures, the

reason code is included in the IFCID 0140 trace record. PSPI

Exception processing
During initialization or authorization checking, DB2 issues diagnostic message
DSNX210I to the operator’s console, if one of the following conditions occur:

PSPI

v The authorization exit returns a return code of 12 or an invalid return code.
v The authorization exit abnormally terminates.

Additional actions that DB2 performs depend on the reason code that the exit
returns during initialization. Table 132 summarizes these actions.

Table 132. How an error condition affects DB2 actions during initialization and authorization
checking

Exit result
Reason code of 16 returned by
exit routine during initialization

Reason code other than 16 or -1
returned by exit routine during
initialization1

Return code 12 v The task2 abnormally
terminates with reason code
00E70015

v DB2 terminates

v The task2 abnormally
terminates with reason code
00E70009

v DB2 switches to DB2
authorization checking

Invalid return code v The task2 abnormally
terminates with reason code
00E70015

v DB2 terminates

v The task2 abnormally
terminates with reason code
00E70009

v DB2 switches to DB2
authorization checking

Abnormal termination
during initialization

DB2 terminates DB2 switches to DB2
authorization checking

810 Administration Guide



Table 132. How an error condition affects DB2 actions during initialization and authorization
checking (continued)

Exit result
Reason code of 16 returned by
exit routine during initialization

Reason code other than 16 or -1
returned by exit routine during
initialization1

Abnormal termination
during authorization
checking

You can use the subsystem
parameter AEXITLIM3 to control
how DB2 and the exit behave.

Example: If you set AEXITLIM
to 10, the exit routine continues
to run after the first 10 abnormal
terminations. On the eleventh
abnormal termination, the exit
stops and DB2 terminates.

You can use the subsystem
parameter AEXITLIM to control
how DB2 and the exit behave.

Example: If you set AEXITLIM
to 10, the exit routine continues
to run after the first 10 abnormal
terminations. On the eleventh
abnormal termination, the exit
routine stops and DB2 switches
to DB2 authorization checking.

Note:

1. During initialization, DB2 sets a value of -1 to identify the default exit. The user exit
routine should not set the reason code to -1.

2. During initialization, the task is DB2 startup. During authorization checking, the task is
the application.

3. AEXITLI (authorization exit limit) can be updated online.

PSPI

Debugging access control authorization routines
You can use IFCID 0314 to provide a trace record of the parameter list on return
from the exit routine. You can activate this trace by turning on performance trace
class 22.

Determining whether the access control authorization routine
is active

To determine whether the exit routine or DB2 is performing authorization checks:

PSPI

1. Start audit trace class 1.
2. Choose a DB2 table on which to issue a SELECT statement and an

authorization ID to perform the SELECT. The authorization ID must not have
the DB2 SELECT privilege or the external security system SELECT privilege on
the table.

3. Use the authorization ID to issue a SELECT statement on the table. The
SELECT statement should fail.

4. Format the trace data and examine the return code (QW0140RC) in the IFCID
0140 trace record.
v QW0140RC = –1 indicates that DB2 performed the authorization check and

denied access.
v QW0140RC = 8 indicates that the external security system performed the

authorization check and denied access.

PSPI

Appendix A. Exit routines 811



Edit routines
An edit routine is assigned to a table by the EDITPROC clause of the CREATE
TABLE statement. An edit routine receives the entire row of a base table in internal
DB2 format and can transform the row when it is stored by an INSERT or
UPDATE SQL statement, or by the LOAD utility.

PSPI The transformation your edit routine performs on a row (possibly
encryption or compression) is called edit-encoding. The same routine is used to
undo the transformation when rows are retrieved; that operation is called
edit-decoding.

The edit-decoding function must be the exact inverse of the edit-encoding function.
For example, if a routine encodes ’ALABAMA’ to ’01’, it must decode ’01’ to
’ALABAMA’. A violation of this rule can lead to an abend of the DB2 connecting
thread, or other undesirable effects.

Your edit routine can encode the entire row of the table, including any index keys.
However, index keys are extracted from the row before the encoding is done,
therefore, index keys are stored in the index in edit-decoded form. Hence, for a table
with an edit routine, index keys in the table are edit-coded; index keys in the index
are not edit-coded.

The sample application contains a sample edit routine, DSN8EAE1. To print it, use
ISPF facilities, IEBPTPCH, or a program of your own. Or, assemble it and use the
assembly listing.

There is also a sample routine that does Huffman data compression, DSN8HUFF in
library prefix.SDSNSAMP. That routine not only exemplifies the use of the exit
parameters, it also has potentially some use for data compression. If you intend to
use the routine in any production application, please pay particular attention to the
warnings and restrictions given as comments in the code. You might prefer to let
DB2 compress your data.

“General guidelines for writing exit routines” on page 840 applies to edit routines.
PSPI

Specifying edit routines
To name an edit routine for a table, use the EDITPROC clause of the CREATE
TABLE statement, followed by the name of the routine. The routine is loaded on
demand during operations.

PSPI If you plan to use an edit routine, you can specify it when you create the
table. However, you cannot add an edit routine to an existing table or alter a table
with an edit routine to add a column; you must drop and re-create the table.

You cannot use an edit routine on a table that contains a LOB or a ROWID
column. In addition, you cannot use the EDITPROC clause if the table has an XML
column or a security label column or if the table contains a column name that is

longer than 18 EBCDIC bytes. PSPI

812 Administration Guide

|
|
|

|



When edit routines are taken
An edit routine is invoked to edit-encode a row whenever DB2 inserts or updates
one, including inserts made by the LOAD utility.

PSPI An edit routine is invoked after any date routine, time routine, or field
procedure. If there is also a validation routine, the edit routine is invoked after the
validation routine. Any changes made to the row by the edit routine do not change
entries made in an index.

The same edit routine is invoked to edit-decode a row whenever DB2 retrieves
one. On retrieval, it is invoked before any date routine, time routine, or field
procedure. If retrieved rows are sorted, the edit routine is invoked before the sort.
An edit routine is not invoked for a DELETE operation without a WHERE clause

that deletes an entire table in a segmented table space. PSPI

Parameter list for edit routines
The parameter list of edit routines contains pointers to other information, including
the authorization ID list.

PSPI

At invocation, registers are set as described in “Registers at invocation for exit
routines” on page 841, and the edit routine uses the standard exit parameter list
(EXPL) described there. Table 133 shows the exit-specific parameter list, described
by macro DSNDEDIT.

Table 133. Parameter list for an edit routine

Name Hex offset Data type Description

EDITCODE 0 Signed 4-byte
integer

Edit code telling the type of function to be
performed, as follows:
0 Edit-encode row for insert or

update
4 Edit-decode row for retrieval

EDITROW 4 Address Address of a row description. Its format is
shown in Table 176 on page 848.

8 Signed 4-byte
integer

Reserved

EDITILTH C Signed 4-byte
integer

Length of the input row

EDITIPTR 10 Address Address of the input row

EDITOLTH 14 Signed 4-byte
integer

Length of output row. On entry, this is the
size of the area in which to place the output
row. The exit must not modify storage
beyond this length.

EDITOPTR 18 Address Address of the output row

PSPI

Appendix A. Exit routines 813



Incomplete rows and edit routines
If DB2 passes, to an edit routine, an input row that has fewer fields than the
number of columns in the table, the routine must stop processing the row after the
last input field.

PSPI

Columns for which no input field is provided and that are not in reordered row
format are always at the end of the row and are never defined as NOT NULL. In
this case, the columns allow nulls, they are defined as NOT NULL WITH
DEFAULT, or the columns are ROWID or DOCID columns.

Use macro DSNDEDIT to get the starting address and row length for edit exits.
Add the row length to the starting address to get the first invalid address beyond
the end of the input buffer; your routine must not process any address as large as
that.

Figure 77 shows how the parameter list points to other row information. The
address of the nth column description is given by: RFMTAFLD +
(n-1)*(FFMTE-FFMT).

PSPI

Register 1
Address of
EXPL

Address of
edit parameter
list

EXPL

Address of
work area

Length of
work area

Reserved

Return code

Reason code

Work area
(256 bytes)

Parameter list

EDITCODE: Function to be
performed

Address of row description

Reserved

Length of input row

Address of input row

Length of output row

Address of output row

Row descriptions

Number of columns
in row (n)

Address of column
list

Row type

Output row

Input row

Column descriptions

Column length

Data type

Data attribute

Column name

...n

Figure 77. How the edit exit parameter list points to row information

814 Administration Guide

|
|
|
|



Expected output for edit routines
The edit routines return different output depending on whether the input row is in
the coded or decoded form.

If EDITCODE contains 0, the input row is in decoded form. Your routine must
encode it.

In that case, the maximum length of the output area, in EDITOLTH, is 10 bytes
more than the maximum length of the record. In counting the maximum length
for a row in basic row format, “record” includes fields for the lengths of
varying-length columns and for null indicators. In counting the maximum
length for a row in reordered row format, “record” includes fields for the
offsets to the varying length columns and for null indicators. The maximum
length of the record does not include the 6-byte record header.

If EDITCODE contains 4, the input row is in coded form. Your routine must
decode it.

In that case, EDITOLTH contains the maximum length of the record. In
counting the maximum length for a row in basic row format, “record” includes
fields for the lengths of varying length columns and for null indicators. In
counting the maximum length for a row in reordered row format, “record”
includes fields for the offsets to the varying-length columns and for null
indicators. The maximum length of the record does not include the 6-byte
record header.

In either case, put the result in the output area, pointed to by EDITOPTR, and put
the length of your result in EDITOLTH. The length of your result must not be
greater than the length of the output area, as given in EDITOLTH on invocation,
and your routine must not modify storage beyond the end of the output area.

Required return code: Your routine must also leave a return code in EXPLRC1, with
the meanings that are listed in Table 134:

Table 134. Required return code in EXPLRC1

Value Meaning

0 Function performed successfully.

Nonzero Function failed.

If the function fails, the routine might also leave a reason code in EXPLRC2. DB2
returns SQLCODE -652 (SQLSTATE ’23506’) to the application program and puts
the reason code in field SQLERRD(6) of the SQL communication area (SQLCA).

Validation routines
Validation routines are assigned to a table by the VALIDPROC clause of CREATE
TABLE and ALTER TABLE. A validation routine receives an entire row of a base
table as input, and can return an indication of whether or not to allow a following
INSERT, UPDATE, DELETE, FETCH, or SELECT operation.

PSPI Typically, a validation routine is used to impose limits on the information
that can be entered in a table; for example, allowable salary ranges, perhaps
dependent on job category, for the employee sample table.

Although VALIDPROCs can be specified for a table that contains a LOB or XML
column, the LOB or XML values are not passed to the validation routine. The LOB
indicator column takes the place of the LOB column, and the XML indicator

Appendix A. Exit routines 815

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|



column takes the place of the XML column. You cannot use VALIDPROC on a
table if the table contains a column name that is longer than 18 EBCDIC bytes.

The return code from a validation routine is checked for a 0 value before any
insert, update, or delete is allowed.

“General guidelines for writing exit routines” on page 840 applies to validation

routines. PSPI

Specifying validation routines
To name a validation routine for a table, use the VALIDPROC clause of the
CREATE TABLE or ALTER TABLE statement, followed by the name of the routine.
The routine is loaded on demand during operations.

PSPI You can add a validation routine to an existing table, but it is not invoked
to validate data already in the table. You can also cancel a validation routine for a
table by using VALIDPROC NULL in the ALTER TABLE statement.

When validation routines are taken
A validation routine for a table is invoked when DB2 inserts or updates a row,
including inserts made by the LOAD utility.

PSPI The routine is invoked for most delete operations, including a mass delete
of all the rows of a table. If there are other exit routines, the validation routine is
invoked before any edit routine, and after any date routine, time routine, or field

procedure. PSPI

Parameter list for validation routines
At invocation, registers are set, and the validation routine uses the standard exit
parameter list (EXPL).

PSPI

The following diagram shows how the parameter list points to other information.

816 Administration Guide

|
|



Table 135 shows the exit-specific parameter list, described by macro DSNDRVAL.

Table 135. Parameter list for a validation routine

Name Hex offset Data type Description

0 Signed 4-byte
integer

Reserved

RVALROW 4 Address Address of a row description.

8 Signed 4-byte
integer

Reserved

RVALROWL C Signed 4-byte
integer

Length of the input row to be validated

RVALROWP 10 Address Address of the input row to be validated

14 Signed 4-byte
integer

Reserved

18 Signed 4-byte
integer

Reserved

RVALPLAN 1C Character, 8
bytes

Name of the plan issuing the request

Register 1
Address of
EXPL

Address of
validation
parameter list

EXPL

Address of
work area

Length of
work area

Reserved

Return code

Reason code

Work area
(256 bytes)

Parameter list

Reserved

Address of row description

Reserved

Length of input row to be
validated

Address of input row to be
validated

.

.

.

Row descriptions

Number of columns
in row (n)

Address of column
list

Row type

Column descriptions

Input row

Column length

Data type

Data attribute

Column name

...n

Figure 78. How a validation parameter list points to information. The address of the nth
column description is given by: RFMTAFLD + (n-1)*(FFMTE-FFMT).

Appendix A. Exit routines 817



Table 135. Parameter list for a validation routine (continued)

Name Hex offset Data type Description

RVALOPER 24 Unsigned 1-byte
integer

Code identifying the operation being
performed, as follows:
1 Insert, update, or load
2 Delete

RVALFL1 25 Character, 1 byte The high-order bit is on if the requester has
installation SYSADM authority. The
remaining 7 bits are reserved.

RVALCSTC 26 Character, 2
bytes

Connection system type code. Values are
defined in macro DSNDCSTC.

PSPI

Incomplete rows and validation routines
If DB2 passes, to a validation routine, an input row that has fewer fields than the
number of columns in the table, the routine must stop processing the row after the
last input field.

PSPI Columns for which no input field is provided and that are not in reordered
row format are always at the end of the row and are never defined as NOT NULL.
In this case, the columns allow nulls, they are defined as NOT NULL WITH
DEFAULT, or the columns are ROWID or DOCID columns.

Use macro DSNDRVAL to get the starting address and row length for validation
exits. Add the row length to the starting address to get the first invalid address
beyond the end of the input buffer; your routine must not process any address as

large as that. PSPI

Expected output for validation routines
The validation routines must leave a return code in EXPLRC1.

PSPI The return code in EXPLRC1 have one of the following the meanings:

Table 136. Required return code in EXPLRC1

Value Meaning

0 Allow insert, update, or delete

Nonzero Do not allow insert, update, or delete

If the operation is not allowed, the routine might also leave a reason code in
EXPLRC2. DB2 returns SQLCODE -652 (SQLSTATE ’23506’) to the application
program and puts the reason code in field SQLERRD(6) of the SQL communication

area (SQLCA). PSPI

818 Administration Guide

|
|
|
|



Date and time routines
A date routine is a user-written exit routine to change date values from a locally
defined format into a format recognized by DB2 and from the ISO format into the
locally defined format. Similarly, a time routine changes time values from a locally
defined format into one recognized by DB2, and from ISO into the locally-defined
format.

PSPI Table 137 shows the formats recognized by DB2.

Table 137. Date and time formats

Format name Abbreviation Typical date Typical time

IBM European standard EUR 25.12.2004 13.30.05

International Standards Organization ISO 2004-12-25 13.30.05

Japanese Industrial Standard Christian
Era

JIS 2004-12-25 13:30:05

IBM USA standard USA 12/25/2004 1:30 PM

Example: Suppose that you want to insert and retrieve dates in a format like
“September 21, 2006”. You can use a date routine that transforms the date to a
format that is recognized by DB2 on insertion, such as ISO: “2006-09-21”. On
retrieval, the routine can transform “2006-09-21” to “September 21, 2006”.

You can have either a date routine, a time routine, or both. These routines do not
apply to timestamps. Special rules apply if you execute queries at a remote DBMS,

through the distributed data facility. PSPI

Specifying date and time routines
To establish a date or time routine, set LOCAL DATE LENGTH or LOCAL TIME
LENGTH to the length of the longest field required to hold a date or time in your
local format during DB2 installation.

PSPI Allowable values range from 10 to 254. For example, if you intend to insert
and retrieve dates in the form “September 21, 2006”, then you need an 18-byte
field. Set LOCAL DATE LENGTH to 18.

Also, replace all of the IBM-supplied exit routines, using CSECTs DSNXVDTX,
DSNXVDTA, and DSNXVDTU for a date routine, and DSNXVTMX, DSNXVTMA,
and DSNXVTMU for a time routine. The routines are loaded when DB2 starts.

To make the local date or time format the default for retrieval, set DATE FORMAT
or TIME FORMAT to LOCAL when installing DB2. That has the effect that DB2
always takes the exit routine when you retrieve from a DATE or TIME column. In
our example, suppose that you want to retrieve dates in your local format only
occasionally; most of the time you use the USA format. Set DATE FORMAT to
USA.

The install parameters for LOCAL DATE LENGTH, LOCAL TIME LENGTH,
DATE FORMAT, and TIME FORMAT can also be updated after DB2 is installed. If

you change a length parameter, you might need to rebind the applications. PSPI

Appendix A. Exit routines 819



When date and time routines are taken
On insertion, a date or time routine is invoked to change a value from the
locally-defined format to a format recognized by DB2 in the following
circumstances:

v
PSPI When a date or time value is entered by an INSERT or UPDATE

statement, or by the LOAD utility
v When a constant or host variable is compared to a column with a data type of

DATE, TIME, or TIMESTAMP
v When the DATE or TIME scalar function is used with a string representation of

a date or time in LOCAL format
v When a date or time value is supplied for a limit of a partitioned index in a

CREATE INDEX statement

The exit is taken before any edit or validation routine.
v If the default is LOCAL, DB2 takes the exit immediately. If the exit routine does

not recognize the data (EXPLRC1=8), DB2 then tries to interpret it as a date or
time in one of the recognized formats (EUR, ISO JIS, or USA). DB2 rejects the
data only if that interpretation also fails.

v If the default is not LOCAL, DB2 first tries to interpret the data as a date or time
in one of the recognized formats. If that interpretation fails, DB2 then takes the
exit routine, if it exists.

DB2 checks that the value supplied by the exit routine represents a valid date or
time in some recognized format, and then converts it into an internal format for
storage or comparison. If the value is entered into a column that is a key column
in an index, the index entry is also made in the internal format.

On retrieval, a date or time routine can be invoked to change a value from ISO to
the locally-defined format when a date or time value is retrieved by a SELECT or
FETCH statement. If LOCAL is the default, the routine is always invoked unless
overridden by a precompiler option or by the CHAR function, as by specifying
CHAR(HIREDATE, ISO); that specification always retrieves a date in ISO format. If
LOCAL is not the default, the routine is invoked only when specifically called for
by CHAR, as in CHAR(HIREDATE, LOCAL); that always retrieves a date in the
format supplied by your date exit routine.

On retrieval, the exit is invoked after any edit routine or DB2 sort. A date or time
routine is not invoked for a DELETE operation without a WHERE clause that

deletes an entire table in a segmented table space. PSPI

Parameter list for date and time routines
At invocation, registers are set, and the date or time routine uses the standard exit
parameter list (EXPL).

PSPI The following diagram shows how the parameter list points to other
information.

820 Administration Guide



Table 138 shows its exit-specific parameter list, described by macro DSNDDTXP.

Table 138. Parameter list for a date or time routine

Name Hex offset Data type Description

DTXPFN 0 Address Address of a 2-byte integer containing a
function code. The codes and their
meanings are:
4 Convert from local format to ISO.
8 Convert from ISO to local format.

DTXPLN 4 Address Address of a 2-byte integer containing the
length in bytes of the local format. This is
the length given as LOCAL DATE
LENGTH or LOCAL TIME LENGTH when
installing DB2.

DTXPLOC 8 Address Address of the date or time value in local
format

DTXPISO C Address Address of the date or time value in ISO
format (DTXPISO). The area pointed to is
10 bytes long for a date, 8 bytes for a time.

PSPI

Expected output for date and time routines
The date and time routines return different output depending on the format of the
input value.

PSPI

If the function code is 4, the input value is in local format, in the area pointed to
by DTXPLOC. Your routine must change it to ISO, and put the result in the area
pointed to by DTXPISO.

Register 1
Address of
EXPL

Address of
parameter
list

EXPL

Address of
work area

Length of
work area

Return code

Work area
(512 bytes)

Parameter list

Address of function code

Address of format length

Address of LOCAL value

Address of ISO value

Function code:
Function to be
performed

Length of local
format

ISO value

LOCAL value

Figure 79. How a date or time parameter list points to other information

Appendix A. Exit routines 821



If the function code is 8, the input value is in ISO, in the area pointed to by
DTXPISO. Your routine must change it to your local format, and put the result in
the area pointed to by DTXPLOC.

Your routine must also leave a return code in EXPLRC1, a 4-byte integer and the
third word of the EXPL area. The return code can have the meanings that are
shown in Table 139.

Table 139. Required return code in EXPLRC1

Value Meaning

0 No errors; conversion was completed.

4 Invalid date or time value.

8 Input value not in valid format; if the function is insertion, and LOCAL
is the default, DB2 next tries to interpret the data as a date or time in one
of the recognized formats (EUR, ISO, JIS, or USA).

12 Error in exit routine.

PSPI

Conversion procedures
A conversion procedure is a user-written exit routine that converts characters from
one coded character set to another coded character set.

PSPI In most cases, any conversion that is needed can be done by routines
provided by IBM. The exit for a user-written routine is available to handle
exceptions. “General guidelines for writing exit routines” on page 840 applies to

conversion routines. PSPI

Specifying conversion procedures
To establish a conversion procedure, insert a row into the catalog table
SYSIBM.SYSSTRINGS.

PSPI The row must contain values for the following columns:

INCCSID
The coded character set identifier (CCSID) of the source string.

OUTCCSID
The CCSID of the converted string.

TRANSTYPE
The nature of the conversion. Values can be:
GG ASCII GRAPHIC to EBCDIC GRAPHIC
MM EBCDIC MIXED to EBCDIC MIXED
MP EBCDIC MIXED to ASCII MIXED
MS EBCDIC MIXED to EBCDIC SBCS
PM ASCII MIXED to EBCDIC MIXED
PP ASCII MIXED to ASCII MIXED
PS ASCII MIXED to EBCDIC SBCS
SM EBCDIC SBCS to EBCDIC MIXED
SP SBCS (ASCII or EBCDIC) to ASCII MIXED
SS EBCDIC SBCS to EBCDIC SBCS

822 Administration Guide



TRANSPROC
The name of your conversion procedure.

IBMREQD
Must be N.

DB2 does not use the following columns, but checks them for the allowable values
listed. Values you insert can be used by your routine in any way. If you insert no
value in one of these columns, DB2 inserts the default value listed.

ERRORBYTE
Any character, or null. The default is null.

SUBBYTE
Any character not equal to the value of ERRORBYTE, or null. The default
is null.

TRANSTAB
Any character string of length 256 or the empty string. The default is an

empty string. PSPI

When conversion procedures are taken
The exit is taken, and your procedure invoked, whenever a conversion is required
from the coded character set identified by INCCSID to the coded character set
identified by OUTCCSID.

Parameter list for conversion procedures
At invocation, registers are set, and the conversion procedure uses the standard
exit parameter list (EXPL).

PSPI A conversion procedure does not use an exit-specific parameter list, as
described in “Parameter list for exit routines” on page 842. Instead, the area
pointed to by register 1 at invocation includes three words, which contain the
addresses of the following items:
1. The EXPL parameter list
2. A string value descriptor that contains the character string to be converted
3. A copy of a row from SYSIBM.SYSSTRINGS that names the conversion

procedure identified in TRANSPROC.

The length of the work area pointed to by the exit parameter list is generally 512
bytes. However, if the string to be converted is ASCII MIXED data (the value of
TRANSTYPE in the row from SYSSTRINGS is PM or PS), then the length of the
work area is 256 bytes, plus the length attribute of the string.

The string value descriptor: The descriptor has the format shown in Table 140.

Table 140. Format of string value descriptor for a conversion procedure

Name Hex offset Data type Description

FPVDTYPE 0 Signed 2-byte
integer

Data type of the value:

Code Means
20 VARCHAR
28 VARGRAPHIC

Appendix A. Exit routines 823



Table 140. Format of string value descriptor for a conversion procedure (continued)

Name Hex offset Data type Description

FPVDVLEN 2 Signed 2-byte
integer

The maximum length of the string

FPVDVALE 4 None The string. The first halfword is the string’s
actual length in characters. If the string is
ASCII MIXED data, it is padded out to the
maximum length by undefined bytes.

The row from SYSSTRINGS: The row copied from the catalog table
SYSIBM.SYSSTRINGS is in the standard DB2 row format. The fields ERRORBYTE
and SUBBYTE each include a null indicator. The field TRANSTAB is of varying

length and begins with a 2-byte length field. PSPI

Expected output for conversion procedures
Except in the case of certain errors, your conversion procedure should replace the
string in FPVDVALE with the converted string.

PSPI

When converting MIXED data, your procedure must ensure that the result is
well-formed. In any conversion, if you change the length of the string, you must
set the length control field in FPVDVALE to the proper value. Over-writing storage
beyond the maximum length of the FPVDVALE causes an abend.

Your procedure must also set a return code in field EXPLRC1 of the exit parameter
list.

With the two codes that are shown in Table 141, provide the converted string in
FPVDVALE.

Table 141. Codes for the converted string in FPVDVALE

Code Meaning

0 Successful conversion

4 Conversion with substitution

For the remaining codes that are shown in Table 142, DB2 does not use the
converted string.

Table 142. Remaining codes for the FPVDVALE

Code Meaning

8 Length exception

12 Invalid code point

16 Form exception

20 Any other error

24 Invalid CCSID

Exception conditions: Return a length exception (code 8) when the converted string
is longer than the maximum length allowed.

824 Administration Guide



For an invalid code point (code 12), place the 1- or 2-byte code point in field
EXPLRC2 of the exit parameter list.

Return a form exception (code 16) for EBCDIC MIXED data when the source string
does not conform to the rules for MIXED data.

Any other uses of codes 8 and 16, or of EXPLRC2, are optional.

Error conditions: On return, DB2 considers any of the following conditions as a
“conversion error”:
v EXPLRC1 is greater than 16.
v EXPLRC1 is 8, 12, or 16 and the operation that required the conversion is not an

assignment of a value to a host variable with an indicator variable.
v FPVDTYPE or FPVDVLEN has been changed.
v The length control field of FPVDVALE is greater than the original value of

FPVDVLEN or is negative.

In the case of a conversion error, DB2 sets the SQLERRMC field of the SQLCA to
HEX(EXPLRC1) CONCAT X’FF’ CONCAT HEX(EXPLRC2).

Figure 80 shows how the parameter list points to other information.

PSPI

Field procedures
Field procedures are assigned to a table by the FIELDPROC clause of CREATE
TABLE and ALTER TABLE. A field procedure is a user-written exit routine to
transform values in a single short-string column.

PSPI When values in the column are changed, or new values inserted, the field
procedure is invoked for each value, and can transform that value (encode it) in

Register 1
Address of
EXPL

Address of
string value
list

Address of
SYSSTRINGS
row copy

EXPL

Address of
work area

Length of
work area

Reserved

Return code

Invalid code

Work area

Copy of row from
SYSIBM.SYSSTRINGS

String value descriptor

Data type of string

Maximum string length

String length

String value

Figure 80. Pointers at entry to a conversion procedure

Appendix A. Exit routines 825



any way. The encoded value is then stored. When values are retrieved from the
column, the field procedure is invoked for each value, which is encoded, and must
decode it back to the original string value.

Any indexes, including partitioned indexes, defined on a column that uses a field
procedure are built with encoded values. For a partitioned index, the encoded
value of the limit key is put into the LIMITKEY column of the SYSINDEXPART
table. Hence, a field procedure might be used to alter the sorting sequence of
values entered in a column. For example, telephone directories sometimes require
that names like “McCabe” and “MacCabe” appear next to each other, an effect that
the standard EBCDIC sorting sequence does not provide. And languages that do
not use the Roman alphabet have similar requirements. However, if a column is
provided with a suitable field procedure, it can be correctly ordered by ORDER BY.

The transformation your field procedure performs on a value is called
field-encoding. The same routine is used to undo the transformation when values
are retrieved; that operation is called field-decoding. Values in columns with a field
procedure are described to DB2 in two ways:
1. The description of the column as defined in CREATE TABLE or ALTER TABLE

appears in the catalog table SYSIBM.SYSCOLUMNS. That is the description of
the field-decoded value, and is called the column description.

2. The description of the encoded value, as it is stored in the data base, appears in
the catalog table SYSIBM.SYSFIELDS. That is the description of the
field-encoded value, and is called the field description.

Important: The field-decoding function must be the exact inverse of the
field-encoding function. For example, if a routine encodes ’ALABAMA’ to ’01’, it
must decode ’01’ to ’ALABAMA’. A violation of this rule can lead to an abend of
the DB2 connecting thread, or other undesirable effects.

“General guidelines for writing exit routines” on page 840 applies to field

procedures. PSPI

Field definition for field procedures
The field procedure is also invoked when the table is created or altered, to define
the data type and attributes of an encoded value to DB2; that operation is called
field-definition.

PSPI The data type of the encoded value can be any valid SQL data type except
DATE, TIME, TIMESTAMP, LONG VARCHAR, or LONG VARGRAPHIC; the
allowable types are listed in the description of field FPVDTYPE in Table 145 on
page 831. The length, precision, or scale of the encoded value must be compatible
with its data type.

A user-defined data type can be a valid field if the source type of the data type is a
short string column that has a null default value. DB2 casts the value of the

column to the source type before it passes it to the field procedure. PSPI

Specifying field procedures
To name a field procedure for a column, use the FIELDPROC clause of the
CREATE TABLE or ALTER TABLE statement, followed by the name of the
procedure and, optionally, a list of parameters.

826 Administration Guide



PSPI You can use a field procedure only with a short string column. You cannot
use a field procedure on a column defined using NOT NULL WITH DEFAULT.

If you plan to use a field procedure, specify it when you create the table. In
operation, the procedure is loaded on demand. You cannot add a field procedure
to an existing column of a table; you can, however, use ALTER TABLE to add to an
existing table a new column that uses a field procedure.

You cannot use a field procedure on an LOB, ROWID, or ROW CHANGE
TIMESTAMP column of a table. However, you can specify it for other columns in
the same table. Also, you cannot use a field procedure on a column if the column
name is longer than 18 EBCDIC bytes.

The optional parameter list that follows the procedure name is a list of constants,
enclosed in parentheses, called the literal list. The literal list is converted by DB2
into a data structure called the field procedure parameter value list (FPPVL). That
structure is passed to the field procedure during the field-definition operation. At
that time, the procedure can modify it or return it unchanged. The output form of
the FPPVL is called the modified FPPVL; it is stored in the DB2 catalog as part of
the field description. The modified FPPVL is passed again to the field procedure

whenever that procedure is invoked for field-encoding or field-decoding. PSPI

When field procedures are taken
A field procedure that is specified for a column is invoked in three general
situations:

v
PSPI For field-definition, when the CREATE TABLE or ALTER TABLE

statement that names the procedure is executed. During this invocation, the
procedure is expected to:
– Determine whether the data type and attributes of the column are valid.
– Verify the literal list, and change it if wanted.
– Provide the field description of the column.
– Define the amount of working storage needed by the field-encoding and

field-decoding processes.
v For field-encoding, when a column value is to be field-encoded. That occurs for

any value that:
– Is inserted in the column by an SQL INSERT statement, or loaded by the DB2

LOAD utility.
– Is changed by an SQL UPDATE statement.
– Is compared to a column with a field procedure, unless the comparison

operator is LIKE. The value being encoded is a host variable or constant.
(When the comparison operator is LIKE, the column value is decoded.)

– Defines the limit of a partition of an index. The value being encoded follows
ENDING AT in the PARTITION clause of CREATE INDEX.

If there are any other exit routines, the field procedure is invoked before any of
them.

v For field-decoding, when a stored value is to be field-decoded back into its
original string value. This occurs for any value that is:
– Retrieved by an SQL SELECT or FETCH statement, or by the unload phase of

the REORG utility.

Appendix A. Exit routines 827

|
|
|
|



– Compared to another value with the LIKE comparison operator. The value
being decoded is from the column that uses the field procedure.

In this case, the field procedure is invoked after any edit routine or DB2 sort.

A field procedure is never invoked to process a null value, nor for a DELETE
operation without a WHERE clause on a table in a segmented table space.

Recommendation: Avoid encoding blanks in a field procedure. When DB2
compares the values of two strings with different lengths, it temporarily pads the
shorter string with blanks (in EBCDIC or double-byte characters, as needed) up to
the length of the longer string. If the shorter string is the value of a column with a
field procedure, the padding is done to the encoded value, but the pad character is
not encoded. Therefore, if the procedure changes blanks to some other character,
encoded blanks at the end of the longer string are not equal to padded blanks at
the end of the shorter string. That situation can lead to errors; for example, some
strings that ought to be equal might not be recognized as such. Therefore,

encoding blanks in a field procedure is not recommended. PSPI

Control blocks for execution of field procedures
Certain control blocks are used to communicate to a field procedure.

Parameter list (FPPL) for field procedures
The field procedure parameter list is pointed to by register 1 on entry to a field
procedure, and in turn, it contains the addresses of five other areas.

PSPI

The following diagram shows those areas. The FPPL and the areas are described
by the mapping macro DSNDFPPB.

Register 1 FPPL Work area

Field procedure
information
block (FPIB)

Column value
descriptor (CVD)

Field value
descriptor (FVD)

Field procedure
parameter value
list (FPPVL) or
literal list

Work address

FPIB address

CVD address

FVD address

FPPVL address

Figure 81. Field procedure parameter list

828 Administration Guide



PSPI

Work area for field procedures
The work area is a contiguous, uninitialized area of locally addressable, pageable,
swappable, and fetch-protected storage that is obtained in storage key 7 and
subpool 229.

PSPI The work area can be used by a field procedure as working storage. A new
area is provided each time the procedure is invoked. The size of the area that you
need depends on the way you program your field-encoding and field-decoding
operations.

At field-definition time, DB2 allocates a 512-byte work area and passes the value of
512 bytes as the work area size to your routine for the field-definition operation. If
subsequent field-encoding and field-decoding operations need a work area of 512
bytes or less, your field definition doesn’t need to change the value as provided by
DB2. If those operations need a work area larger than 512 bytes (i.e. 1024 bytes),
your field definition must change the work area size to the larger size and pass it
back to DB2 for allocation.

Whenever your field procedure is invoked for encoding or decoding operations,
DB2 allocates a work area based on the size (i.e. 1024 bytes) that was passed back
to it. Your field definition must not use a work area larger than what is allocated

by DB2, even though subsequent operations need the larger work area. PSPI

Information block (FPIB) for field procedures
The field procedure information block communicates general information to a field
procedure.

PSPI

The information block tells what operation is to be done, allows the field
procedure to signal errors, and gives the size of the work area. It has the format
shown in Table 143.

Table 143. Format of FPIB, defined in copy macro DSNDFPPB

Name Hex offset Data type Description

FPBFCODE 0 Signed 2-byte
integer

Function code

Code Means
0 Field-encoding
4 Field-decoding
8 Field-definition

FPBWKLN 2 Signed 2-byte
integer

Length of work area; the maximum is 32767
bytes.

FPBSORC 4 Signed 2-byte
integer

Reserved

FPBRTNC 6 Character, 2
bytes

Return code set by field procedure

FPBRSNCD 8 Character, 4
bytes

Reason code set by field procedure

Appendix A. Exit routines 829



Table 143. Format of FPIB, defined in copy macro DSNDFPPB (continued)

Name Hex offset Data type Description

FPBTOKPT C Address Address of a 40-byte area, within the work
area or within the field procedure’s static
area, containing an error message

PSPI

Parameter value list (FPPVL) for field procedures
The field procedure parameter value list communicates the literal list, supplied in
the CREATE TABLE or ALTER TABLE statement, to the field procedure during
field-definition.

PSPI

At that time, the field procedure can reformat the FPPVL; it is the reformatted
FPPVL that is stored in SYSIBM.SYSFIELDS and communicated to the field
procedure during field-encoding and field-decoding as the modified FPPVL.

The FPPVL has the format shown in Table 144.

Table 144. Format of FPPVL, defined in copy macro DSNDFPPB

Name Hex offset Data type Description

FPPVLEN 0 Signed 2-byte
integer

Length in bytes of the area containing
FPPVCNT and FPPVVDS. At least 254 for
field-definition.

FPPVCNT 2 Signed 2-byte
integer

Number of value descriptors that follow,
equal to the number of parameters in the
FIELDPROC clause. Zero if no parameters
were listed.

FPPVVDS 4 Structure Each parameter in the FIELDPROC clause
has:
1. A signed 4-byte integer giving the

length of the following value descriptor,
which includes the lengths of
FPVDTYPE, FPVDVLEN, and
FPVDVALE.

2. A value descriptor

PSPI

Value descriptor for field procedures
A value descriptor describes the data type and other attributes of a value.

PSPI

Value descriptors are used with field procedures in these ways:
v During field-definition, they describe each constant in the field procedure

parameter value list (FPPVL). The set of these value descriptors is part of the
FPPVL control block.

830 Administration Guide



v During field-encoding and field-decoding, the decoded (column) value and the
encoded (field) value are described by the column value descriptor (CVD) and
the field value descriptor (FVD).

The column value descriptor (CVD) contains a description of a column value and, if
appropriate, the value itself. During field-encoding, the CVD describes the value to
be encoded. During field-decoding, it describes the decoded value to be supplied
by the field procedure. During field-definition, it describes the column as defined
in the CREATE TABLE or ALTER TABLE statement.

The field value descriptor (FVD) contains a description of a field value and, if
appropriate, the value itself. During field-encoding, the FVD describes the encoded
value to be supplied by the field procedure. During field-decoding, it describes the
value to be decoded. Field-definition must put into the FVD a description of the
encoded value.

Value descriptors have the format shown in Table 145.

Table 145. Format of value descriptors

Name Hex offset Data type Description

FPVDTYPE 0 Signed 2-byte
integer

Data type of the value:

Code Means
0 INTEGER
4 SMALLINT
8 FLOAT
12 DECIMAL
16 CHAR
20 VARCHAR
24 GRAPHIC
28 VARGRAPHIC

FPVDVLEN 2 Signed 2-byte
integer

v For a varying-length string value, its
maximum length

v For a decimal number value, its precision
(byte 1) and scale (byte 2)

v For any other value, its length

FPVDVALE 4 None The value. The value is in external format,
not DB2 internal format. If the value is a
varying-length string, the first halfword is
the value’s actual length in bytes. This field
is not present in a CVD, or in an FVD used
as input to the field-definition operation.
An empty varying-length string has a
length of zero with no data following.

PSPI

Field-definition (function code 8)
The input provided to the field-definition operation, and the output required, are
as follows:

Appendix A. Exit routines 831



On entry

PSPI The registers have the following information:

Table 146. Contents of the registers on entry

Register Contains

1 Address of the field procedure parameter list (FPPL)

2 through 12 Unknown values that must be restored on exit.

13 Address of the register save area.

14 Return address.

15 Address of entry point of exit routine.

The contents of all other registers, and of fields not listed in the following tables,
are unpredictable.

The work area consists of 512 contiguous uninitialized bytes.

The FPIB has the following information:

Table 147. Contents of the FPIB on entry

Field Contains

FPBFCODE 8, the function code

FPBWKLN 512, the length of the work area

The CVD has the following information:

Table 148. Contents of the CVD on entry

Field Contains

FPVDTYPE One of these codes for the data type of the column value:

Code Means
16 CHAR
20 VARCHAR
24 GRAPHIC
28 VARGRAPHIC

FPVDVLEN The length attribute of the column

The FPVDVALE field is omitted. The FVD provided is 4 bytes long. The FPPVL
field has the information:

Table 149. Contents of the FPPVL on entry

Field Contains

FPPVLEN The length, in bytes, of the area containing the parameter value list. The
minimum value is 254, even if there are no parameters.

FPPVCNT The number of value descriptors that follow; zero if there are no
parameters.

FPPVVDS A contiguous set of value descriptors, one for each parameter in the
parameter value list, each preceded by a 4-byte length field.

832 Administration Guide



On exit

The registers must have the following information:

Table 150. Contents of the registers on exit

Register Contains

2 through 12 The values that they contained on entry.

15 The integer zero if the column described in the CVD is valid for the
field procedure; otherwise the value must not be zero.

The following fields must be set as shown; all other fields must remain as on entry.

The FPIB must have the following information:

Table 151. Contents of the FPIB on exit

Field Contains

FPBWKLN The length, in bytes, of the work area to be provided to the
field-encoding and field-decoding operations; 0 if no work area is
required.

FPBRTNC An optional 2-byte character return code, defined by the field procedure;
blanks if no return code is given.

FPBRSNC An optional 4-byte character reason code, defined by the field procedure;
blanks if no reason code is given.

FPBTOKP Optionally, the address of a 40-byte error message residing in the work
area or in the field procedure’s static area; zeros if no message is given.

Errors signalled by a field procedure result in SQLCODE -681 (SQLSTATE ’23507’),
which is set in the SQL communication area (SQLCA). The contents of FPBRTNC
and FPBRSNC, and the error message pointed to by FPBTOKP, are also placed into
the tokens, in SQLCA, as field SQLERRMT. The meaning of the error message is
determined by the field procedure.

The FVD must have the following information:

Table 152. Contents of the FVD on exit

Field Contains

FPVDTYPE The numeric code for the data type of the field value. Any of the data
types listed in Table 145 on page 831 is valid.

FPVDVLEN The length of the field value.

Field FPVDVALE must not be set; the length of the FVD is 4 bytes only.

The FPPVL can be redefined to suit the field procedure, and returned as the
modified FPPVL, subject to the following restrictions:
v The field procedure must not increase the length of the FPPVL.
v FPPVLEN must contain the actual length of the modified FPPVL, or 0 if no

parameter list is returned.

The modified FPPVL is recorded in the catalog table SYSIBM.SYSFIELDS, and is
passed again to the field procedure during field-encoding and field-decoding. The

Appendix A. Exit routines 833



modified FPPVL need not have the format of a field procedure parameter list, and
it need not describe constants by value descriptors.

PSPI

Field-encoding (function code 0)
The input provided to the field-encoding operation, and the output required, are as
follows:

On entry

PSPI The registers have the following information:

Table 153. Contents of the registers on entry

Register Contains

1 Address of the field procedure parameter list (FPPL); see “Parameter
list (FPPL) for field procedures” on page 828 for a schematic diagram.

2 through 12 Unknown values that must be restored on exit.

13 Address of the register save area.

14 Return address.

15 Address of entry point of exit routine.

The contents of all other registers, and of fields not listed, are unpredictable.

The work area is contiguous, uninitialized, and of the length specified by the field
procedure during field-definition.

The FPIB has the following information:

Table 154. Contents of the FPIB on entry

Field Contains

FPBFCODE 0, the function code

FPBWKLN The length of the work area

The CVD has the following following information:

Table 155. Contents of the CVD on entry

Field Contains

FPVDTYPE The numeric code for the data type of the column value, as shown in
Table 145 on page 831.

FPVDVLEN The length of the column value.

FPVDVALE The column value; if the value is a varying-length string, the first
halfword contains its length.

834 Administration Guide



The FVD has the following information:

Table 156. Contents of the FVD on entry

Field Contains

FPVDTYPE The numeric code for the data type of the field value.

FPVDVLEN The length of the field value.

FPVDVALE An area of unpredictable content that is as long as the field value.

The modified FPPVL, produced by the field procedure during field-definition, is
provided.

On exit

The registers have the following information:

Table 157. Contents of the registers on exit

Register Contains

2 through 12 The values that they contained on entry.

15 The integer zero if the column described in the CVD is valid for the
field procedure; otherwise the value must not be zero.

The FVD must contain the encoded (field) value in field FPVDVALE. If the value
is a varying-length string, the first halfword must contain its length.

The FPIB can have the following information:

Table 158. Contents of the FPIB on exit

Field Contains

FPBRTNC An optional 2-byte character return code, defined by the field procedure;
blanks if no return code is given.

FPBRSNC An optional 4-byte character reason code, defined by the field procedure;
blanks if no reason code is given.

FPBTOKP Optionally, the address of a 40-byte error message residing in the work
area or in the field procedure’s static area; zeros if no message is given.

Errors signalled by a field procedure result in SQLCODE -681 (SQLSTATE ’23507’),
which is set in the SQL communication area (SQLCA). The contents of FPBRTNC
and FPBRSNC, and the error message pointed to by FPBTOKP, are also placed into
the tokens, in SQLCA, as field SQLERRMT. The meaning of the error message is
determined by the field procedure.

All other fields must remain as on entry. PSPI

Field-decoding (function code 4)
The input provided to the field-decoding operation, and the output required, are as
follows:

Appendix A. Exit routines 835



On entry

PSPI The registers have the following information:

Table 159. Contents of the registers on entry

Register Contains

1 Address of the field procedure parameter list (FPPL); see Figure 81 on
page 828 for a schematic diagram.

2 through 12 Unknown values that must be restored on exit.

13 Address of the register save area.

14 Return address.

15 Address of entry point of exit routine.

The contents of all other registers, and of fields not listed, are unpredictable.

The work area is contiguous, uninitialized, and of the length specified by the field
procedure during field-definition.

The FPIB has the following information:

Table 160. Contents of the FPIB on entry

Field Contains

FPBFCODE 4, the function code

FPBWKLN The length of the work area

The CVD has the following information:

Table 161. Contents of the CVD on entry

Field Contains

FPVDTYPE The numeric code for the data type of the column value, as shown in
Table 145 on page 831.

FPVDVLEN The length of the column value.

FPVDVALE The column value. If the value is a varying-length string, the first
halfword contains its length.

The FVD has the following information:

Table 162. Contents of the FVD on entry

Field Contains

FPVDTYPE The numeric code for the data type of the field value.

FPVDVLEN The length of the field value.

FPVDVALE The field value. If the value is a varying-length string, the first halfword
contains its length.

The modified FPPVL, produced by the field procedure during field-definition, is
provided.

836 Administration Guide



On exit

The registers have the following information:

Table 163. Contents of the registers on exit

Register Contains

2 through 12 The values they contained on entry.

15 The integer zero if the column described in the FVD is valid for the
field procedure; otherwise the value must not be zero.

The CVD must contain the decoded (column) value in field FPVDVALE. If the
value is a varying-length string, the first halfword must contain its length.

The FPIB can have the following information:

Table 164. Contents of the FPIB on exit

Field Contains

FPBRTNC An optional 2-byte character return code, defined by the field procedure;
blanks if no return code is given.

FPBRSNC An optional 4-byte character reason code, defined by the field procedure;
blanks if no reason code is given.

FPBTOKP Optionally, the address of a 40-byte error message residing in the work
area or in the field procedure’s static area; zeros if no message is given.

Errors signalled by a field procedure result in SQLCODE -681 (SQLSTATE ’23507’),
which is set in the SQL communication area (SQLCA). The contents of FPBRTNC
and FPBRSNC, and the error message pointed to by FPBTOKP, are also placed into
the tokens, in SQLCA, as field SQLERRMT. The meaning of the error message is
determined by the field procedure.

All other fields must remain as on entry. PSPI

Log capture routines
A log capture exit routine makes DB2 log data available for recovery purposes in
real time.

PSPI The routine receives data when DB2 writes data to the active log. Your
local specifications determine what the routine does with that data. The routine
does not enter or return data to DB2.

Performance factor: Your log capture routine receives control often. Design it with
care: a poorly designed routine can seriously degrade system performance.
Whenever possible, use the instrumentation facility interface (IFI), rather than a log
capture exit routine, to read data from the log.

“General guidelines for writing exit routines” on page 840 applies, but with the
following exceptions to the description of execution environments:

A log capture routine can execute in either TCB mode or SRB mode, depending
on the function it is performing. When in SRB mode, it must not perform any

I/O operations nor invoke any SVC services or ESTAE routines. PSPI

Appendix A. Exit routines 837



Specifying log capture routines
The module name for the log capture routine is DSNJL004, and its entry point is
DSNJW117.

PSPI The module is loaded during DB2 initialization and deleted during DB2
termination. You must link the module into either the prefix.SDSNEXIT or the DB2
prefix.SDSNLOAD library. Specify the REPLACE parameter of the link-edit job to
replace a module that is part of the standard DB2 library for this release. The

module should have attributes AMODE(31) and RMODE(ANY). PSPI

When log capture routines are taken
The log capture exit routine is taken in three possible situations, identified by a
character in the exit parameter list.

PSPI In two of those situations, processing operates in TCB mode; in one
situation, processing operates in SRB mode. The two modes have different
processing capabilities, which your routine must be aware of. The character
identifications, situations, and modes are:
v I=Initialization, Mode=TCB

The TCB mode allows all z/OS DFSMSdfp functions to be utilized, including
ENQ, ALLOCATION, and OPEN. No buffer addresses are passed in this
situation. The routine runs in supervisor state, key 7, and enabled.
This is the only situation in which DB2 checks a return code from the user’s log
capture exit routine. The DB2 subsystem is sensitive to a return code of X’20’
here. Never return X’20’ in register 15 in this situation.

v W=Write, Mode=SRB (service request block)
The SRB mode restricts the exit routine’s processing capabilities. No supervisor
call (SVC) instructions can be used, including ALLOCATION, OPEN, WTO, any
I/O instruction, and so on. At the exit point, DB2 is running in supervisor state,
key 7, and is enabled.
On entry, the exit routine has access to buffers that have log control intervals
with “blocked log records”. The first and last buffer address and control interval
size fields can be used to determine how many buffers are being passed.
Performance consideration: All processing time that is required by the exit
routine lengthens the time required to write the DB2 log. The DB2 address space
usually has a high priority, and all work done in it in SRB mode precedes all
TCB access. Any errors or long processing times can impact all DB2 processing
and cause system-wide performance problems. The performance of your routine
is extremely critical in this phase.

v T=Termination, Mode=TCB
Processing capabilities are the same as for initialization.

A log control interval can be passed more than once. Use the timestamp to
determine the last occurrence of the control interval. This last occurrence should

replace all others. The timestamp is found in the control interval. PSPI

Parameter list for log capture routines
At invocation, registers are set, and the log capture routine uses the standard exit
parameter list (EXPL). The reason and return codes in that list can be ignored.

838 Administration Guide



PSPI

Table 165 shows the exit-specific parameter list; it is mapped by macro
DSNDLOGX.

Table 165. Log capture routine specific parameter list

Name Hex offset Data type Description

LOGXEYE 00 Character, 4
bytes

Eye catcher: LOGX

LOGXLNG 04 Signed 2-byte
integer

Length of parameter list

06 Reserved

08 Reserved

LOGXTYPE 10 Character, 1 byte Situation identifier:
I Initialization
W Write
T Termination
P Partial control interval (CI) call

LOGXFLAG 11 Hex Mode identifier.
X’00’ SRB mode
X’01’ TCB mode

LOGXSRBA 12 Character, 6
bytes

First log RBA, set when DB2 is started. The
value remains constant while DB2 is active.

LOGXARBA 18 Character, 6
bytes

Highest log archive RBA used. The value is
updated after completion of each log
archive operation.

1E Reserved

LOGXRBUF 20 Character, 8
bytes

Range of consecutive log buffers:
Address of first log buffer
Address of last log buffer

LOGXBUFL 28 Signed 4-byte
integer

Length of single log buffer (constant 4096)

LOGXSSID 2C Character, 4
bytes

DB2 subsystem ID, 4 characters left justified

LOGXSTIM 30 Character, 8
bytes

DB2 subsystem startup time (TIME format
with DEC option:
0CYYDDDFHHMMSSTH)

LOGXREL 38 Character, 3
bytes

DB2 subsystem release level

LOGXMAXB 3B Character, 1 byte Maximum number of buffers that can be
passed on one call. The value remains
constant while DB2 is active.

3C 8 bytes Reserved

LOGXUSR1 44 Character, 4
bytes

First word of a doubleword work area for
the user routine. (The content is not
changed by DB2.)

LOGXUSR2 48 Character, 4
bytes

Second word of user work area.

PSPI

Appendix A. Exit routines 839



Routines for dynamic plan selection in CICS
You can create application packages and plans that allow application programs to
access DB2 data at execution time. In a CICS environment, you can design CICS
transactions around the application packages and plans or use dynamic plan
allocation.

PSPI You can enable dynamic plan allocation by using one of the following
techniques:
v Use DB2 packages and versioning to manage the relationship between CICS

transactions and DB2 plans. This technique can help minimize plan outage time,
processor time, and catalog contention.

v Use a dynamic plan exit routine to determine the plan to use for each CICS
transaction.

Recommendation: Use DB2 packages and versioning, instead of a CICS dynamic
plan exit routine, for dynamic plan allocation. For more information, see CICS

Transaction Server for z/OS DB2 Guide. PSPI

Routine for the CICS transaction invocation stored procedure
The DB2-supplied CICS transaction routine stored procedure invokes a user exit
that you use to change values that the stored procedure caller provides.

General guidelines for writing exit routines
The rules, requirements, and suggestions in these topics apply to most of the
foregoing exit routines.

PSPI Important: Using an exit routine requires coordination with your system
programmers. An exit routine runs as an extension of DB2 and has all the
privileges of DB2. It can impact the security and integrity of the database.
Conceivably, an exit routine could also expose the integrity of the operating
system. Instructions for avoiding that exposure can be found in the appropriate

z/OS publication. PSPI

Coding rules for exit routines
You must follow these rules and requirements when coding an exit routine for
DB2.

v
PSPI It must be written in assembler.

v It must reside in an authorized program library, either the library containing
DB2 modules (prefix.SDSNLOAD) or in a library concatenated ahead of
prefix.SDSNLOAD in the procedure for the database services started task (the
procedure named ssnmDBM1, where ssnm is the DB2 subsystem name).
Authorization routines must be accessible to the ssnmMSTR procedure. For all
routines, we recommend using the library prefix.SDSNEXIT, which is
concatenated ahead of prefix.SDSNLOAD in both started-task procedures.

v Routines that are listed in Table 166 on page 841 must have the names shown.
The name of other routines should not start with “DSN”, to avoid conflict with
the DB2 modules.

840 Administration Guide

|

|
|
|
|

|
|

|
|
|

|
|

|
|

|



Table 166. Required load module name

Type of routine Required load module name

Date DSNXVDTX

Time DSNXVTMX

Connection DSN3@ATH

Sign-on DSN3@SGN

v It must be written to be reentrant and must restore registers before return.
v It must be link-edited with the REENTRANT parameter.
v It must be written and link-edited to execute AMODE(31),RMODE(ANY).
v It must not invoke any DB2 services—for example, through SQL statements.
v It must not invoke any SVC services or ESTAE routines.

Even though DB2 has functional recovery routines of its own, you can establish
your own functional recovery routine (FRR), specifying MODE=FULLXM and

EUT=YES. PSPI

Modifying exit routines
Because exit routines operate as extensions of DB2, they should not be changed or
modified while DB2 is running.

Execution environment for exit routines
Exit routines are invoked by standard CALL statements.

PSPI With some exceptions, which are noted under “General Considerations” in
the description of particular types of routine, the execution environment is:
v Supervisor state
v Enabled for interrupts
v PSW key 7
v No MVS locks held
v For local requests, under the TCB of the application program that requested the

DB2 connection
v For remote requests, under a TCB within the DB2 distributed data facility

address space
v 31-bit addressing mode
v Cross-memory mode

In cross-memory mode, the current primary address space is not equal to the
home address space. Therefore, some z/OS macro services you cannot use at all,
and some you can use only with restrictions. For more information about
cross-memory restrictions for macro instructions, which macros can be used
fully, and the complete description of each macro, refer to the appropriate z/OS

publication. PSPI

Registers at invocation for exit routines
Registers are set when DB2 passes control to an exit routine.

PSPI

Appendix A. Exit routines 841



The following are registers that are set at invocation for exit routines:

Table 167. Contents of registers when DB2 passes control to an exit routine

Register Contains

1 Address of pointer to the exit parameter list. For a field procedure, the
address is that of the field procedure parameter list.

13 Address of the register save area.

14 Return address.

15 Address of entry point of exit routine.

PSPI

Parameter list for exit routines
The parameter list for an exit routine contains pointers to other information that
generally includes the EXPL parameter list and the exit-specific parameter list.

PSPI

Register 1 points to the address of parameter list EXPL, described by macro
DSNDEXPL and shown in Figure 82. The word following points to a second
parameter list, which differs for each type of exit routine.

Table 168 shows the EXPL parameter list. Its description is given by macro
DSNDEXPL.

Table 168. Contents of EXPL parameter list

Name Hex offset Data type Description

EXPLWA 0 Address Address of a work area to be used by the
routine

EXPLWL 4 Signed 4-byte
integer

Length of the work area. The value is:
2048 for connection routines and sign-on
routines
512 for date and time routines and
translate procedures (see Note 1).
256 for edit, validation, and log capture
routines

EXPLRSV1 8 Signed 2-byte
integer

Reserved

EXPLRC1 A Signed 2-byte
integer

Return code

EXPLRC2 C Signed 4-byte
integer

Reason code

Register 1
Address of EXPL parameter list

Address of exit-specific parameter list

Figure 82. Use of register 1 on invoking an exit routine. (Field procedures and translate
procedures do not use the standard exit-specific parameter list.)

842 Administration Guide



Table 168. Contents of EXPL parameter list (continued)

Name Hex offset Data type Description

EXPLARC 10 Signed 4-byte
integer

Used only by connection routines and
sign-on routines

EXPLSSNM 14 Character, 8
bytes

Used only by connection routines and
sign-on routines

EXPLCONN 1C Character, 8
bytes

Used only by connection routines and
sign-on routines

EXPLTYPE 24 Character, 8
bytes

Used only by connection routines and
sign-on routines

EXPLSITE 2C Character, 16
bytes

For SNA protocols, this is the location name
of the requesting location or <luname>. For
TCP/IP protocols, this is the dotted decimal
IP address of the requester.

EXPLLUNM 3C Character, 8
bytes

For SNA protocols, the locally known LU
name of the requesting location. For
TCP/IP protocols, the character string
’TCPIP’.

EXPLNTID 44 Character, 17
bytes

For SNA protocols, the fully qualified
network name of the requesting location.
For TCP/IP protocols, field reserved.

EXPLVIDS DB2 version identifier

Notes: When translating a string of type PC MIXED, a translation procedure has a work
area of 256 bytes plus the length attribute of the string.

PSPI

Row formats for edit and validation routines
In writing an edit or validation routine, you must be aware of the format in which
DB2 stores the rows of tables. This topic describes the special features of that
format.

Column boundaries for edit and validation routines
DB2 stores columns contiguously, regardless of word boundaries in physical
storage, except LOB and XML columns. LOB or XML values are not stored
contiguously; an indicator column is stored in a base table in place of the LOB or
XML values.

PSPI You cannot specify edit procedures for any table that contains a LOB
column or a ROWID column. In addition, LOB values are not available to
validation routines; indicator columns and ROWID columns represent LOB
columns as input to a validation procedure.

Similarly, you cannot specify edit procedures for any table that contains an XML
column. XML values are not available to validation routines. DOCID and XML
indicator columns represent XML columns as input to a validation procedure.

PSPI

Appendix A. Exit routines 843

|||
|
|
|
|
|

|||
|
|
|
|
|

|||
|
|
|
|

||||



Null values for edit procedures, field procedures, and
validation routines

If null values are allowed for a column, an extra byte is stored before the actual
column value.

PSPI This byte is X’00’ if the column value is not null; it is X’FF’ if the value is
null. This extra byte is included in the column length attribute (parameter

FFMTFLEN in Table 177 on page 849). PSPI

Fixed-length rows for edit and validation routines
If all columns in a table are fixed-length, its rows are stored in fixed-length format.
The rows are byte strings.

PSPI

Example: The sample project activity table has five fixed-length columns. The first
two columns do not allow nulls; the last three do. Table 169 shows a row in the
table.

Table 169. A row in fixed-length format

Column 1 Column 2 Column 3 Column 4 Column 5

MA2100 10 00 0.5 00 820101 00 821101

PSPI

Varying-length rows for edit and validation routines
The rows of a table with varying-length columns are varying-length rows if they
contain varying-length values. In basic row format, each varying-length value has a
2-byte length field in front of it. Those 2 bytes are not included in the column
length attribute (FFMTFLEN).

PSPI

Table 170 shows a row of the sample department table in basic row format. The
first value in the DEPTNAME column indicates the column length as a
hexadecimal value.

Table 170. A varying-length row in basic row format in the sample department table

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

C01 0012 Information
center

00 000030 A00 00 New York

Varying-length columns have no gaps after them. Hence, columns that appear after
varying-length columns are at variable offsets in the row. To get to such a column,
you must scan the columns sequentially after the first varying-length column. An
empty string has a length of zero with no data following.

ROWID and indicator columns are treated like varying length columns. Row IDs
are VARCHAR(17). A LOB indicator column is VARCHAR(4), and an XML

844 Administration Guide

|
|



indicator column is VARCHAR(6). It is stored in a base table in place of a LOB or
XML column, and indicates whether the LOB or XML value for the column is null
or zero length.

In reordered row format, if a table has any varying-length columns, all fixed length
columns are placed at the beginning of the row, followed by the offsets to the
varying length columns, followed by the values of the varying length columns.

Table 171 shows the same row of the sample department table, but in reordered
row format. The value in the offset column indicates the offset value as a
hexadecimal value.

Table 171. A varying-length row in reordered row format in the sample department table

DEPTNO MGRNO ADMRDEPT LOCATION
Offset
column DEPTNAME

C01 00 000030 A00 00 New York 20 Information
center

PSPI

Varying-length rows with nulls for edit and validation routines
A varying-length column can also allow null values. In basic row format, the value
in the length field includes the length of the null indicator byte but does not
include the length field itself.

PSPI Table 172 shows how the row in Table 170 on page 844 would look in
storage if nulls were allowed in DEPTNAME. The first value in the DEPTNAME
column indicates the column length as a hexadecimal value.

Table 172. A varying-length row in basic row format in the sample department table

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

C01 0013 Information
center

00 000030 A00 00 New York

An empty string has a length of one, a X’00’ null indicator, and no data following.

In reordered row format, if a table has any varying-length columns, with or
without nulls, all fixed length columns are placed at the beginning of the row,
followed by the offsets to the varying length columns, followed by the values of

the varying length columns. PSPI

EDITPROCs and VALIDPROCs for handling basic and
reordered row formats

Checking the row format type (RFMTTYPE) ensures that edit procedures
(EDITPROC) and validation procedures (VALIDPROC) produce predictable results.

If you write new edit and validation routines on tables with rows in basic row
format (BRF) or reordered row format (RRF), make sure that EDITPROCs and
VALIDPROCs are coded to check RFMTTYPE and handle both BRF and RRF
formats.

Appendix A. Exit routines 845

|
|
|

|



If an EDITPROC or VALIDPROC handles only RRF, make sure that it checks
RFMTTYPE and returns an error or warning if it detects BRF. If an EDITPROC or
VALIDPROC that handles only BRF is to be used on tables in RRF, make sure that
it checks RFMTTYPE and returns an error or warning if it detects RRF.

Converting basic row format table spaces with edit and
validation routines to reordered row format

If you migrate table spaces to DB2 Version 9.1, you cannot convert the table spaces
with edit and validation routines from basic row format to reordered row format
directly. You must execute additional steps to convert the table spaces.

Converting basic row format table spaces with edit routines to
reordered row format
If some tables in a table space have edit routines, the table space cannot be directly
converted to reordered row format.

PSPI To convert a table space to reordered row format, complete the following
steps for each table that has an edit routine:
1. Use the UNLOAD utility to unload data from the table or tables that have edit

routines.
2. Use the DROP statement to drop the table or tables that have edit routines.
3. Make any necessary modifications to the edit routines so that they can be used

with rows in reordered row format.
4. If the table space is defined with COMPRESS YES, execute the ALTER

TABLESPACE statement to alter the table space to COMPRESS NO.
5. Use the REORG utility to reorganize the table space. Using the REORG utility

converts the table space to reordered row format.
6. Re-create tables with your modified edit routines. Also re-create any additional

related objects, such as indexes and check constraints.
7. Use the LOAD RESUME utility to load the data into the tables that have the

modified edit routines.

PSPI

Related concepts

“Row format conversion for table spaces” on page 847

Converting basic row format table spaces with validation
routines to reordered row format
If some tables in a table space have validation routines, the table space cannot be
directly converted to reordered row format.

PSPI To convert a table space to reordered row format, complete the following
steps for each table that has a validation routine:
1. Use the ALTER TABLE statement to alter the validation routine to NULL.
2. If the table space is defined with COMPRESS YES, execute the ALTER

TABLESPACE statement to alter the table space to COMPRESS NO.
3. Run the REORG utility or the LOAD REPLACE utility to convert the table

space to reordered row format.
4. Make any necessary modifications to the validation routine so that it can be

used with rows in reordered row format.

846 Administration Guide

|

|

|
|
|

|
|
|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|

|

|

|
|
|
|

|
|

|

|
|

|
|

|
|



5. Use the ALTER TABLE statement to add the modified validation routine to the
converted table.

PSPI

Related concepts

“Row format conversion for table spaces”

Row format conversion for table spaces
In DB2 new-function mode, the row format of a table space might be converted
when you run the LOAD REPLACE or REORG TABLESPACE utilities.

If the DB2 subsystem parameter SPRMRRF is set to ENABLE, the table space is
converted from basic row format to reordered row format when you run the
LOAD REPLACE utility or the REORG TABLESPACE utility. (The default setting
for the SPRMRRF subsystem parameter is ENABLE.) If the SPRMRRF subsystem
parameter is set to DISABLE, the table space is not converted. Therefore, if the
table space was in basic row format before running the LOAD REPLACE utility or
the REORG TABLESPACE utility, the table space remains in basic row format.
Likewise, if the table space was in reordered row format before running either of
these utilities, the table space remains in reordered row format.

Exceptions:

v LOB table spaces and table spaces in the catalog and directory databases always
remain in basic row format, regardless of the SPRMRRF subsystem parameter
setting, or the setting of the ROWFORMAT keyword for the utility. (The
ROWFORMAT keyword specifies the output row format in a table space or
partition. This keyword overrides the existing SPRMRRF setting when specified.)

v XML table spaces always remain in reordered row format, regardless of the
SPRMRRF subsystem parameter setting or the utility keyword setting.

v For universal table spaces that are cloned, both the base table space and the
clone table space remain in the same format as when they were created,
regardless of the SPRMRRF subsystem parameter setting or the utility keyword
setting.

v When multiple data partitions are affected by the LOAD REPLACE utility or the
REORG TABLESPACE utility, and some of the partitions are in basic row format
and some are in reordered row format, the utilities convert every partition to
reordered row format. This behavior is the default, regardless of the SPRMRRF
subsystem parameter setting. Alternatively, you can specify ROWFORMAT BRF
in the utility statement for all affected partitions so that the table space is in
basic row format after the utility completes successfully.

Example

To convert an existing table space from reordered row format to basic row format,
run REORG TABLESPACE ROWFORMAT BRF against the table space. To keep the
table space in basic row format on subsequent executions of the LOAD REPLACE
utility or the REORG TABLESPACE utility, continue to specify ROWFORMAT BRF
in the utility statement. Alternatively, you can set the SPRMRRF subsystem
parameter to DISABLE.

Dates, times, and timestamps for edit and validation routines
The values in columns with data types of DATE, TIME, and TIMESTAMP are
stored in the formats that are shown in the following tables. For each format, each
byte consists of two packed decimal digits.

Appendix A. Exit routines 847

|
|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|



PSPI

Table 173 shows the DATE format, which consists of 4 total bytes

Table 173. DATE format

Year Month Day

2 bytes 1 byte 1 byte

Table 174 shows the TIME format, which consists of 3 total bytes.

Table 174. TIME format

Hours Minutes Seconds

1 byte 1 byte 1 byte

Table 175 shows the TIMESTAMP format, which consists of 10 total bytes.

Table 175. TIMESTAMP format

Year Month Day Hours Minutes Seconds Microseconds

2 bytes 1 byte 1 byte 1 byte 1 byte 1 byte 3 bytes

PSPI

Parameter list for row format descriptions
DB2 passes a description of the row format to an edit or validation routine through
a parameter list, generated by macro DSNDROW. The description includes both
the general row characteristics and the characteristics of each column.

PSPI

DSNDROW defines the columns in the order as they are defined in the CREATE
TABLE statement or possibly the ALTER TABLE statement. For rows in the
reordered row format, the new column order in DSNDROW does not necessarily
correspond to the order in which the columns are stored in the row.

Table 176 shows the general row description.

Table 176. Description of a row format

Name Hex offset Data type Description

RFMTNFLD 0 Signed fullword
integer

Number of columns in a row

RFMTAFLD 4 Address Address of a list of column descriptions

RFMTTYPE 8 Character, 1 byte Row type:
X’00’ = row with fixed-length columns
X’04’ = row with varying-length
columns in basic row format
X’08’ = row with varying-length
columns in reordered row format

9 Character, 3
bytes

Reserved

848 Administration Guide

||||
|
|
|
|
|



Table 177 shows the description of each column.

Table 177. Description of a column format

Name Hex offset Data type Description

FFMTFLEN 0 Signed fullword
integer

Column length attribute

FFMTFTYP 4 Character, 1 byte Data type code

FFMTNULL 5 Character, 1 byte Data attribute:
X’00’ = Null values are allowed.
X’04’ = Null values are not allowed.

FFMTFNAM 6 Character, 18
bytes

Column name

Table 178 shows a description of data type codes and length attributes.

Table 178. Description of data type codes and length attributes

Data type
Code
(FFMTFTYP) Length attribute (FFMTFLEN)

BIGINT X’32’ 8

BINARY X’34’ Length of string

VARBIN X’38’ Length of string

DECFLOAT X’40’ 8 for DECFLOAT(16) or 16 for
DECFLOAT(34)

INTEGER X’00’ 4

SMALLINT X’04’ 2

FLOAT (single precision) X’08’ 4

FLOAT (double precision) X’08’ 8

DECIMAL X’0C’ INTEGER(p/2), where p is the
precision

CHAR X’10’ The length of the string

VARCHAR X’14’ The length of the string

DATE X’20’ 4

TIME X’24’ 3

TIMESTAMP X’28’ 10

ROWID X’2C’ 17

INDICATOR COLUMN X’30’ 4 for a LOB indicator column or 6
for an XML indicator column

PSPI

DB2 codes for numeric data in edit and validation routines
DB2 stores numeric data in a specially encoded format that is called DB2-coded.

PSPI

To retrieve numeric data in its original form, you must DB2-decode it, according to
its data type, as is listed in Table 179 on page 850:

Appendix A. Exit routines 849

|

|

|

|

|



Table 179. DB2 decoding procedure according to data type

Data type DB2 decoding procedure

SMALLINT Invert the sign bit (high-order bit).

Value Meaning

8001 0001 (+1 decimal)

7FF3 FFF3 (-13 decimal)

INTEGER Invert the sign bit (high-order bit).

Value Meaning
800001F2

000001F2 (+498 decimal)
7FFFFF85

FFFFFF85 (-123 decimal)

FLOAT If the sign bit (high-order bit) is 1, invert only that bit.
Otherwise, invert all bits.

Value Meaning

C110000000000000
4110000000000000 (+1.0 decimal)

3EEFFFFFFFFFFFFF
C110000000000000 (-1.0 decimal)

DECIMAL Save the high-order hexadecimal digit (sign digit). Shift
the number to the left one hexadecimal digit. If the
sign digit is X’F’, put X’C’ in the low-order position.
Otherwise, invert all bits in the number and put X’D’
in the low-order position.

Value Meaning

F001 001C (+1)

0FFE 001D (-1)

BIGINT Invert the sign bit (high order bit).

Value Meaning

8000000000000854
0000000000000854 (2132 decimal)

7FFFFFFFFFFFFFE0
FFFFFFFFFFFFFFE0 (-32 decimal)

DECFLOAT Convert and return a DECFLOAT representation of a
number or string representation of a number. For more
information about DECFLOAT, see ″Sortable decimal
formats″ in DB2 Diagnosis Guide and Reference.

Value Meaning

D8F77D00000000000C
222C000000001E80 (+7.500 decfloat)

270882FFFFFFFFFFF2
A2300000000003D0 (-7.50 decfloat)

PSPI

850 Administration Guide

||

||

|
|

|
|

||
|
|
|

||

|
|

|
|



RACF access control module
The RACF access control module allows you to use RACF as an alternative to DB2
authorization checking for DB2 objects, authorities, and utilities.

PSPI You can activate the RACF access control module at the DB2 access control
authorization exit point (DSNX@XAC), where you can replace the default routine.
The RACF access control module is provided as an assembler source module in the
DSNXRXAC member of DB2.SDSNSAMP.

The RACF access control module (DSNXRXAC) does not provide full support of
role on z/OS 1.7.

For more information about the RACF access control module, see DB2 RACF Access

Control Module Guide. PSPI

Appendix A. Exit routines 851

|
|



852 Administration Guide



Appendix B. Stored procedures for administration

DB2 provides stored procedures that you can call in your application programs to
perform administrative functions.

Restriction: These stored procedures do not propagate the transaction identifier
(XID) of the thread. These stored procedures run under a new private context
rather than under the native context of the task that called it.
Related concepts

DB2-supplied stored procedures (Application Programming and SQL Guide)
Related tasks

Creating a stored procedure (Application Programming and SQL Guide)
Related reference

“ADMIN_TASK_ADD” on page 390
“ADMIN_TASK_REMOVE” on page 407

DSNACICS stored procedure
The CICS transaction invocation stored procedure (DSNACICS) invokes CICS
server programs.

DSNACICS gives workstation applications a way to invoke CICS server
programs while using TCP/IP as their communication protocol. The workstation
applications use TCP/IP and DB2 Connect to connect to a DB2 for z/OS
subsystem, and then call DSNACICS to invoke the CICS server programs.

The DSNACICS input parameters require knowledge of various CICS resource
definitions with which the workstation programmer might not be familiar. For this
reason, DSNACICS invokes the DSNACICX user exit routine. The system
programmer can write a version of DSNACICX that checks and overrides the
parameters that the DSNACICS caller passes. If no user version of DSNACICX is
provided, DSNACICS invokes the default version of DSNACICX, which does not
modify any parameters.

Environment

DSNACICS runs in a WLM-established stored procedure address space and uses
the Resource Recovery Services attachment facility to connect to DB2.

If you use CICS Transaction Server for OS/390® Version 1 Release 3 or later, you
can register your CICS system as a resource manager with recoverable resource
management services (RRMS). When you do that, changes to DB2 databases that
are made by the program that calls DSNACICS and the CICS server program that
DSNACICS invokes are in the same two-phase commit scope. This means that
when the calling program performs an SQL COMMIT or ROLLBACK, DB2 and
RRS inform CICS about the COMMIT or ROLLBACK.

If the CICS server program that DSNACICS invokes accesses DB2 resources, the
server program runs under a separate unit of work from the original unit of work
that calls the stored procedure. This means that the CICS server program might

© Copyright IBM Corp. 1982, 2009 853

|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_db2suppliedsp.htm#db2z_db2suppliedsp
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_createsp.htm#db2z_createsp


deadlock with locks that the client program acquires.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on stored procedure DSNACICS
v Ownership of the stored procedure
v SYSADM authority

The CICS server program that DSNACICS calls runs under the same user ID as
DSNACICS. That user ID depends on the SECURITY parameter that you specify
when you define DSNACICS.

The DSNACICS caller also needs authorization from an external security system,
such as RACF, to use CICS resources.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure.

Because the linkage convention for DSNACICS is GENERAL WITH NULLS, if you
pass parameters in host variables, you need to include a null indicator with every
host variable. Null indicators for input host variables must be initialized before
you execute the CALL statement.

�� CALL DSNACICS ( parm-level ,
NULL

pgm-name ,
NULL

CICS-applid ,
NULL

CICS-level ,
NULL

�

� connect-type ,
NULL

netname ,
NULL

mirror-trans ,
NULL

COMMAREA ,
NULL

COMMAREA-total-len ,
NULL

�

� sync-opts ,
NULL

return-code, msg-area ) ��

Option descriptions

parm-level
Specifies the level of the parameter list that is supplied to the stored procedure.
This is an input parameter of type INTEGER. The value must be 1.

pgm-name
Specifies the name of the CICS program that DSNACICS invokes. This is the
name of the program that the CICS mirror transaction calls, not the CICS
transaction name.

This is an input parameter of type CHAR(8).

CICS-applid
Specifies the applid of the CICS system to which DSNACICS connects.

This is an input parameter of type CHAR(8).

854 Administration Guide



CICS-level
Specifies the level of the target CICS subsystem:

1 The CICS subsystem is CICS for MVS/ESA™ Version 4 Release 1, CICS
Transaction Server for OS/390 Version 1 Release 1, or CICS Transaction
Server for OS/390 Version 1 Release 2.

2 The CICS subsystem is CICS Transaction Server for OS/390 Version 1
Release 3 or later.

This is an input parameter of type INTEGER.

connect-type
Specifies whether the CICS connection is generic or specific. Possible values are
GENERIC or SPECIFIC.

This is an input parameter of type CHAR(8).

netname
If the value of connection-type is SPECIFIC, specifies the name of the specific
connection that is to be used. This value is ignored if the value of
connection-type is GENERIC.

This is an input parameter of type CHAR(8).

mirror-trans
Specifies the name of the CICS mirror transaction to invoke. This mirror
transaction calls the CICS server program that is specified in the pgm-name
parameter. mirror-trans must be defined to the CICS server region, and the
CICS resource definition for mirror-trans must specify DFHMIRS as the
program that is associated with the transaction.

If this parameter contains blanks, DSNACICS passes a mirror transaction
parameter value of null to the CICS EXCI interface. This allows an installation
to override the transaction name in various CICS user-replaceable modules. If a
CICS user exit routine does not specify a value for the mirror transaction
name, CICS invokes CICS-supplied default mirror transaction CSMI.

This is an input parameter of type CHAR(4).

COMMAREA
Specifies the communication area (COMMAREA) that is used to pass data
between the DSNACICS caller and the CICS server program that DSNACICS
calls.

This is an input/output parameter of type VARCHAR(32704). In the length
field of this parameter, specify the number of bytes that DSNACICS sends to
the CICS server program.

commarea-total-len
Specifies the total length of the COMMAREA that the server program needs.

This is an input parameter of type INTEGER. This length must be greater than
or equal to the value that you specify in the length field of the COMMAREA
parameter and less than or equal to 32704. When the CICS server program
completes, DSNACICS passes the server program’s entire COMMAREA, which
is commarea-total-len bytes in length, to the stored procedure caller.

sync-opts
Specifies whether the calling program controls resource recovery, using
two-phase commit protocols that are supported by RRS. Possible values are:

1 The client program controls commit processing. The CICS server region
does not perform a syncpoint when the server program returns control

Appendix B. Stored procedures for administration 855



to CICS. Also, the server program cannot take any explicit syncpoints.
Doing so causes the server program to abnormally terminate.

2 The target CICS server region takes a syncpoint on successful
completion of the server program. If this value is specified, the server
program can take explicit syncpoints.

When CICS has been set up to be an RRS resource manager, the client
application can control commit processing using SQL COMMIT requests. DB2
for z/OS ensures that CICS is notified to commit any resources that the CICS
server program modifies during two-phase commit processing.

When CICS has not been set up to be an RRS resource manager, CICS forces
syncpoint processing of all CICS resources at completion of the CICS server
program. This commit processing is not coordinated with the commit
processing of the client program.

This option is ignored when CICS-level is 1. This is an input parameter of type
INTEGER.

return-code
Return code from the stored procedure. Possible values are:

0 The call completed successfully.

12 The request to run the CICS server program failed. The msg-area
parameter contains messages that describe the error.

This is an output parameter of type INTEGER.

msg-area
Contains messages if an error occurs during stored procedure execution. The
first messages in this area are generated by the stored procedure. Messages
that are generated by CICS or the DSNACICX user exit routine might follow
the first messages. The messages appear as a series of concatenated, viewable
text strings.

This is an output parameter of type VARCHAR(500).

User exit routine

DSNACICS always calls user exit routine DSNACICX. You can use DSNACICX to
change the values of DSNACICS input parameters before you pass those
parameters to CICS. If you do not supply your own version of DSNACICX,
DSNACICS calls the default DSNACICX, which modifies no values and does an
immediate return to DSNACICS. The source code for the default version of
DSNACICX is in member DSNASCIX in data set prefix.SDSNSAMP.. The source
code for a sample version of DSNACICX that is written in COBOL is in member
DSNASCIO in data set prefix.SDSNSAMP.

Example

The following PL/I example shows the variable declarations and SQL CALL
statement for invoking the CICS transaction that is associated with program
CICSPGM1.
/***********************/
/* DSNACICS PARAMETERS */
/***********************/
DECLARE PARM_LEVEL BIN FIXED(31);
DECLARE PGM_NAME CHAR(8);
DECLARE CICS_APPLID CHAR(8);
DECLARE CICS_LEVEL BIN FIXED(31);

856 Administration Guide



DECLARE CONNECT_TYPE CHAR(8);
DECLARE NETNAME CHAR(8);
DECLARE MIRROR_TRANS CHAR(4);
DECLARE COMMAREA_TOTAL_LEN BIN FIXED(31);
DECLARE SYNC_OPTS BIN FIXED(31);
DECLARE RET_CODE BIN FIXED(31);
DECLARE MSG_AREA CHAR(500) VARYING;

DECLARE1 COMMAREA BASED(P1),
3 COMMAREA_LEN BIN FIXED(15),
3COMMAREA_INPUT CHAR(30),
3 COMMAREA_OUTPUT CHAR(100);

/***********************************************/
/* INDICATOR VARIABLES FOR DSNACICS PARAMETERS */
/***********************************************/
DECLARE 1 IND_VARS,

3 IND_PARM_LEVEL BIN FIXED(15),
3 IND_PGM_NAME BIN FIXED(15),
3 IND_CICS_APPLID BIN FIXED(15),
3 IND_CICS_LEVEL BIN FIXED(15),
3 IND_CONNECT_TYPE BINFIXED(15),
3 IND_NETNAME BIN FIXED(15),
3 IND_MIRROR_TRANSBIN FIXED(15),
3 IND_COMMAREA BIN FIXED(15),
3 IND_COMMAREA_TOTAL_LEN BIN FIXED(15),
3 IND_SYNC_OPTS BIN FIXED(15),
3 IND_RETCODE BIN FIXED(15),
3 IND_MSG_AREA BIN FIXED(15);

/**************************/
/* LOCAL COPY OF COMMAREA */
/**************************/
DECLARE P1 POINTER;
DECLARE COMMAREA_STG CHAR(130) VARYING;

/**************************************************************/
/* ASSIGN VALUES TO INPUT PARAMETERS PARM_LEVEL, PGM_NAME, */
/* MIRROR_TRANS, COMMAREA, COMMAREA_TOTAL_LEN, AND SYNC_OPTS. */
/* SET THE OTHER INPUT PARAMETERS TO NULL. THE DSNACICX */
/* USER EXIT MUST ASSIGN VALUES FOR THOSE PARAMETERS. */
/**************************************************************/
PARM_LEVEL = 1;
IND_PARM_LEVEL = 0;

PGM_NAME = 'CICSPGM1';
IND_PGM_NAME = 0 ;

MIRROR_TRANS = 'MIRT';
IND_MIRROR_TRANS = 0;

P1 = ADDR(COMMAREA_STG);
COMMAREA_INPUT = 'THIS IS THE INPUT FOR CICSPGM1';
COMMAREA_OUTPUT = ' ';
COMMAREA_LEN = LENGTH(COMMAREA_INPUT);
IND_COMMAREA = 0;

COMMAREA_TOTAL_LEN = COMMAREA_LEN + LENGTH(COMMAREA_OUTPUT);
IND_COMMAREA_TOTAL_LEN = 0;

SYNC_OPTS= 1;
IND_SYNC_OPTS = 0;

IND_CICS_APPLID= -1;
IND_CICS_LEVEL = -1;
IND_CONNECT_TYPE = -1;
IND_NETNAME = -1;
/*****************************************/

Appendix B. Stored procedures for administration 857



/* INITIALIZE
OUTPUT PARAMETERS TO NULL. */
/*****************************************/
IND_RETCODE = -1;
IND_MSG_AREA= -1;
/*****************************************/
/* CALL DSNACICS TO INVOKE CICSPGM1. */
/*****************************************/
EXEC SQL
CALL SYSPROC.DSNACICS(:PARM_LEVEL :IND_PARM_LEVEL,

:PGM_NAME :IND_PGM_NAME,
:CICS_APPLID :IND_CICS_APPLID,
:CICS_LEVEL :IND_CICS_LEVEL,
:CONNECT_TYPE :IND_CONNECT_TYPE,
:NETNAME :IND_NETNAME,
:MIRROR_TRANS :IND_MIRROR_TRANS,
:COMMAREA_STG :IND_COMMAREA,
:COMMAREA_TOTAL_LEN :IND_COMMAREA_TOTAL_LEN,
:SYNC_OPTS :IND_SYNC_OPTS,
:RET_CODE :IND_RETCODE,
:MSG_AREA :IND_MSG_AREA);

Output

DSNACICS places the return code from DSNACICS execution in the return-code
parameter. If the value of the return code is non-zero, DSNACICS puts its own
error messages and any error messages that are generated by CICS and the
DSNACICX user exit routine in the msg-area parameter.

The COMMAREA parameter contains the COMMAREA for the CICS server
program that DSNACICS calls. The COMMAREA parameter has a VARCHAR
type. Therefore, if the server program puts data other than character data in the
COMMAREA, that data can become corrupted by code page translation as it is
passed to the caller. To avoid code page translation, you can change the
COMMAREA parameter in the CREATE PROCEDURE statement for DSNACICS to
VARCHAR(32704) FOR BIT DATA. However, if you do so, the client program
might need to do code page translation on any character data in the COMMAREA
to make it readable.

Restrictions

Because DSNACICS uses the distributed program link (DPL) function to invoke
CICS server programs, server programs that you invoke through DSNACICS can
contain only the CICS API commands that the DPL function supports. The list of
supported commands is documented in CICS Transaction Server for z/OS
Application Programming Reference.

DSNACICS does not propagate the transaction identifier (XID) of the thread. The
stored procedure runs under a new private context rather than under the native
context of the task that called it.

Debugging

If you receive errors when you call DSNACICS, ask your system administrator to
add a DSNDUMP DD statement in the startup procedure for the address space in
which DSNACICS runs. The DSNDUMP DD statement causes DB2 to generate an

SVC dump whenever DSNACICS issues an error message.

858 Administration Guide

|
|
|



The DSNACICX user exit routine
Use DSNACICX to change the values of DSNACICS input parameters before you
pass those parameters to CICS.

General considerations

The DSNACICX exit routine must follow these rules:
v It can be written in assembler, COBOL, PL/I, or C.
v It must follow the Language Environment calling linkage when the caller is an

assembler language program.
v The load module for DSNACICX must reside in an authorized program library

that is in the STEPLIB concatenation of the stored procedure address space
startup procedure.
You can replace the default DSNACICX in the prefix.SDSNLOAD, library, or you
can put the DSNACICX load module in a library that is ahead of
prefix.SDSNLOAD in the STEPLIB concatenation. It is recommended that you
put DSNACICX in the prefix.SDSNEXIT library. Sample installation job
DSNTIJEX contains JCL for assembling and link-editing the sample source code
for DSNACICX into prefix.SDSNEXIT. You need to modify the JCL for the
libraries and the compiler that you are using.

v The load module must be named DSNACICX.
v The exit routine must save and restore the caller’s registers. Only the contents of

register 15 can be modified.
v It must be written to be reentrant and link-edited as reentrant.
v It must be written and link-edited to execute as AMODE(31),RMODE(ANY).
v DSNACICX can contain SQL statements. However, if it does, you need to

change the DSNACICS procedure definition to reflect the appropriate SQL access
level for the types of SQL statements that you use in the user exit routine.

Specifying the exit routine

DSNACICS always calls an exit routine named DSNACICX. DSNACICS calls your
DSNACICX exit routine if it finds it before the default DSNACICX exit routine.
Otherwise, it calls the default DSNACICX exit routine.

When the exit routine is taken

The DSNACICX exit routine is taken whenever DSNACICS is called. The exit
routine is taken before DSNACICS invokes the CICS server program.

Loading a new version of the exit routine

DB2 loads DSNACICX only once, when DSNACICS is first invoked. If you change
DSNACICX, you can load the new version by quiescing and then resuming the
WLM application environment for the stored procedure address space in which
DSNACICS runs:
VARY WLM,APPLENV=DSNACICS-applenv-name,QUIESCE VARY
WLM,APPLENV=DSNACICS-applenv-name,RESUME

Appendix B. Stored procedures for administration 859



Parameter list

At invocation, registers are set as described in the following table

Table 180. Registers at invocation of DSNACICX

Register Contains

1 Address of pointer to the exit parameter list
(XPL).

13 Address of the register save area.

14 Return address.

15 Address of entry point of exit routine.

The following table shows the contents of the DSNACICX exit parameter list, XPL.
Member DSNDXPL in data set prefix.SDSNMACS contains an assembler language
mapping macro for XPL. Sample exit routine DSNASCIO in data set
prefix.SDSNSAMP includes a COBOL mapping macro for XPL.

Table 181. Contents of the XPL exit parameter list

Name Hex offset Data type Description

Corresponding
DSNACICS
parameter

XPL_EYEC 0 Character, 4 bytes Eye-catcher: ’XPL ’

XPL_LEN 4 Character, 4 bytes Length of the exit
parameter list

XPL_LEVEL 8 4-byte integer Level of the
parameter list

parm-level

XPL_PGMNAME C Character, 8 bytes Name of the CICS
server program

pgm-name

XPL_CICSAPPLID 14 Character, 8 bytes CICS VTAM applid CICS-applid

XPL_CICSLEVEL 1C 4-byte integer Level of CICS code CICS-level

XPL_CONNECTTYPE 20 Character, 8 bytes Specific or generic
connection to CICS

connect-type

XPL_NETNAME 28 Character, 8 bytes Name of the specific
connection to CICS

netname

XPL_MIRRORTRAN 30 Character, 8 bytes Name of the mirror
transaction that
invokes the CICS
server program

mirror-trans

XPL_COMMAREAPTR 38 Address, 4 bytes Address of the
COMMAREA

1

XPL_COMMINLEN 3C 4-byte integer Length of the
COMMAREA that is
passed to the server
program

2

XPL_COMMTOTLEN 40 4-byte integer Total length of the
COMMAREA that is
returned to the caller

commarea-total-len

XPL_SYNCOPTS 44 4-byte integer Syncpoint control
option

sync-opts

860 Administration Guide



Table 181. Contents of the XPL exit parameter list (continued)

Name Hex offset Data type Description

Corresponding
DSNACICS
parameter

XPL_RETCODE 48 4-byte integer Return code from the
exit routine

return-code

XPL_MSGLEN 4C 4-byte integer Length of the output
message area

return-code

XPL_MSGAREA 50 Character, 256 bytes Output message area msg-area3

Notes:

1. The area that this field points to is specified by DSNACICS parameter COMMAREA. This area does not include
the length bytes.

2. This is the same value that the DSNACICS caller specifies in the length bytes of the COMMAREA parameter.

3. Although the total length of msg-area is 500 bytes, DSNACICX can use only 256 bytes of that area.

DSNLEUSR stored procedure
The DSNLEUSR stored procedure is a sample stored procedure. Use this stored
procedure to store encrypted values in the translated authorization ID
(NEWAUTHID) and password fields of the SYSIBM.USERNAMES table.

You provide all the values for a SYSIBM.USERNAMES row as input to
DSNLEUSR. DSNLEUSR encrypts the translated authorization ID and password
values before it inserts the row into SYSIBM.USERNAMES.

Environment

DSNLEUSR has the following requirements:
v The DB2 subsystem needs to be in new-function mode.
v DSNLEUSR runs in a WLM-established stored procedure address space.
v z/OS Integrated Cryptographic Service Facility (ICSF) must be installed,

configured, and active. The services that ICSF calls that are used by this stored
procedure are CSNBCKM and CSNBENC.

Authorization

To execute the CALL DSNLEUSR statement, the owner of the package or plan that
contains the CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on the package for DSNLEUSR
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

The owner of the package or plan that contains the CALL statement must also
have INSERT authority on SYSIBM.USERNAMES.

Appendix B. Stored procedures for administration 861

|
|
|



Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL DSNLEUSR ( Type, AuthID ,
NULL

LinkName ,
NULL

NewAuthID ,
NULL

Password ,
NULL

�

� ReturnCode, MsgArea ) ��

Option descriptions

Type
Specifies the value that is to be inserted into the TYPE column of
SYSIBM.USERNAMES.

This is an input parameter of type CHAR(1).

AuthID
Specifies the value that is to be inserted into the AUTHID column of
SYSIBM.USERNAMES.

This is an input parameter of type VARCHAR(128). If you specify a null value,
DSNLEUSR does not insert a value for AuthID .

LinkName
Specifies the value that is to be inserted into the LINKNAME column of
SYSIBM.USERNAMES.

This is an input parameter of type CHAR(8). Although the LINKNAME field
of SYSIBM.USERNAMES is VARCHAR(24), this value is restricted to a
maximum of 8 bytes.

If you specify a null value, DSNLEUSR does not insert a value for LinkName .

NewAuthID
Specifies the value that is to be inserted into the NEWAUTHID column of
SYSIBM.USERNAMES.

This is an input parameter of type VARCHAR(54). The NEWAUTHID field is
type VARCHAR(54) to allow for expansion during encryption.

If you specify a null value, DSNLEUSR does not insert a value for NewAuthID.

Password
Specifies the value that is to be inserted into the PASSWORD column of
SYSIBM.USERNAMES.

This is an input parameter of type CHAR(8). Although the PASSWORD field of
SYSIBM.USERNAMES is VARCHAR(24), your input value is restricted to 8 or
fewer bytes.

If you specify a null value, DSNLEUSR does not insert a value for Password.

ReturnCode
The return code from DSNLEUSR execution. Possible values are:

0 DSNLEUSR executed successfully.

862 Administration Guide

|
|
|

|
|



8 The request to encrypt the translated authorization ID or password
failed. MsgArea contains the following fields:
v An unformatted SQLCA that describes the error.
v A string that contains a DSNL045I message with the ICSF return

code, the ICSF reason code, and the ICSF function that failed. The
string immediately follows the SQLCA field and does not begin with
a length field.

12 The insert operation for the SYSIBM.USERNAMES row failed. MsgArea
contains an SQLCA that describes the error.

16 DSNLEUSR terminated because the DB2 subsystem is not in
new-function mode. MsgArea contains an SQLCA that describes the
error.

This is an output parameter of type INTEGER.

MsgArea
Contains information about DSNLEUSR execution. The information that is
returned is described in the ReturnCode description.

This is an output parameter of type VARCHAR(500).

Example

The following COBOL example shows variable declarations and an SQL CALL for
inserting a row into SYSIBM.USERNAMES with an encrypted translated
authorization ID and an encrypted password.
WORKING-STORAGE SECTION....
***********************
* DSNLEUSR PARAMETERS *
***********************
01 TYPE1 PICTURE X(1).
01 AUTHID.

49 AUTHID-LN PICTURE S9(4) COMP.
49 AUTHID-DTA PICTURE X(128).

01 LINKNAME PICTURE X(8).
01 NEWAUTHID.

49 NEWAUTHID-LN PICTURE S9(4) COMP.
49 NEWAUTHID-DTA PICTURE X(54).

01 PASSWORD1 PICTURE X(8).
01 RETURNCODE PICTURE S9(9) COMP VALUE +0.
01 MSGAREA.

49 MSGAREA-LN PICTURE S9(4) COMP VALUE 500.
49 MSGAREA-DTA PICTURE X(500) VALUE SPACES.

*****************************************
* INDICATOR VARIABLES. *
*****************************************
01 TYPE-IND PICTURE S9(4) COMP-4.
01 AUTHID-IND PICTURE S9(4) COMP-4.
01 LINKNAME-IND PICTURE S9(4) COMP-4.
01 NEWAUTHID-IND PICTURE S9(4) COMP-4.
01 PASSWORD-IND PICTURE S9(4) COMP-4.
01 RETURNCODE-IND PICTURE S9(4) COMP-4.
01 MSGAREA-IND PICTURE S9(4) COMP-4.
PROCEDURE DIVISION.
?
*********************************************************
* SET VALUES FOR DSNLEUSR INPUT PARAMETERS. *
* THE SET OF INPUT VALUES REPRESENTS A ROW THAT *
* DSNLEUSR INSERTS INTO SYSIBM.USERNAMES WITH *
* ENCRYPTED NEWAUTHID AND PASSWORD VALUES. *

Appendix B. Stored procedures for administration 863

||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



*********************************************************
MOVE 'O' TO TYPE1.
MOVE 0 TO AUTHID-LN.
MOVE SPACES TO AUTHID-DTA.
MOVE 'SYEC1B ' TO LINKNAME.
MOVE 4 TO NEWAUTHID-LN.
MOVE 'MYID' TO NEWAUTHID-DTA.
MOVE 'MYPASS' TO PASSWORD1.

*****************
* CALL DSNLEUSR *
*****************

EXEC SQL
CALL SYSPROC.DSNLEUSR
(:TYPE1 :TYPE-IND,
:AUTHID :AUTHID-IND,
:LINKNAME :LINKNAME-IND,
:NEWAUTHID :NEWAUTHID-IND,
:PASSWORD1 :PASSWORD-IND,
:RETURNCODE :RETURNCODE-IND,
:MSGAREA :MSGAREA-IND)

END-EXEC.

Output

If DSNLEUSR executes successfully, it inserts a row into SYSIBM.USERNAMES
with encrypted values for the NEWAUTHID and PASSWORD columns and returns
0 for the ReturnCode parameter value. If DSNLEUSR does not execute successfully,
it returns a non-zero value for the ReturnCode value and additional diagnostic

information for the MsgArea parameter value.
Related concepts

SQL communication area (SQLCA) (SQL Reference)
Related reference

ICSF System Programmer’s Guide

DSNAIMS stored procedure
DSNAIMS is a stored procedure that allows DB2 applications to invoke IMS
transactions and commands easily, without maintaining their own connections to
IMS.

DSNAIMS uses the IMS Open Transaction Manager Access (OTMA) API to
connect to IMS and execute the transactions.

Environment

DSNAIMS runs in a WLM-established stored procedures address space. DSNAIMS
requires DB2 with RRSAF enabled and IMS version 7 or later with OTMA Callable
Interface enabled.

To use a two-phase commit process, you must have IMS Version 8 with UQ70789
or later.

Authorization

To set up and run DSNAIMS, you must be authorized the perform the following
steps:

864 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.sqlref/db2z_sqlcommunicationsareaintro.htm#db2z_sqlcommunicationsareaintro
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/csfb2z80/CCONTENTS


1. Use the job DSNTIJIM to issue the CREATE PROCEDURE statement for
DSNAIMS and to grant the execution of DSNAIMS to PUBLIC. DSNTIJIM is
provided in the SDSNSAMP data set. You need to customize DSNTIJIM to fit
the parameters of your system.

2. Ensure that OTMA C/I is initialized. See IMS Open Transaction Manager Access
Guide and Reference for an explanation of the C/I initialization.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.DSNAIMS ( dsnaims-function, dsnaims-2pc ,
NULL

xcf-group-name, �

� xcf-ims-name, racf-userid, racf-groupid ,
NULL

ims-lterm ,
NULL

ims-modname ,
NULL

�

� ims-tran-name ,
NULL

ims-data-in ,
NULL

ims-data-out ,
NULL

otma-tpipe-name ,
NULL

�

� otma-dru-name ,
NULL

user-data-in ,
NULL

user-data-out, status-message, return-code ) ��

Option descriptions

dsnaims-function
A string that indicates whether the transaction is send-only, receive-only, or
send-and-receive. Possible values are:

SENDRECV
Sends and receives IMS data. SENDRECV invokes an IMS transaction
or command and returns the result to the caller. The transaction can be
an IMS full function or a fast path. SENDRECV does not support
multiple iterations of a conversational transaction

SEND Sends IMS data. SEND invokes an IMS transaction or command, but
does not receive IMS data. If result data exists, it can be retrieved with
the RECEIVE function. A send-only transaction cannot be an IMS fast
path transaction or a conversations transaction.

RECEIVE
Receives IMS data. The data can be the result of a transaction or
command initiated by the SEND function or an unsolicited output
message from an IMS application. The RECEIVE function does not
initiate an IMS transaction or command.

dsnaims-2pc
Specifies whether to use a two-phase commit process to perform the
transaction syncpoint service. Possible values are Y or N. For N, commits and
rollbacks that are issued by the IMS transaction do not affect commit and
rollback processing in the DB2 application that invokes DSNAIMS.
Furthermore, IMS resources are not affected by commits and rollbacks that are

Appendix B. Stored procedures for administration 865



issued by the calling DB2 application. If you specify Y, you must also specify
SENDRECV. To use a two-phase commit process, you must set the IMS control
region parameter (RRS) to Y.

This parameter is optional. The default is N.

xcf-group-name
Specifies the XCF group name that the IMS OTMA joins. You can obtain this
name by viewing the GRNAME parameter in IMS PROCLIB member
DFSPBxxx or by using the IMS command /DISPLAY OTMA.

xcf-ims-name
Specifies the XCF member name that IMS uses for the XCF group. If IMS is not
using the XRF or RSR feature, you can obtain the XCF member name from the
OTMANM parameter in IMS PROCLIB member DFSPBxxx. If IMS is using the
XRF or RSR feature, you can obtain the XCF member name from the USERVAR
parameter in IMS PROCLIB member DFSPBxxx.

racf-userid
Specifies the RACF user ID that is used for IMS to perform the transaction or
command authorization checking. This parameter is required if DSNAIMS is
running APF-authorized. If DSNAIMS is running unauthorized, this parameter
is ignored and the EXTERNAL SECURITY setting for the DSNAIMS stored
procedure definition determines the user ID that is used by IMS.

racf-groupid
Specifies the RACF group ID that is used for IMS to perform the transaction or
command authorization checking. This field is used for stored procedures that
are APF-authorized. It is ignored for other stored procedures.

ims-lterm
Specifies an IMS LTERM name that is used to override the LTERM name in the
I/O program communication block of the IMS application program.

This field is used as an input and an output field:
v For SENDRECV, the value is sent to IMS on input and can be updated by

IMS on output.
v For SEND, the parameter is IN only.
v For RECEIVE, the parameter is OUT only.

An empty or NULL value tells IMS to ignore the parameter.

ims-modname
Specifies the formatting map name that is used by the server to map output
data streams, such as 3270 streams. Although this invocation does not have
IMS MFS support, the input MODNAME can be used as the map name to
define the output data stream. This name is an 8-byte message output
descriptor name that is placed in the I/O program communication block.
When the message is inserted, IMS places this name in the message prefix with
the map name in the program communication block of the IMS application
program.

For SENDRECV, the value is sent to IMS on input, and can be updated on
output. For SEND, the parameter is IN only. For RECEIVE it is OUT only. IMS
ignores the parameter when it is an empty or NULL value.

ims-tran-name
Specifies the name of an IMS transaction or command that is sent to IMS. If
the IMS command is longer than eight characters, specify the first eight
characters (including the ″/″ of the command). Specify the remaining

866 Administration Guide

|
|
|

|



characters of the command in the ims-tran-name parameter. If you use an empty
or NULL value, you must specify the full transaction name or command in the
ims-data-in parameter.

ims-data-in
Specifies the data that is sent to IMS. This parameter is required in each of the
following cases:
v Input data is required for IMS
v No transaction name or command is passed in ims-tran-name

v The command is longer than eight characters

This parameter is ignored when for RECEIVE functions.

ims-data-out
Data returned after successful completion of the transaction. This parameter is
required for SENDRECV and RECEIVE functions. The parameter is ignored for
SEND functions.

otma-tpipe-name
Specifies an 8-byte user-defined communication session name that IMS uses for
the input and output data for the transaction or the command in a SEND or a
RECEIVE function. If the otma_tpipe_name parameter is used for a SEND
function to generate an IMS output message, the same otma_pipe_name must
be used to retrieve output data for the subsequent RECEIVE function.

otma-dru-name
Specifies the name of an IMS user-defined exit routine, OTMA destination
resolution user exit routine, if it is used. This IMS exit routine can format part
of the output prefix and can determine the output destination for an IMS
ALT_PCB output. If an empty or null value is passed, IMS ignores this
parameter.

user-data-in
This optional parameter contains any data that is to be included in the IMS
message prefix, so that the data can be accessed by IMS OTMA user exit
routines (DFSYIOE0 and DFSYDRU0) and can be tracked by IMS log records.
IMS applications that run in dependent regions do not access this data. The
specified user data is not included in the output message prefix. You can use
this parameter to store input and output correlator tokens or other information.
This parameter is ignored for RECEIEVE functions.

user-data-out
On output, this field contains the user-data-in in the IMS output prefix. IMS
user exit routines (DFSYIOE0 and DFSYDRU0) can also create user-data-out for
SENDRECV and RECEIVE functions. The parameter is not updated for SEND
functions.

status-message
Indicates any error message that is returned from the transaction or command,
OTMA, RRS, or DSNAIMS.

return-code
Indicates the return code that is returned for the transaction or command,
OTMA, RRS, or DSNAIMS.

Examples

The following examples show how to call DSNAIMS.

Example 1: Sample parameters for executing an IMS command:

Appendix B. Stored procedures for administration 867



CALL SYSPROC.DSNAIMS("SENDRECV", "N", "IMS7GRP", "IMS7TMEM",
"IMSCLNM", "", "", "", "", "",
"/LOG Hello World.", ims_data_out, "", "", "",
user_out, error_message, rc)

Example 2: Sample parameters for executing an IMS IVTNO transaction:
CALL SYSPROC.DSNAIMS("SENDRECV", "N", "IMS7GRP", "IMS7TMEM",

"IMSCLNM", "", "", "", "", "",
"IVTNO DISPLAY LAST1 "", ims_data_out
"", "", "", user_out, error_message, rc)

Example 3: Sample parameters for send-only IMS transaction:
CALL SYSPROC.DSNAIMS("SEND", "N", "IMS7GRP", "IMS7TMEM",

"IMSCLNM", "", "", "", "", "",
"IVTNO DISPLAY LAST1 "", ims_data_out,
"DSNAPIPE", "", "", user_out, error_message, rc)

Example 4: Sample parameters for receive-only IMS transaction:
CALL SYSPROC.DSNAIMS("RECEIVE", "N", "IMS7GRP", "IMS7TMEM",

"IMSCLNM", "", "", "", "", "",
"IVTNO DISPLAY LAST1 "", ims_data_out,
"DSNAPIPE", "", "", user_out, error_message, rc)

Connecting to multiple IMS subsystems with DSNAIMS

By default DSNAIMS connects to only one IMS subsystem at a time. The first
request to DSNAIMS determines to which IMS subsystem the stored procedure
connects. DSNAIMS attempts to reconnect to IMS only in the following cases:
v IMS is restarted and the saved connection is no longer valid
v WLM loads another DSNAIMS task

To connect to multiple IMS subsystems simultaneously, perform the following
steps:
1. Make a copy of the DB2-supplied job DSNTIJIM and customize it to your

environment.
2. Change the procedure name from SYSPROCC.DSNAIMS to another name, such

as DSNAIMSB.
3. Do no change the EXTERNAL NAME option. Leave it as DSNAIMS.
4. Run the new job to create a second instance of the stored procedure.
5. To ensure that you connect to the intended IMS target, consistently use the XFC

group and member names that you associate with each stored procedure
instance. For example:
CALL SYSPROC.DSNAIMS("SENDRECV", "N", "IMS7GRP", "IMS7TMEM", ...)
CALL SYSPROC.DSNAIMSB("SENDRECV", "N", "IMS8GRP", "IMS8TMEM", ...)

DSNAIMS2 stored procedure
DSNAIMS2 is a stored procedure that allows DB2 applications to invoke IMS
transactions and commands easily, without maintaining their own connections to
IMS. DSNAIMS2 includes multi-segment input support for IMS transactions.

DSNAIMS2 uses the IMS Open Transaction Manager Access (OTMA) API
to connect to IMS and execute the transactions.

868 Administration Guide

|

|
|
|

|
|



When you define the DSNAIMS2 stored procedure to your DB2 subsystem, you
can use the name DSNAIMS in your application if you prefer. Customize DSNTIJI2
to define the stored procedure to your DB2 subsystem as DSNAIMS; however, the
EXTERNAL NAME option must still be DSNAIMS2.

Environment

DSNAIMS2 runs in a WLM-established stored procedures address space.
DSNAIMS2 requires DB2 with RRSAF enabled and IMS version 7 or later with
OTMA Callable Interface enabled.

To use a two-phase commit process, you must have IMS Version 8 with UQ70789
or later.

Authorization

To set up and run DSNAIMS2, you must be authorized the perform the following
steps:
1. Use the job DSNTIJI2 to issue the CREATE PROCEDURE statement for

DSNAIMS2 and to grant the execution of DSNAIMS2 to PUBLIC. DSNTIJI2 is
provided in the SDSNSAMP data set. You need to customize DSNTIJI2 to fit
the parameters of your system.

2. Ensure that OTMA C/I is initialized. See IMS Open Transaction Manager Access
Guide and Reference for an explanation of the C/I initialization.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.DSNAIMS2 ( dsnaims-function, dsnaims-2pc ,
NULL

xcf-group-name, �

� xcf-ims-name, racf-userid, racf-groupid ,
NULL

ims-lterm ,
NULL

ims-modname ,
NULL

�

� ims-tran-name ,
NULL

ims-data-in ,
NULL

ims-data-out ,
NULL

otma-tpipe-name ,
NULL

�

� otma-dru-name ,
NULL

user-data-in ,
NULL

user-data-out, status-message, otma-data-inseg ,
NULL

�

� return-code ) ��

Option descriptions

dsnaims-function
A string that indicates whether the transaction is send-only, receive-only, or
send-and-receive. Possible values are:

SENDRECV
Sends and receives IMS data. SENDRECV invokes an IMS transaction
or command and returns the result to the caller. The transaction can be

Appendix B. Stored procedures for administration 869

|
|
|
|

|

|
|
|

|
|

|

|
|

|
|
|
|

|
|

|

|
|
|

|||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||
|

|
|||||||||
|
||

|

|
|
|

|
|
|



an IMS full function or a fast path. SENDRECV does not support
multiple iterations of a conversational transaction

SEND Sends IMS data. SEND invokes an IMS transaction or command, but
does not receive IMS data. If result data exists, it can be retrieved with
the RECEIVE function. A send-only transaction cannot be an IMS fast
path transaction or a conversations transaction.

RECEIVE
Receives IMS data. The data can be the result of a transaction or
command initiated by the SEND function or an unsolicited output
message from an IMS application. The RECEIVE function does not
initiate an IMS transaction or command.

dsnaims-2pc
Specifies whether to use a two-phase commit process to perform the
transaction syncpoint service. Possible values are Y or N. For N, commits and
rollbacks that are issued by the IMS transaction do not affect commit and
rollback processing in the DB2 application that invokes DSNAIMS2.
Furthermore, IMS resources are not affected by commits and rollbacks that are
issued by the calling DB2 application. If you specify Y, you must also specify
SENDRECV. To use a two-phase commit process, you must set the IMS control
region parameter (RRS) to Y.

This parameter is optional. The default is N.

xcf-group-name
Specifies the XCF group name that the IMS OTMA joins. You can obtain this
name by viewing the GRNAME parameter in IMS PROCLIB member
DFSPBxxx or by using the IMS command /DISPLAY OTMA.

xcf-ims-name
Specifies the XCF member name that IMS uses for the XCF group. If IMS is not
using the XRF or RSR feature, you can obtain the XCF member name from the
OTMANM parameter in IMS PROCLIB member DFSPBxxx. If IMS is using the
XRF or RSR feature, you can obtain the XCF member name from the USERVAR
parameter in IMS PROCLIB member DFSPBxxx.

racf-userid
Specifies the RACF user ID that is used for IMS to perform the transaction or
command authorization checking. This parameter is required if DSNAIMS2 is
running APF-authorized. If DSNAIMS2 is running unauthorized, this
parameter is ignored and the EXTERNAL SECURITY setting for the
DSNAIMS2 stored procedure definition determines the user ID that is used by
IMS.

racf-groupid
Specifies the RACF group ID that is used for IMS to perform the transaction or
command authorization checking. This field is used for stored procedures that
are APF-authorized. It is ignored for other stored procedures.

ims-lterm
Specifies an IMS LTERM name that is used to override the LTERM name in the
I/O program communication block of the IMS application program.

This field is used as an input and an output field:
v For SENDRECV, the value is sent to IMS on input and can be updated by

IMS on output.
v For SEND, the parameter is IN only.
v For RECEIVE, the parameter is OUT only.

870 Administration Guide

|
|

||
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|

|

|



An empty or NULL value tells IMS to ignore the parameter.

ims-modname
Specifies the formatting map name that is used by the server to map output
data streams, such as 3270 streams. Although this invocation does not have
IMS MFS support, the input MODNAME can be used as the map name to
define the output data stream. This name is an 8-byte message output
descriptor name that is placed in the I/O program communication block.
When the message is inserted, IMS places this name in the message prefix with
the map name in the program communication block of the IMS application
program.

For SENDRECV, the value is sent to IMS on input, and can be updated on
output. For SEND, the parameter is IN only. For RECEIVE it is OUT only. IMS
ignores the parameter when it is an empty or NULL value.

ims-tran-name
Specifies the name of an IMS transaction or command that is sent to IMS. If
the IMS command is longer than eight characters, specify the first eight
characters (including the ″/″ of the command). Specify the remaining
characters of the command in the ims-tran-name parameter. If you use an empty
or NULL value, you must specify the full transaction name or command in the
ims-data-in parameter.

ims-data-in
Specifies the data that is sent to IMS. This parameter is required in each of the
following cases:
v Input data is required for IMS
v No transaction name or command is passed in ims-tran-name

v The command is longer than eight characters

This parameter is ignored when for RECEIVE functions.

ims-data-out
Data returned after successful completion of the transaction. This parameter is
required for SENDRECV and RECEIVE functions. The parameter is ignored for
SEND functions.

otma-tpipe-name
Specifies an 8-byte user-defined communication session name that IMS uses for
the input and output data for the transaction or the command in a SEND or a
RECEIVE function. If the otma_tpipe_name parameter is used for a SEND
function to generate an IMS output message, the same otma_pipe_name must
be used to retrieve output data for the subsequent RECEIVE function.

otma-dru-name
Specifies the name of an IMS user-defined exit routine, OTMA destination
resolution user exit routine, if it is used. This IMS exit routine can format part
of the output prefix and can determine the output destination for an IMS
ALT_PCB output. If an empty or null value is passed, IMS ignores this
parameter.

user-data-in
This optional parameter contains any data that is to be included in the IMS
message prefix, so that the data can be accessed by IMS OTMA user exit
routines (DFSYIOE0 and DFSYDRU0) and can be tracked by IMS log records.
IMS applications that run in dependent regions do not access this data. The
specified user data is not included in the output message prefix. You can use
this parameter to store input and output correlator tokens or other information.
This parameter is ignored for RECEIEVE functions.

Appendix B. Stored procedures for administration 871

|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|

|

|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|



user-data-out
On output, this field contains the user-data-in in the IMS output prefix. IMS
user exit routines (DFSYIOE0 and DFSYDRU0) can also create user-data-out for
SENDRECV and RECEIVE functions. The parameter is not updated for SEND
functions.

status-message
Indicates any error message that is returned from the transaction or command,
OTMA, RRS, or DSNAIMS2.

otma-data-inseg
Specifies the number of segments followed by the lengths of the segments to
be sent to IMS. All values should be separated by semicolons. This field is
required to send multi-segment input to IMS. For single-segment transactions
and commands, set the field to NULL, ″0″ or ″0;″.

return-code
Indicates the return code that is returned for the transaction or command,
OTMA, RRS, or DSNAIMS2.

Examples

The following examples show how to call DSNAIMS2.

Example 1: Sample parameters for executing a multi-segment IMS transaction:
CALL SYSPROC.DSNAIMS2("SEND","N","IMS7GRP","IMS7TMEM",

"IMSCLNM","","","","","",
"PART 1ST SEGMENT FROM CI 2ND SEGMENT FROM CI ",
ims_data_out,"","","",user_out, error_message,
"2;25;20",rc)

Example 2: Sample parameters for executing a single-segment IMS IVTNO
transaction:
CALL SYSPROC.DSNAIMS2("SEND","N","IMS7GRP","IMS7TMEM",

"IMSCLNM","","","","","IVTNO",
"DISPLAY LAST1",ims_data_out,"","","",
user_out, error_message,NULL,rc)

Connecting to multiple IMS subsystems with DSNAIMS2

By default DSNAIMS2 connects to only one IMS subsystem at a time. The first
request to DSNAIMS2 determines to which IMS subsystem the stored procedure
connects. DSNAIMS2 attempts to reconnect to IMS only in the following cases:
v IMS is restarted and the saved connection is no longer valid
v WLM loads another DSNAIMS2 task

To connect to multiple IMS subsystems simultaneously, perform the following
steps:
1. Make a copy of the DB2-supplied job DSNTIJI2 and customize it to your

environment.
2. Change the procedure name from SYSPROCC.DSNAIMS2 to another name,

such as DSNAIMS2B.
3. Do not change the EXTERNAL NAME option. Leave it as DSNAIMS2.
4. Change the name of the stored procedure in the grant statement in job

DSNTIJI2.
5. Run the new job to create a second instance of the stored procedure.

872 Administration Guide

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|

|

|

|
|
|
|
|

|
|

|
|
|
|

|

|
|
|

|

|

|
|

|
|

|
|

|

|
|

|



6. To ensure that you connect to the intended IMS target, consistently use the XFC
group and member names that you associate with each stored procedure
instance. For example:
CALL SYSPROC.DSNAIMS2("SENDRECV", "N", "IMS7GRP", "IMS7TMEM", ...)
CALL SYSPROC.DSNAIMS2B("SENDRECV", "N", "IMS8GRP", "IMS8TMEM", ...)

ADMIN_COMMAND_DB2 stored procedure
The SYSPROC.ADMIN_COMMAND_DB2 stored procedure executes one or more
DB2 commands on a connected DB2 subsystem, or on a DB2 data sharing group
member. This stored procedure also returns the command output messages.

Environment

ADMIN_COMMAND_DB2 must run in a WLM-established stored procedure
address space.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges on each
package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNADMCD
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

To execute the DB2 command, you must use a privilege set that includes the
authorization to execute the DB2 command, as described in the DB2 Command
Reference.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_COMMAND_DB2 ( DB2-command, command-length, parse-type, �

� DB2-member ,
NULL

commands-executed, IFI-return-code, IFI-reason-code, excess-bytes, �

� group-IFI-reason-code, group-excess-bytes, return-code, message ) ��

Option descriptions

DB2-command
Specifies any DB2 command such as -DISPLAY THREAD(*), or multiple DB2

Appendix B. Stored procedures for administration 873

|
|
|

|
|

|

|

|
|
|

|

|

|
|

|

|
|
|

|

|

|

|

|
|
|

|

|
|
|

|||||||||||||||
|

|
|||||||||||||||||||||
|

|
|||||||||||||||
|
||

|

|
|



commands. With multiple DB2 commands, use ’\0’ to delimit the commands.
The DB2 command is executed using the authorization ID of the user who
invoked the stored procedure.

This is an input parameter of type VARCHAR(32704) and cannot be null.

command-length
Specifies the length of the DB2 command or commands. When multiple DB2
commands are specified in DB2-command, command-length is the sum of all of
those commands, including the ’\0’ command delimiters.

This is an input parameter of type INTEGER and cannot be null.

parse-type
Identifies the type of output message parsing requested.

If you specify a parse type, ADMIN_COMMAND_DB2 parses the command
output messages and provides the formatted result in a global temporary table.
Possible values are:

BP Parse “-DISPLAY BUFFERPOOL” command output messages.

DB Parse “-DISPLAY DATABASE” command output messages and return
database information.

TS Parse “-DISPLAY DATABASE(...) SPACENAM(...)” command output
messages and return table spaces information.

IX Parse “-DISPLAY DATABASE(...) SPACENAM(...)” command output
messages and return index spaces information.

THD Parse “-DISPLAY THREAD” command output messages.

UT Parse “-DISPLAY UTILITY” command output messages.

GRP Parse “-DISPLAY GROUP” command output messages.

DDF Parse “-DISPLAY DDF” command output messages.

Any other value
Do not parse any command output messages.

This is an input parameter of type VARCHAR(3) and cannot be null.

DB2-member
Specifies the name of a single data sharing group member on which an IFI
request is to be executed

This is an input parameter of type VARCHAR(8).

commands-executed
Provides the number of commands that were executed

This is an output parameter of type INTEGER.

IFI-return-code
Provides the IFI return code

This is an output parameter of type INTEGER.

IFI-reason-code
Provides the IFI reason code

This is an output parameter of type INTEGER.

excess-bytes
Indicates the number of bytes that did not fit in the return area

874 Administration Guide

|
|
|

|

|
|
|
|

|

|
|

|
|
|

||

||
|

||
|

||
|

||

||

||

||

|
|

|

|
|
|

|

|
|

|

|
|

|

|
|

|

|
|



This is an output parameter of type INTEGER.

group-IFI-reason-code
Provides the reason code for the situation in which an IFI call requests data
from members of a data sharing group, and not all the data is returned from
group members.

This is an output parameter of type INTEGER.

group-excess-bytes
Indicates the total length of data that was returned from other data sharing
group members and did not fit in the return area

This is an output parameter of type INTEGER.

return-code
Provides the return code from the stored procedure. Possible values are:

0 The stored procedure did not encounter an SQL error during
processing. Check the IFI-return-code value to determine whether the
DB2 command issued using the instrumentation facility interface (IFI)
was successful or not.

12 The stored procedure encountered an SQL error during processing. The
message output parameter contains messages describing the SQL error.

This is an output parameter of type INTEGER.

message
Contains messages describing the SQL error encountered by the stored
procedure. If no SQL error occurred, then no message is returned.

The first messages in this area are generated by the stored procedure. Messages
that are generated by DB2 might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke
ADMIN_COMMAND_DB2:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_COMMAND_DB2 parameters */
char command[32705]; /* DB2 command */
short int ind_command; /* Indicator variable */
long int lencommand; /* DB2 command length */
short int ind_lencommand; /* Indicator variable */
char parsetype[4]; /* Parse type required */
short int ind_parsetype; /* Indicator variable */
char mbrname[9]; /* DB2 data sharing group */

/* member name */
short int ind_mbrname; /* Indicator variable */
long int excommands; /* Number of commands exec. */
short int ind_excommands; /* Indicator variable */

Appendix B. Stored procedures for administration 875

|

|
|
|
|

|

|
|
|

|

|
|

||
|
|
|

||
|

|

|
|
|

|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



long int retifca; /* IFI return code */
short int ind_retifca; /* Indicator variable */
long int resifca; /* IFI reason code */
short int ind_resifca; /* Indicator variable */
long int xsbytes; /* Excessive bytes */
short int ind_xsbytes; /* Indicator variable */
long int gresifca; /* IFI group reason code */
short int ind_gresifca; /* Indicator variable */
long int gxsbytes; /* Group excessive bytes */
short int ind_gxsbytes; /* Indicator variable */
long int retcd; /* Return code */
short int ind_retcd; /* Indicator variable */
char errmsg[1332]; /* Error message */
short int ind_errmsg; /* Indicator variable */

/* Result Set Locators */
volatile SQL TYPE IS RESULT_SET_LOCATOR * rs_loc1,

rs_loc2;

/* First result set row */
long int rownum; /* Sequence number of the */

/* table row */
char text[81]; /* Command output */

/* Second result set row */
long int ddfrownum; /* DDF table sequence */
char ddfstat[7]; /* DDF status */
char ddfloc[19]; /* DDF location */
char ddflunm[18]; /* DDF luname */
char ddfgenlu[18]; /* DDF generic lu */
char ddfv4ipaddr[18]; /* DDF IPv4 address */
char ddfv6ipaddr[40]; /* DDF IPv6 address */
short int ind_ddfv6ipaddr; /* Indicator variable */
long int ddftcpport; /* DDF tcpport */
long int ddfresport; /* DDF resport */
char ddfsqldom[46]; /* DDF sql domain */
char ddfrsyncdom[46]; /* DDF resync domain */
short int ind_ddfrsyncdom; /* Indicator variable */
long int ddfsecport; /* DDF secure port */
short int ind_ddfsecport; /* Indicator variable */
char ddfipname[9]; /* DDF IPNAME */
short int ind_ddfipname; /* Indicator variable */
char ddfaliasname1[19]; /* DDF alias 1 name */
short int ind_ddfaliasname1; /* Indicator variable */
long int ddfaliasport1; /* DDF alias 1 TCP/IP port */
short int ind_ddfaliasport1; /* Indicator variable */
long int ddfaliassecport1; /* DDF alias 1 secure port */
short int ind_ddfaliassecport1; /* Indicator variable */
char ddfaliasname2[19]; /* DDF alias 2 name */
short int ind_ddfaliasname2; /* Indicator variable */
long int ddfaliasport2; /* DDF alias 2 TCP/IP port */
short int ind_ddfaliasport2; /* Indicator variable */
long int ddfaliassecport2; /* DDF alias 2 secure port */
short int ind_ddfaliassecport2; /* Indicator variable */
char ddfaliasname3[19]; /* DDF alias 3 name */
short int ind_ddfaliasname3; /* Indicator variable */
long int ddfaliasport3; /* DDF alias 3 TCP/IP port */
short int ind_ddfaliasport3; /* Indicator variable */
long int ddfaliassecport3; /* DDF alias 3 secure port */
short int ind_ddfaliassecport3; /* Indicator variable */
char ddfaliasname4[19]; /* DDF alias 4 name */
short int ind_ddfaliasname4; /* Indicator variable */
long int ddfaliasport4; /* DDF alias 4 TCP/IP port */
short int ind_ddfaliasport4; /* Indicator variable */
long int ddfaliassecport4; /* DDF alias 4 secure port */
short int ind_ddfaliassecport4; /* Indicator variable */
char ddfaliasname5[19]; /* DDF alias 5 name */

876 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



short int ind_ddfaliasname5; /* Indicator variable */
long int ddfaliasport5; /* DDF alias 5 TCP/IP port */
short int ind_ddfaliasport5; /* Indicator variable */
long int ddfaliassecport5; /* DDF alias 5 secure port */
short int ind_ddfaliassecport5; /* Indicator variable */
char ddfaliasname6[19]; /* DDF alias 6 name */
short int ind_ddfaliasname6; /* Indicator variable */
long int ddfaliasport6; /* DDF alias 6 TCP/IP port */
short int ind_ddfaliasport6; /* Indicator variable */
long int ddfaliassecport6; /* DDF alias 6 secure port */
short int ind_ddfaliassecport6; /* Indicator variable */
char ddfaliasname7[19]; /* DDF alias 7 name */
short int ind_ddfaliasname7; /* Indicator variable */
long int ddfaliasport7; /* DDF alias 7 TCP/IP port */
short int ind_ddfaliasport7; /* Indicator variable */
long int ddfaliassecport7; /* DDF alias 7 secure port */
short int ind_ddfaliassecport7; /* Indicator variable */
char ddfaliasname8[19]; /* DDF alias 8 name */
short int ind_ddfaliasname8; /* Indicator variable */
long int ddfaliasport8; /* DDF alias 8 TCP/IP port */
short int ind_ddfaliasport8; /* Indicator variable */
long int ddfaliassecport8; /* DDF alias 8 secure port */
short int ind_ddfaliassecport8; /* Indicator variable */
char ddfmbripv4addr[18]; /* DDF DSG member IPv4 addr */
short int ind_ddfmbripv4addr; /* Indicator variable */
char ddfmbripv6addr[40]; /* DDF DSG member IPv6 addr */
short int ind_ddfmbripv6addr; /* Indicator variable */
EXEC SQL END DECLARE SECTION;

/******************************************************************/
/* Assign values to input parameters to execute the DB2 */
/* command "-DISPLAY DDF" */
/* Set the indicator variables to 0 for non-null input parameters */
/* Set the indicator variables to -1 for null input parameters */
/******************************************************************/
strcpy(command, "-DISPLAY DDF");
ind_command = 0;
lencommand = strlen(command);
ind_lencommand = 0;
strcpy(parsetype, "DDF");
ind_parsetype = 0;
ind_mbrname = -1;

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_COMMAND_DB2 */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_COMMAND_DB2

(:command :ind_command,
:lencommand :ind_lencommand,
:parsetype :ind_parsetype,
:mbrname :ind_mbrname,
:excommands :ind_excommands,
:retifca :ind_retifca,
:resifca :ind_resifca,
:xsbytes :ind_xsbytes,
:gresifca :ind_gresifca,
:gxsbytes :ind_gxsbytes,
:retcd :ind_retcd,
:errmsg :ind_errmsg);

/******************************************************************/
/* Retrieve result set(s) when the SQLCODE from the call is +466, */
/* which indicates that result sets were returned */
/******************************************************************/
if (SQLCODE == +466) /* Result sets were returned */
{

/* ESTABLISH A LINK BETWEEN EACH RESULT SET AND ITS LOCATOR */

Appendix B. Stored procedures for administration 877

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



EXEC SQL ASSOCIATE LOCATORS (:rs_loc1, :rs_loc2)
WITH PROCEDURE SYSPROC.ADMIN_COMMAND_DB2;

/* ASSOCIATE A CURSOR WITH EACH RESULT SET */
EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;
EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :rs_loc2;

/* PERFORM FETCHES USING C1 TO RETRIEVE ALL ROWS FROM THE */
/* FIRST RESULT SET */
EXEC SQL FETCH C1 INTO :rownum, :text;

while(SQLCODE == 0)
{

EXEC SQL FETCH C1 INTO :rownum, :text;
}

/* PERFORM FETCHES USING C2 TO RETRIEVE THE -DISPLAY DDF */
/* PARSED OUTPUT FROM THE SECOND RESULT SET */
EXEC SQL FETCH C2 INTO :ddfrownum, :ddfstat, :ddfloc,

:ddflunm, :ddfgenlu,
:ddfv4ipaddr,
:ddfv6ipaddr:ind_ddfv6ipaddr,
:ddftcpport, :ddfresport,
:ddfsqldom,
:ddfrsyncdom:ind_ddfrsyncdom,
:ddfsecport:ind_ddfsecport,
:ddfipname:ind_ddfipname,
:ddfaliasname1:ind_ddfaliasname1,
:ddfaliasport1:ind_ddfaliasport1,
:ddfaliassecport1:ind_ddfaliassecport1,
:ddfaliasname2:ind_ddfaliasname2,
:ddfaliasport2:ind_ddfaliasport2,
:ddfaliassecport2:ind_ddfaliassecport2,
:ddfaliasname3:ind_ddfaliasname3,
:ddfaliasport3:ind_ddfaliasport3,
:ddfaliassecport3:ind_ddfaliassecport3,
:ddfaliasname4:ind_ddfaliasname4,
:ddfaliasport4:ind_ddfaliasport4,
:ddfaliassecport4:ind_ddfaliassecport4,
:ddfaliasname5:ind_ddfaliasname5,
:ddfaliasport5:ind_ddfaliasport5,
:ddfaliassecport5:ind_ddfaliassecport5,
:ddfaliasname6:ind_ddfaliasname6,
:ddfaliasport6:ind_ddfaliasport6,
:ddfaliassecport6:ind_ddfaliassecport6,
:ddfaliasname7:ind_ddfaliasname7,
:ddfaliasport7:ind_ddfaliasport7,
:ddfaliassecport7:ind_ddfaliassecport7,
:ddfaliasname8:ind_ddfaliasname8,
:ddfaliasport8:ind_ddfaliasport8,
:ddfaliassecport8:ind_ddfaliassecport8,
:ddfmbripv4addr:ind_ddfmbripv4addr,
:ddfmbripv6addr:ind_ddfmbripv6addr;

}

return(retcd);
}

Output

This stored procedure returns the following output parameters, which are
described in “Option descriptions” on page 873:
v commands-executed

v IFI-return-code

v IFI-reason-code

878 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

|



v excess-bytes

v group-IFI-reason-code

v group-excess-bytes

v return-code

v message

In addition to the preceding output, the stored procedure returns two result sets.

The first result set is returned in the created global temporary table
SYSIBM.DB2_CMD_OUTPUT and contains the DB2 command output messages
that were not parsed.

The following table shows the format of the first result set:

Table 182. Result set row for first ADMIN_COMMAND_DB2 result set

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

TEXT CHAR(80) DB2 command output
message line

The format of the second result set varies, depending on the DB2 command issued
and the parse-type value.
v Result set row for second ADMIN_COMMAND_DB2 result set (parse-type =

“BP”)
v Result set row for second ADMIN_COMMAND_DB2 result set (parse-type =

“THD”)
v Result set row for second ADMIN_COMMAND_DB2 result set (parse-type =

“UT”)
v Result set row for second ADMIN_COMMAND_DB2 result set (parse-type =

“DB” or “TS” or “IX”)
v Result set row for second ADMIN_COMMAND_DB2 result set (parse-type =

“GRP”)
v Result set row for second ADMIN_COMMAND_DB2 result set (parse-type =

“DDF”)

The following table shows the format of the result set returned in the created
global temporary table SYSIBM.BUFFERPOOL_STATUS when parse-type = “BP”:

Table 183. Result set row for second ADMIN_COMMAND_DB2 result set (parse-type = “BP”)

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

BPNAME CHAR(6) Buffer pool name

VPSIZE INTEGER Buffer pool size

VPSEQT INTEGER Sequential steal threshold for
the buffer pool

VPPSEQT INTEGER Parallel sequential threshold
for the buffer pool

Appendix B. Stored procedures for administration 879

|

|

|

|

|

|

|
|
|

|

||

|||

|||
|

|||
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

||

|||

|||
|

|||

|||

|||
|

|||
|



Table 183. Result set row for second ADMIN_COMMAND_DB2 result set (parse-type =
“BP”) (continued)

Column name Data type Contents

VPXPSEQT INTEGER Assisting parallel sequential
threshold for the buffer pool

DWQT INTEGER Deferred write threshold for
the buffer pool

PCT_VDWQT INTEGER Vertical deferred write
threshold for the buffer pool
(as a percentage of virtual
buffer pool size)

ABS_VDWQT INTEGER Vertical deferred write
threshold for the buffer pool
(as absolute number of
buffers)

PGSTEAL CHAR(4) Page-stealing algorithm that
DB2 uses for the buffer pool

ID INTEGER Buffer pool internal identifier

USE_COUNT INTEGER Number of open table spaces
or index spaces that reference
this buffer pool

PGFIX CHAR(3) Specifies whether the buffer
pool should be fixed in real
storage when it is used

The following table shows the format of the result set returned in the created
global temporary table SYSIBM.DB2_THREAD_STATUS when parse-type = “THD”:

Table 184. Result set row for second ADMIN_COMMAND_DB2 result set (parse-type =
“THD”)

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

TYPE INTEGER Thread type:

0 Unknown

1 Active

2 Inactive

3 Indoubt

4 Postponed

NAME CHAR(8) Connection name used to
establish the thread

STATUS CHAR(11) Status of the conversation or
socket

ACTIVE CHAR(1) Indicates whether a thread is
active or not. An asterisk
means that the thread is
active within DB2.

REQ CHAR(5) Current number of DB2
requests on the thread

880 Administration Guide

|
|

|||

|||
|

|||
|

|||
|
|
|

|||
|
|
|

|||
|

|||

|||
|
|

|||
|
|
|

|
|

||
|

|||

|||
|

|||

||

||

||

||

||

|||
|

|||
|

|||
|
|
|

|||
|



Table 184. Result set row for second ADMIN_COMMAND_DB2 result set (parse-type =
“THD”) (continued)

Column name Data type Contents

ID CHAR(12) Recovery correlation ID
associated with the thread

AUTHID CHAR(8) Authorization ID associated
with the thread

PLAN CHAR(8) Plan name associated with
the thread

ASID CHAR(4) Address space identifier

TOKEN CHAR(6) Unique thread identifier

COORDINATOR CHAR(46) Name of the two-phase
commit coordinator

RESET CHAR(5) Indicates whether or not the
thread needs to be reset to
purge info from the indoubt
thread report

URID CHAR(12) Unit of recovery identifier

LUWID CHAR(35) Logical unit of work ID of
the thread

WORKSTATION CHAR(18) Client workstation name

USERID CHAR(16) Client user ID

APPLICATION CHAR(32) Client application name

ACCOUNTING CHAR(247) Client accounting information

LOCATION VARCHAR(4050) Location name of the remote
system

DETAIL VARCHAR(4050) Additional thread
information

The following table shows the format of the result set returned in the created
global temporary table SYSIBM.UTILITY_JOB_STATUS when parse-type = “UT”:

Table 185. Result set row for second ADMIN_COMMAND_DB2 result set (parse-type = “UT”)

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

CSECT CHAR(8) Name of the command
program CSECT that issued
the message

USER CHAR(8) User ID of the person
running the utility

MEMBER CHAR(8) Utility job is running on this
member

UTILID CHAR(16) Utility job identifier

STATEMENT INTEGER Utility statement number

UTILITY CHAR(20) Utility name

PHASE CHAR(20) Utility restart from the
beginning of this phase

Appendix B. Stored procedures for administration 881

|
|

|||

|||
|

|||
|

|||
|

|||

|||

|||
|

|||
|
|
|

|||

|||
|

|||

|||

|||

|||

|||
|

|||
|
|

|
|

||

|||

|||
|

|||
|
|

|||
|

|||
|

|||

|||

|||

|||
|



Table 185. Result set row for second ADMIN_COMMAND_DB2 result set (parse-type =
“UT”) (continued)

Column name Data type Contents

COUNT INTEGER Number of pages or records
processed in a utility phase

STATUS CHAR(18) Utility status

DETAIL VARCHAR(4050) Additional utility information

NUM_OBJ INTEGER Total number of objects in the
list of objects the utility is
processing

LAST_OBJ INTEGER Last object that started

The following table shows the format of the result set returned in the created
global temporary table SYSIBM.DB_STATUS when parse-type = “DB” or “TS” or
“IX”:

Table 186. Result set row for second ADMIN_COMMAND_DB2 result set (parse-type = “DB”
or “TS” or “IX”)

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

DBNAME CHAR(8) Name of the database

SPACENAM CHAR(8) Name of the table space or
index

TYPE CHAR(2) Status type:

DB Database

TS Table space

IX Index

PART SMALLINT Individual partition or range
of partition

STATUS CHAR(18) Status of the database, table
space or index

The following table shows the format of the result set returned in the created
global temporary table SYSIBM.DATA_SHARING_GROUP when parse-type =
“GRP”:

Table 187. Result set row for second ADMIN_COMMAND_DB2 result set (parse-type =
“GRP”)

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

DB2_MEMBER CHAR(8) Name of the DB2 group
member

ID INTEGER ID of the DB2 group member

SUBSYS CHAR(4) Subsystem name of the DB2
group member

882 Administration Guide

|
|

|||

|||
|

|||

|||

|||
|
|

|||
|

|
|
|

||
|

|||

|||
|

|||

|||
|

|||

||

||

||

|||
|

|||
|
|

|
|
|

||
|

|||

|||
|

|||
|

|||

|||
|



Table 187. Result set row for second ADMIN_COMMAND_DB2 result set (parse-type =
“GRP”) (continued)

Column name Data type Contents

CMDPREF CHAR(8) Command prefix for the DB2
group member

STATUS CHAR(8) Status of the DB2 group
member

DB2_LVL CHAR(3) DB2 version, release and
modification level

SYSTEM_NAME CHAR(8) Name of the z/OS system
where the member is
running, or was last running
in cases when the member
status is QUIESCED or
FAILED

IRLM_SUBSYS CHAR(4) Name of the IRLM subsystem
to which the DB2 member is
connected

IRLMPROC CHAR(8) Procedure name of the
connected IRLM

The following table shows the format of the result set returned in the created
global temporary table SYSIBM.DDF_CONFIG when parse-type = “DDF”:

Table 188. Result set row for second ADMIN_COMMAND_DB2 result set (parse-type =
“DDF”)

Column name Data type Contents

ROWNUM INTEGER
NOT NULL

Sequence number of the table
row, from 1 to n

STATUS CHAR(6)
NOT NULL

Operational status of DDF

LOCATION CHAR(18)
NOT NULL

Location name of DDF

LUNAME CHAR(17)
NOT NULL

Fully qualified LUNAME of
DDF

GENERICLU CHAR(17)
NOT NULL

Fully qualified generic
LUNAME of DDF

IPV4ADDR CHAR(17)
NOT NULL

IPV4 address of DDF

IPV6ADDR CHAR(39) IPV6 address of DDF

TCPPORT INTEGER
NOT NULL

SQL listener port used by
DDF

RESPORT INTEGER
NOT NULL

Resync listener port used by
DDF

SQL_DOMAIN CHAR(45)
NOT NULL

Domain name associated
with the IP address in
IPV4ADDR or IPV6ADDR

RSYNC_DOMAIN CHAR(45) Domain name associated
with a specific member IP
address

Appendix B. Stored procedures for administration 883

|
|

|||

|||
|

|||
|

|||
|

|||
|
|
|
|
|

|||
|
|

|||
|
|

|
|

||
|

|||

||
|
|
|

||
|
|

||
|
|

||
|
|
|

||
|
|
|

||
|
|

|||

||
|
|
|

||
|
|
|

||
|
|
|
|

|||
|
|



Table 188. Result set row for second ADMIN_COMMAND_DB2 result set (parse-type =
“DDF”) (continued)

Column name Data type Contents

SECPORT INTEGER Secure SQL listener TCP/IP
port number

IPNAME CHAR(8) IPNAME used by DDF

ALIASNAME1 CHAR(18) An alias name value specified
in the BSDS DDF record.

ALIASPORT1 INTEGER TCP/IP port associated with
ALIASNAME1

ALIASSECPORT1 INTEGER Secure TCP/IP port
associated with
ALIASNAME1

ALIASNAME2 CHAR(18) An alias name value specified
in the BSDS DDF record

ALIASPORT2 INTEGER TCP/IP port associated with
ALIASNAME2

ALIASSECPORT2 INTEGER Secure TCP/IP port
associated with
ALIASNAME2

ALIASNAME3 CHAR(18) An alias name value specified
in the BSDS DDF record

ALIASPORT3 INTEGER TCP/IP port associated with
ALIASNAME3

ALIASSECPORT3 INTEGER Secure TCP/IP port
associated with
ALIASNAME3

ALIASNAME4 CHAR(18) An alias name value specified
in the BSDS DDF record

ALIASPORT4 INTEGER TCP/IP port associated with
ALIASNAME4

ALIASSECPORT4 INTEGER Secure TCP/IP port
associated with
ALIASNAME4

ALIASNAME5 CHAR(18) An alias name value specified
in the BSDS DDF record

ALIASPORT5 INTEGER TCP/IP port associated with
ALIASNAME5

ALIASSECPORT5 INTEGER Secure TCP/IP port
associated with
ALIASNAME5

ALIASNAME6 CHAR(18) An alias name value specified
in the BSDS DDF record

ALIASPORT6 INTEGER TCP/IP port associated with
ALIASNAME6

ALIASSECPORT6 INTEGER Secure TCP/IP port
associated with
ALIASNAME6

ALIASNAME7 CHAR(18) An alias name value specified
in the BSDS DDF record

884 Administration Guide

|
|

|||

|||
|

|||

|||
|

|||
|

|||
|
|

|||
|

|||
|

|||
|
|

|||
|

|||
|

|||
|
|

|||
|

|||
|

|||
|
|

|||
|

|||
|

|||
|
|

|||
|

|||
|

|||
|
|

|||
|



Table 188. Result set row for second ADMIN_COMMAND_DB2 result set (parse-type =
“DDF”) (continued)

Column name Data type Contents

ALIASPORT7 INTEGER TCP/IP port associated with
ALIASNAME7

ALIASSECPORT7 INTEGER Secure TCP/IP port
associated with
ALIASNAME7

ALIASNAME8 CHAR(18) An alias name value specified
in the BSDS DDF record

ALIASPORT8 INTEGER TCP/IP port associated with
ALIASNAME8

ALIASSECPORT8 INTEGER Secure TCP/IP port
associated with
ALIASNAME8

MEMBER_IPV4ADDR CHAR(17) IPV4 address associated with
the specific member of a data
sharing group

MEMBER_IPV6ADDR CHAR(39) IPV6 address associated with
the specific member of a data
sharing group

ADMIN_COMMAND_DSN stored procedure
The SYSPROC.ADMIN_COMMAND_DSN stored procedure executes a BIND,
REBIND, or FREE DSN subcommand and returns the output from the DSN
subcommand execution.

Environment

ADMIN_COMMAND_DSN runs in a WLM-established stored procedures address
space. TCB=1 is also required.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on the ADMIN_COMMAND_DSN stored procedure
v Ownership of the stored procedure
v SYSADM authority

To execute the DSN subcommand, you must use a privilege set that includes the
authorization to execute the DSN subcommand as described in the DB2 Command
Reference.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

Appendix B. Stored procedures for administration 885

|
|

|||

|||
|

|||
|
|

|||
|

|||
|

|||
|
|

|||
|
|

|||
|
|
|

|



�� CALL SYSPROC.ADMIN_COMMAND_DSN ( DSN-subcommand, message ) ��

Option descriptions

DSN-subcommand
Specifies the DSN subcommand to be executed. If the DSN subcommand
passed to the stored procedure is not BIND, REBIND, or FREE, an error
message is returned. The DSN subcommand is performed using the
authorization ID of the user who invoked the stored procedure.

This is an input parameter of type VARCHAR(32704) and cannot be null.

message
Contains messages if an error occurs during stored procedure execution.

A blank message does not mean that the DSN subcommand completed
successfully. The calling application must read the result set to determine if the
DSN subcommand was successful or not.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke
ADMIN_COMMAND_DSN:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_COMMAND_DSN parameters */
char subcmd[32705]; /* BIND, REBIND or FREE DSN */

/* subcommand */
char errmsg[1332]; /* Error message */

/* Result set locators */
volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;

/* Result set row */
long int rownum; /* Sequence number of the */

/* table row */
char text[256]; /* DSN subcommand output row */
EXEC SQL END DECLARE SECTION;

/******************************************************************/
/* Set input parameter to execute a REBIND PLAN DSN subcommand */
/******************************************************************/
strcpy(subcmd, "REBIND PLAN (DSNACCOB) FLAG(W)");

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_COMMAND_DSN */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_COMMAND_DSN (:subcmd, :errmsg);

886 Administration Guide



/******************************************************************/
/* Retrieve result set when the SQLCODE from the call is +446, */
/* which indicates that result sets were returned */
/******************************************************************/
if (SQLCODE == +466) /* Result sets were returned */
{

/* Establish a link between the result set and its locator */
EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)

WITH PROCEDURE SYSPROC.ADMIN_COMMAND_DSN;

/* Associate a cursor with the result set */
EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;

/* Perform fetches using C1 to retrieve all rows from the */
/* result set */
EXEC SQL FETCH C1 INTO :rownum, :text;
while(SQLCODE==0)
{

EXEC SQL FETCH C1 INTO :rownum, :text;
}

}

return;
}

Output

This stored procedure returns an error message, message, if an error occurs.

The stored procedure returns one result set that contains the DSN sub-command
output messages.

The following table shows the format of the result set returned in the created
global temporary table SYSIBM.DSN_SUBCMD_OUTPUT:

Table 189. Result set row for ADMIN_COMMAND_DSN result set

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

TEXT VARCHAR(255) DSN subcommand output
message line

ADMIN_COMMAND_UNIX stored procedure
The SYSPROC.ADMIN_COMMAND_UNIX stored procedure executes a z/OS
UNIX System Services command and returns the output.

Environment

ADMIN_COMMAND_UNIX runs in a WLM-established stored procedures address
space.

The load module for ADMIN_COMMAND_UNIX, DSNADMCU, must be program
controlled if the BPX.DAEMON.HFSCTL FACILITY class profile has not been set
up. For information on how to define DSNADMCU to program control, see
installation job DSNTIJRA.

Appendix B. Stored procedures for administration 887



Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges on each
package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNADMCU
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

The user specified in the user-ID input parameter of the SQL CALL statement must
have the appropriate authority to execute the z/OS UNIX System Services
command.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_COMMAND_UNIX ( user-ID, password, USS-command, �

� output-layout ,
OUTMODE=BLK
NULL
OUTMODE=LINE

return-code, message ) ��

Option descriptions

user-ID
Specifies the user ID under which the z/OS UNIX System Services command
is issued.

This is an input parameter of type VARCHAR(128) and cannot be null.

password
Specifies the password associated with the input parameter user-ID.

The value of password is passed to the stored procedure as part of payload, and
is not encrypted. It is not stored in dynamic cache when parameter markers
are used.

This is an input parameter of type VARCHAR(24) and cannot be null.

USS-command
Specifies the z/OS UNIX System Services command to be executed.

This is an input parameter of type VARCHAR(32704) and cannot be null.

output-layout
Specifies how the output from the z/OS UNIX System Services command is
returned. The output from the z/OS UNIX System Services command is a
multi-line message. Possible values are:

OUTMODE=LINE
Each line is returned as a row in the result set.

888 Administration Guide



OUTMODE=BLK
The lines are blocked into 32677 blocks and each block is returned as a
row in the result set.

If a null or empty string is provided, then the default option OUTMODE=BLK
is used.

This is an input parameter of type VARCHAR(1024).

return-code
Provides the return code from the stored procedure. Possible values are:

0 The call completed successfully.

12 The call did not complete successfully. The message output parameter
contains messages describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If
no error occurred, then no message is returned.

The first messages in this area are generated by the stored procedure. Messages
that are generated by DB2 might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke
ADMIN_COMMAND_UNIX:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_COMMAND_UNIX parameters */
char userid[129]; /* User ID */
short int ind_userid; /* Indicator variable */
char password[25]; /* Password */
short int ind_password; /* Indicator variable */
char command[32705]; /* USS command */
short int ind_command; /* Indicator variable */
char layout[1025]; /* Command output layout */
short int ind_layout; /* Indicator variable */
long int retcd; /* Return code */
short int ind_retcd; /* Indicator variable */
char errmsg[1332]; /* Error message */
short int ind_errmsg; /* Indicator variable */

/* Result set locators */
volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;

/* Result set row */
long int rownum; /* Sequence number of the */

/* table row */
char text[32678]; /* A row in USS command output*/
EXEC SQL END DECLARE SECTION;

Appendix B. Stored procedures for administration 889



/******************************************************************/
/* Assign values to input parameters to execute a USS command */
/* Set the indicator variables to 0 for non-null input parameters */
/* Set the indicator variables to -1 for null input parameters */
/******************************************************************/
strcpy(userid, "USRT001");
ind_userid = 0;
strcpy(password, "N1CETEST");
ind_password = 0;
strcpy(command, "ls");
ind_command = 0;
ind_layout = -1;

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_COMMAND_UNIX */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_COMMAND_UNIX

(:userid :ind_userid,
:password :ind_password,
:command :ind_command,
:layout :ind_layout,
:retcd :ind_retcd,
:errmsg :ind_errmsg);

/******************************************************************/
/* Retrieve result set when the SQLCODE from the call is +446, */
/* which indicates that result sets were returned */
/******************************************************************/
if (SQLCODE == +466) /* Result sets were returned */
{

/* Establish a link between the result set and its locator */
EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)

WITH PROCEDURE SYSPROC.ADMIN_COMMAND_UNIX;

/* Associate a cursor with the result set */
EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;

/* Perform fetches using C1 to retrieve all rows from the */
/* result set */
EXEC SQL FETCH C1 INTO :rownum, :text;
while(SQLCODE==0)
{

EXEC SQL FETCH C1 INTO :rownum, :text;
}

}

return(retcd);
}

Output

This stored procedure returns the following output parameters, which are
described in “Option descriptions” on page 888:
v return-code

v message

In addition to the preceding output, the stored procedure returns one result set
that contains the z/OS UNIX System Services command output messages.

The following table shows the format of the result set returned in the created
global temporary table SYSIBM.USS_CMD_OUTPUT:

890 Administration Guide



Table 190. Result set row for ADMIN_COMMAND_UNIX result set

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

TEXT VARCHAR(32677) A block of text or a line from
the output messages of a
z/OS UNIX System Services
command

ADMIN_DS_BROWSE stored procedure
The SYSPROC.ADMIN_DS_BROWSE stored procedure returns either text or binary
records from certain data sets or their members. You can browse a physical
sequential (PS) data set, a generation data set, a partitioned data set (PDS) member,
or a partitioned data set extended (PDSE) member. This stored procedure supports
only data sets with LRECL=80 and RECFM=FB.

Environment

The load module for ADMIN_DS_BROWSE, DSNADMDB, must reside in an
APF-authorized library. ADMIN_DS_BROWSE runs in a WLM-established stored
procedures address space, and all libraries in this WLM procedure STEPLIB DD
concatenation must be APF-authorized.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges on each
package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNADMDB
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

The ADMIN_DS_BROWSE caller also needs authorization from an external
security system, such as RACF, in order to browse or view an z/OS data set
resource.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_DS_BROWSE ( data-type, data-set-name, member-name, dump-option, �

� return-code, message ) ��

Appendix B. Stored procedures for administration 891



Option descriptions

data-type
Specifies the type of data to be browsed. Possible values are:

1 Text data

2 Binary data

This is an input parameter of type INTEGER and cannot be null.

data-set-name
Specifies the name of the data set, or of the library that contains the member to
be browsed. Possible values are:

PS data set name
If reading from a PS data set, the data-set-name contains the name of
the PS data set.

PDS or PDSE name
If reading from a member that belongs to this PDS or PDSE, the
data-set-name contains the name of the PDS or PDSE.

GDS name
If reading from a generation data set, the data-set-name contains the
name of the generation data set, such as USERGDG.FILE.G0001V00.

This is an input parameter of type CHAR(44) and cannot be null.

member-name
Specifies the name of the PDS or PDSE member, if reading from a PDS or
PDSE member. Otherwise, a blank character.

This is an input parameter of type CHAR(8) and cannot be null.

dump-option
Specifies whether to use the DB2 standard dump facility to dump the
information necessary for problem diagnosis when an SQL error occurred or
when a call to the IBM routine IEFDB476 to get messages about an
unsuccessful SVC 99 call failed.

Possible values are:

Y Generate a dump.

N Do not generate a dump.

This is an input parameter of type CHAR(1) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:

0 The call completed successfully.

12 The call did not complete successfully. The message output parameter
contains messages describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If
no error occurred, then no message is returned.

The first messages in this area are generated by the stored procedure. Messages
that are generated by DB2 or by z/OS might follow the first messages.

This is an output parameter of type VARCHAR(1331).

892 Administration Guide



Example

The following C language sample shows how to invoke ADMIN_DS_BROWSE:
#include <stdio.h>
#include <stdlib.h>
#include <string>

/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_DS_BROWSE parameters */
long int datatype; /* Data type */
char dsname[45]; /* Data set name */
char mbrname[9]; /* Library member name */
char dumpopt[2]; /* Dump option */
long int retcd; /* Return code */
char errmsg[1332]; /* Error message */

/* Result set locators */
volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;

/* Result set row */
long int rownum; /* Sequence number of the */

/* table row */
char text_rec[81]; /* A data set record */
EXEC SQL END DECLARE SECTION;

/******************************************************************/
/* Assign values to input parameters to browse a library member */
/******************************************************************/
datatype = 1;
strcpy(dsname, "USER.DATASET.PDS");
strcpy(mbrname, "MEMBER0A");
strcpy(dumpopt, "N");

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_DS_BROWSE */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_DS_BROWSE

(:datatype, :dsname, :mbrname, :dumpopt,
:retcd, :errmsg);

/******************************************************************/
/* Retrieve result set when the SQLCODE from the call is +446, */
/* which indicates that result sets were returned */
/******************************************************************/
if (SQLCODE == +466) /* Result sets were returned */
{

/* Establish a link between the result set and its locator */
EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)

WITH PROCEDURE SYSPROC.ADMIN_DS_BROWSE;

/* Associate a cursor with the result set */
EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;

/* Perform fetches using C1 to retrieve all rows from the */
/* result set */
EXEC SQL FETCH C1 INTO :rownum, :text_rec;
while(SQLCODE==0)
{

EXEC SQL FETCH C1 INTO :rownum, :text_rec;

Appendix B. Stored procedures for administration 893



}
}

return(retcd);
}

Output

This stored procedure returns the following output parameters, which are
described in “Option descriptions” on page 892:
v return-code

v message

In addition to the preceding output, the stored procedure returns one result set
that contains the text or binary records read.

The following table shows the format of the result set returned in the created
global temporary table SYSIBM.TEXT_REC_OUTPUT containing text records read:

Table 191. Result set row for ADMIN_DS_BROWSE result set (text records)

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n.

TEXT_REC VARCHAR(80) Record read (text format).

The following table shows the format of the result set returned in the created
global temporary table SYSIBM.BIN_REC_OUTPUT containing binary records read:

Table 192. Result set row for ADMIN_DS_BROWSE result set (binary records)

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n.

BINARY_REC VARCHAR(80) FOR BIT
DATA

Record read (binary format).

ADMIN_DS_DELETE stored procedure
The SYSPROC.ADMIN_DS_DELETE stored procedure deletes certain data sets or
their members. You can delete a physical sequential (PS) data set, a partitioned
data set (PDS), a partitioned data set extended (PDSE), a generation data set
(GDS), or a member of a PDS or PDSE.

Environment

The load module for ADMIN_DS_DELETE, DSNADMDD, must reside in an
APF-authorized library. ADMIN_DS_DELETE runs in a WLM-established stored
procedures address space, and all libraries in this WLM procedure STEPLIB DD
concatenation must be APF-authorized.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:

894 Administration Guide



v The EXECUTE privilege on the ADMIN_DS_DELETE stored procedure
v Ownership of the stored procedure
v SYSADM authority

The ADMIN_DS_DELETE caller also needs authorization from an external security
system, such as RACF, in order to delete an z/OS data set resource.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_DS_DELETE ( data-set-type, data-set-name, parent-data-set-name, �

� dump-option, return-code, message ) ��

Option descriptions

data-set-type
Specifies the type of data set to delete. Possible values are:

1 Partitioned data set (PDS)

2 Partitioned data set extended (PDSE)

3 Member of a PDS or PDSE

4 Physical sequential data set (PS)

6 Generation data set (GDS)

This is an input parameter of type INTEGER and cannot be null.

data-set-name
Specifies the name of the data set, library member, or GDS absolute generation
number to be deleted. Possible values are:

PS, PDS, or PDSE name
If data-set-type is 1, 2, or 4, the data-set-name contains the name of the
PS, PDS, or PDSE to be deleted.

PDS or PDSE member name
If data-set-type is 3, the data-set-name contains the name of the PDS or
PDSE member to be deleted.

absolute generation number
If data-set-type is 6, the data-set-name contains the absolute generation
number of the GDS to be deleted, such as G0001V00.

This is an input parameter of type CHAR(44) and cannot be null.

parent-data-set-name
Specifies the name of the library that contains the member to be deleted, or of
the GDG that contains the GDS to be delete. Otherwise blank. Possible values
are:

blank If data-set-type is 1, 2, or 4, the parent-data-set-name is left blank.

Appendix B. Stored procedures for administration 895



PDS or PDSE name
If data-set-type is 3, the parent-data-set-name contains the name of the
PDS or PDSE whose member is to be deleted.

GDG name
If data-set-type is 6, the parent-data-set-name contains the name of the
GDG that the GDS to be deleted belongs to.

This is an input parameter of type CHAR(44) and cannot be null.

dump-option
Specifies whether to use the DB2 standard dump facility to dump the
information necessary for problem diagnosis when a call to the IBM routine
IEFDB476 to get messages about an unsuccessful SVC 99 call failed.

Possible values are:

Y Generate a dump.

N Do not generate a dump.

This is an input parameter of type CHAR(1) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:

0 Data set, PDS member, PDSE member, or GDS was deleted
successfully.

12 The call did not complete successfully. The message output parameter
contains messages describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If
no error occurred, then no message is returned.

The first messages in this area are generated by the stored procedure. Messages
that are generated by z/OS might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_DS_DELETE:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_DS_DELETE parameters */
long int dstype; /* Data set type */
char dsname[45]; /* Data set name , */

/* member name, or */
/* generation # (G0001V00) */

char parentds[45]; /* PDS, PDSE, GDG or blank */
char dumpopt[2]; /* Dump option */
long int retcd; /* Return code */

896 Administration Guide



char errmsg[1332]; /* Error message */
EXEC SQL END DECLARE SECTION;

/******************************************************************/
/* Assign values to input parameters to delete a data set */
/******************************************************************/
dstype = 4;
strcpy(dsname, "USER.DATASET.PDS");
strcpy(parentds, " ");
strcpy(dumpopt, "N");

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_DS_DELETE */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_DS_DELETE

(:dstype, :dsname, :parentds, :dumpopt,
:retcd, :errmsg);

return(retcd);
}

Output

This stored procedure returns the following output parameters, which are
described in “Option descriptions” on page 895:
v return-code

v message

ADMIN_DS_LIST stored procedure
The SYSPROC.ADMIN_DS_LIST stored procedure returns a list of data set names,
a generation data group (GDG), a partitioned data set (PDS) member, a partitioned
data set extended (PDSE) member, or generation data sets of a GDG.

Environment

The load module for ADMIN_DS_LIST, DSNADMDL, must reside in an
APF-authorized library. ADMIN_DS_LIST runs in a WLM-established stored
procedures address space, and all libraries in this WLM procedure STEPLIB DD
concatenation must be APF-authorized.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges on each
package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNADMDL
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

The ADMIN_DS_ LIST caller also needs authorization from an external security
system, such as RACF, in order to perform the requested operation on an z/OS
data set resource.

Appendix B. Stored procedures for administration 897



Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_DS_LIST ( data-set-name, list-members, list-generations, �

� max-results, dump-option, return-code, message ) ��

Option descriptions

data-set-name
Specifies the data set name. You can use masking characters. For example:
USER.*

If no masking characters are used, only one data set will be listed.

This is an input parameter of type CHAR(44) and cannot be null.

list-members
Specifies whether to list PDS or PDSE members. Possible values are:

Y List members. Only set to Y when data-set-name is a fully qualified PDS
or PDSE.

N Do not list members.

This is an input parameter of type CHAR(1) and cannot be null.

list-generations
Specifies whether to list generation data sets. Possible values are:

Y List generation data sets. Only set to Y when data-set-name is a fully
qualified GDG.

N Do not list generation data sets.

This is an input parameter of type CHAR(1) and cannot be null.

max-results
Specifies the maximum number of result set rows. This option is applicable
only when both list-members and list-generations are ’N’.

This is an input parameter of type INTEGER and cannot be null.

dump-option
Specifies whether to use the DB2 standard dump facility to dump the
information necessary for problem diagnosis when any of the following errors
occur:
v SQL error.
v A call to the IBM routine IEFDB476 to get messages about an unsuccessful

SVC 99 call failed.
v Load Catalog Search Interface module error.

Possible values are:

Y Generate a dump.

N Do not generate a dump.

898 Administration Guide



This is an input parameter of type CHAR(1) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:

0 The call completed successfully.

12 The call did not complete successfully. The message output parameter
contains messages describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If
no error occurred, then no message is returned.

The first messages in this area are generated by the stored procedure. Messages
that are generated by DB2 or by z/OS might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_DS_LIST:
#pragma csect(CODE,"SAMDLPGM")
#pragma csect(STATIC,"PGMDLSAM")
#pragma runopts(plist(os))

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_DS_LIST parameters */
char dsname[45]; /* Data set name or filter */
char listmbr[2]; /* List library members */
char listgds[2]; /* List GDS */
long int maxresult; /* Maximum result set rows */
char dumpopt[2]; /* Dump option */
long int retcd; /* Return code */
char errmsg[1332]; /* Error message */

/* Result set locators */
volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;

/* Result set row */
char dsnamer[45]; /* Data set name, */

/* library member name, or */
/* absolute generation number */

long int createyr; /* Create year */
long int createday; /* Create day */
long int type; /* Data set type */
char volume[7]; /* Data set volume */
long int primaryext; /* Size of first extent */
long int secondext; /* Size of secondary extent */
char measure[10]; /* Extent unit of measurement */
long int extinuse; /* Current allocated extents */
char dasduse[9]; /* DASD usage */
char harba[7]; /* High allocated RBA */

Appendix B. Stored procedures for administration 899



char hurba[7]; /* High used RBA */
EXEC SQL END DECLARE SECTION;

char * ptr;
int i = 0;
/******************************************************************/
/* Assign values to input parameters to list all members of */
/* a library */
/******************************************************************/
strcpy(dsname, "USER.DATASET.PDS");
strcpy(listmbr, "Y");
strcpy(listgds, "N");
maxresult = 1;
strcpy(dumpopt, "N");

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_DS_LIST */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_DS_LIST

(:dsname, :listmbr, :listgds, :maxresult,
:dumpopt, :retcd, :errmsg);

/******************************************************************/
/* Retrieve result set when the SQLCODE from the call is +446, */
/* which indicates that result sets were returned */
/******************************************************************/
if (SQLCODE == +466) /* Result sets were returned */
{

/* Establish a link between the result set and its locator */
EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)

WITH PROCEDURE SYSPROC.ADMIN_DS_LIST;

/* Associate a cursor with the result set */
EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;

/* Perform fetches using C1 to retrieve all rows from the */
/* result set */
EXEC SQL FETCH C1 INTO :dsnamer, :createyr, :createday,

:type, :volume, :primaryext,
:secondext, :measure, :extinuse,
:dasduse, :harba, :hurba;

while(SQLCODE==0)
{

EXEC SQL FETCH C1 INTO :dsnamer, :createyr, :createday,
:type, :volume, :primaryext,
:secondext, :measure, :extinuse,
:dasduse, :harba, :hurba;

}
}

return(retcd);
}

Output

This stored procedure returns the following output parameters, which are
described in “Option descriptions” on page 898:
v return-code

v message

In addition to the preceding output, the stored procedure returns one result set
that contains the list of data sets, GDGs, PDS or PDSE members, or generation
data sets that were requested.

900 Administration Guide



The following table shows the format of the result set returned in the created
global temporary table SYSIBM.DSLIST:

Table 193. Result set row for ADMIN_DS_LIST result set

Column name Data type Contents

DSNAME VARCHAR(44) v Data set name, if
list-members is “N” and
list-generations is “′N”.

v Member name, if
list-members is “Y”.

v Absolute generation
number (of the form
G0000V00) from a
generation data set name,
if list-generations is “Y”.

CREATE_YEAR INTEGER The year that the data set
was created. Not applicable
for member and VSAM
cluster.

CREATE_DAY INTEGER The day of the year that the
data set was created, as an
integer in the range of 1 to
366 where 1 represents
January 1). Not applicable for
member and VSAM cluster.

TYPE INTEGER Type of data set. Possible
values are:

0 Unknown type of
data set

1 PDS data set

2 PDSE data set

3 Member of PDS or
PDSE

4 Physical sequential
data set

5 Generation data
group

6 Generation data set

8 VSAM cluster

9 VSAM data
component

10 VSAM index
component

VOLUME CHAR(6) Volume where data set
resides. Not applicable for
member and VSAM cluster.

PRIMARY_EXTENT INTEGER Size of first extent. Not
applicable for member and
VSAM cluster.

Appendix B. Stored procedures for administration 901



Table 193. Result set row for ADMIN_DS_LIST result set (continued)

Column name Data type Contents

SECONDARY_EXTENT INTEGER Size of secondary extent. Not
applicable for member and
VSAM cluster.

MEASUREMENT_UNIT CHAR(9) Unit of measurement for first
extent and secondary extent.
Possible values are:
v BLOCKS
v BYTES
v CYLINDERS
v KB
v MB
v TRACKS

Not applicable for member
and VSAM cluster.

EXTENTS_IN_USE INTEGER Current allocated extents. Not
applicable for member and
VSAM cluster.

DASD_USAGE CHAR(8) FOR BIT DATA Disk usage. For VSAM data
and VSAM index only.

HARBA CHAR(6) FOR BIT DATA High allocated RBA. For
VSAM data and VSAM index
only.

HURBA CHAR(6) FOR BIT DATA High used RBA. For VSAM
data and VSAM index only.

When a data set spans more than one volume, one row is returned for each
volume that contains a piece of the data set. The VOLUME, EXTENTS_IN_USE,
DASD_USAGE, HARBA, and HURBA columns reflect information for the specified
volume.

ADMIN_DS_RENAME stored procedure
The SYSPROC.ADMIN_DS_RENAME stored procedure renames a physical
sequential (PS) data set, a partitioned data set (PDS), a partitioned data set
extended (PDSE), or a member of a PDS or PDSE.

Environment

The load module for ADMIN_DS_RENAME, DSNADMDR, must reside in an
APF-authorized library. ADMIN_DS_RENAME runs in a WLM-established stored
procedures address space, and all libraries in this WLM procedure STEPLIB DD
concatenation must be APF-authorized.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on the ADMIN_DS_RENAME stored procedure
v Ownership of the stored procedure
v SYSADM authority

902 Administration Guide



The ADMIN_DS_RENAME caller also needs authorization from an external
security system, such as RACF, in order to rename an z/OS data set resource.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_DS_RENAME ( data-set-type, data-set-name, parent-data-set-name, �

� new-data-set-name, dump-option, return-code, message ) ��

Option descriptions

data-set-type
Specifies the type of data set to rename. Possible values are:

1 Partitioned data set (PDS)

2 Partitioned data set extended (PDSE)

3 Member of a PDS or PDSE

4 Physical sequential data set (PS)

This is an input parameter of type INTEGER and cannot be null.

data-set-name
Specifies the data set or member to be renamed. Possible values are:

PS, PDS, or PDSE name
If data-set-type is 1, 2, or 4, the data-set-name contains the name of the
PS, PDS, or PDSE to be renamed.

PDS or PDSE member name
If data-set-type is 3, the data-set-name contains the name of the PDS or
PDSE member to be renamed.

This is an input parameter of type CHAR(44) and cannot be null.

parent-data-set-name
Specifies the name of the PDS or PDSE, if renaming a PDS or PDSE member.
Otherwise, a blank character. Possible values are:

blank If data-set-type is 1, 2, or 4, the parent-data-set-name is left blank.

PDS or PDSE name
If data-set-type is 3, the parent-data-set-name contains the name of the
PDS or PDSE whose member is to be renamed.

This is an input parameter of type CHAR(44) and cannot be null.

new-data-set-name
Specifies the new data set or member name. Possible values are:

new data set name
If data-set-type is 1, 2, or 4, the new-data-set-name contains the new data
set name.

Appendix B. Stored procedures for administration 903



new member name
If data-set-type is 3, the new-data-set-name contains the new member
name.

This is an input parameter of type CHAR(44) and cannot be null.

dump-option
Specifies whether to use the DB2 standard dump facility to dump the
information necessary for problem diagnosis when any of the following errors
occurred:
v A call to the IBM routine IEFDB476 to get messages about an unsuccessful

SVC 99 call failed.
v Load IDCAMS program error.

Possible values are:

Y Generate a dump.

N Do not generate a dump.

This is an input parameter of type CHAR(1) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:

0 The data set, PDS member, or PDSE member was renamed
successfully.

12 The call did not complete successfully. The message output parameter
contains messages describing the error.

This is an output parameter of type INTEGER.

message
Contains messages based on return-code and data-set-type combinations.

return-code data-set-type Content

0 1, 2, or 4 Contains IDCAMS messages.

0 3 No message is returned.

Not 0 not applicable Contains messages describing
the error encountered by the
stored procedure. The first
messages are generated by
the stored procedure and
messages that are generated
by z/OS might follow these
first messages. The first
messages can also be
generated by z/OS.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_DS_RENAME:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

904 Administration Guide



int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_DS_RENAME parameters */
long int dstype; /* Data set type */
char dsname[45]; /* Data set or member name */
char parentds[45]; /* Parent data set (PDS or */

/* PDSE) name or blank */
char newdsname[45]; /* New data set or member name*/
char dumpopt[2]; /* Dump option */
long int retcd; /* Return code */
char errmsg[1332]; /* Error message */
EXEC SQL END DECLARE SECTION;

/******************************************************************/
/* Assign values to input parameters to rename a library member */
/******************************************************************/
dstype = 3;
strcpy(dsname, "MEMBER01");
strcpy(parentds, "USER.DATASET.PDS");
strcpy(newdsname, "MEMBER0A");
strcpy(dumpopt, "N");

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_DS_RENAME */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_DS_RENAME

(:dstype, :dsname, :parentds, :newdsname,
:dumpopt, :retcd, :errmsg);

return(retcd);
}

Output

This stored procedure returns the following output parameters, which are
described in “Option descriptions” on page 903:
v return-code

v message

ADMIN_DS_SEARCH stored procedure
The SYSPROC.ADMIN_DS_SEARCH stored procedure determines if certain data
sets are cataloged, or if a library member of a cataloged data set exists. You can
search for a physical sequential (PS) data set, a partitioned data set (PDS), a
partitioned data set extended (PDSE), a generation data group (GDG), a generation
data set (GDS), or the library member of a cataloged PDS or PDSE.

Environment

The load module for ADMIN_DS_SEARCH, DSNADMDE, must reside in an
APF-authorized library. ADMIN_DS_SEARCH runs in a WLM-established stored
procedures address space, and all libraries in this WLM procedure STEPLIB DD
concatenation must be APF-authorized.

Appendix B. Stored procedures for administration 905



Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on the ADMIN_DS_SEARCH stored procedure
v Ownership of the stored procedure
v SYSADM authority

The ADMIN_DS_SEARCH caller also needs authorization from an external security
system, such as RACF, in order to perform the requested operation on an z/OS
data set resource.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_DS_SEARCH ( data-set-name, member-name, dump-option, �

� data-set-exists, return-code, message ) ��

Option descriptions

data-set-name
Specifies the name of a PS data set, PDS, PDSE, GDG or GDS.

This is an input parameter of type CHAR(44) and cannot be null.

member-name
Specifies the name of a PDS or PDSE member. Set this parameter to a blank
character if you only want to check the existence of the PDS or PDSE.

This is an input parameter of type CHAR(8) and cannot be null.

dump-option
Specifies whether to use the DB2 standard dump facility to dump the
information necessary for problem diagnosis when any of the following errors
occurred:
v A call to the IBM routine IEFDB476 to get messages about an unsuccessful

SVC 99 call failed.
v Load IDCAMS program error.

Possible values are:

Y Generate a dump.

N Do not generate a dump.

This is an input parameter of type CHAR(1) and cannot be null.

data-set-exists
Indicates whether a data set or library member exists or not. Possible values
are:

-1 Call did not complete successfully. Unable to determine if data set or
member exists.

906 Administration Guide



0 Data set or member was found

1 Data set not found

2 PDS or PDSE member not found

This is an output parameter of type INTEGER.

return-code
Provides the return code from the stored procedure. Possible values are:

0 The call completed successfully.

12 The call did not complete successfully. The message output parameter
contains messages describing the error.

This is an output parameter of type INTEGER.

message
Contains IDCAMS messages if return-code is 0. Otherwise, contains messages
describing the error encountered by the stored procedure. The first messages
are generated by the stored procedure and messages that are generated by
z/OS might follow these first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_DS_SEARCH:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_DS_SEARCH parameters */
char dsname[45]; /* Data set name or GDG */
char mbrname[9]; /* Library member name */
char dumpopt[2]; /* Dump option */
long int exist; /* Data set or library member */

/* existence indicator */
long int retcd; /* Return code */
char errmsg[1332]; /* Error message */
EXEC SQL END DECLARE SECTION;

/******************************************************************/
/* Assign values to input parameters to determine whether a */
/* library member exists or not */
/******************************************************************/
strcpy(dsname, "USER.DATASET.PDS");
strcpy(mbrname, "MEMBER0A");
strcpy(dumpopt, "N");

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_DS_SEARCH */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_DS_SEARCH

(:dsname, :mbrname, :dumpopt,

Appendix B. Stored procedures for administration 907



:exist, :retcd, :errmsg);

return(retcd);
}

Output

This stored procedure returns the following output parameters, which are
described in “Option descriptions” on page 906:
v data-set-exists

v return-code

v message

ADMIN_DS_WRITE stored procedure
The SYSPROC.ADMIN_DS_WRITE stored procedure writes either text or binary
records that are passed in a global temporary table to data sets or their members.
You can write to a physical sequential (PS) data set, a partitioned data set (PDS)
member, a partitioned data set extended (PDSE) member, or a generation data set
(GDS).

This stored procedure can either append or replace an existing PS data set, PDS or
PDSE member, or GDS. Also, this stored procedure can create a new PS data set,
PDS or PDSE data set or member, or a new GDS for an existing generation data
group (GDG) as needed. This stored procedure supports only data sets with
LRECL=80 and RECFM=FB.

Environment

The load module for ADMIN_DS_WRITE, DSNADMDW, must reside in an
APF-authorized library. ADMIN_DS_WRITE runs in a WLM-established stored
procedures address space, and all libraries in this WLM procedure STEPLIB DD
concatenation must be APF-authorized.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges on each
package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNADMDW
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

The ADMIN_DS_WRITE caller also needs authorization from an external security
system, such as RACF, in order to write to an z/OS data set resource.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

908 Administration Guide



�� CALL SYSPROC.ADMIN_DS_WRITE ( data-type, data-set-name, member-name, processing-option, �

� dump-option, return-code, message ) ��

Option descriptions

This stored procedure takes the following input options:

data-type
Specifies the type of data to be saved. Possible values are:

1 Text data

2 Binary data

This is an input parameter of type INTEGER and cannot be null.

data-set-name
Specifies the name of the data set, GDG that contains the GDS, or library that
contains the member, to be written to. Possible values are:

PS data set name
Name of the PS data set, if writing to a PS data set.

GDG name
Name of the GDG, if writing to a GDS within this GDG.

PDS or PDSE name
Name of the PDS or PDSE, if writing to a member that belongs to this
library.

This is an input parameter of type CHAR(44) and cannot be null.

member-name
Specifies the relative generation number of the GDS, if writing to a GDS, or the
name of the PDS or PDSE member, if writing to a PDS or PDSE member.
Otherwise, a blank character. Possible values are:

GDS relative generation number
Relative generation number of a GDS, if writing to a GDS. For
example: -1, 0, +1

PDS or PDSE member name
Name of the PDS or PDSE member, if writing to a library member.

blank In all other cases, blank.

This is an input parameter of type CHAR(8) and cannot be null.

processing-option
Specifies the type of operation. Possible values are:

R Replace

A Append

NM New member

ND New PS, PDS, PDSE, or GDS data set

This is an input parameter of type CHAR(2) and cannot be null.

dump-option
Specifies whether to use the DB2 standard dump facility to dump the

Appendix B. Stored procedures for administration 909



information necessary for problem diagnosis when an SQL error has occurred
or when a call to the IBM routine IEFDB476 to get messages about an
unsuccessful SVC 99 call failed.

Possible values are:

Y Generate a dump.

N Do not generate a dump.

This is an input parameter of type CHAR(1) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:

0 The call completed successfully.

12 The call did not complete successfully. The message output parameter
contains messages describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If
no error occurred, then no message is returned.

The first messages in this area are generated by the stored procedure. Messages
that are generated by DB2 or by z/OS might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Additional input

In addition to the input parameters, the stored procedure reads records to be
written to a file from a created global temporary table. If the data to be written is
text data, then the stored procedure reads records from
SYSIBM.TEXT_REC_INPUT. If the data is binary data, then the stored procedure
reads records from the created global temporary table SYSIBM.BIN_REC_INPUT.

The following table shows the format of the created global temporary table
SYSIBM.TEXT_REC_INPUT containing text records to be saved:

Table 194. Additional input for text data for the ADMIN_DS_WRITE stored procedure

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n.

TEXT_REC CHAR(80) Text record to be saved.

The following table shows the format of the created global temporary table
SYSIBM.BIN_REC_INPUT containing binary records to be saved:

Table 195. Additional input for binary data for the ADMIN_DS_WRITE stored procedure

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n.

BINARY_REC VARCHAR(80) FOR BIT
DATA

Binary record to be saved.

910 Administration Guide



Example

The following C language sample shows how to invoke ADMIN_DS_WRITE:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_DS_WRITE parameters */
long int datatype; /* Data type */
char dsname[45]; /* Data set name or GDG */
char mbrname[9]; /* Library member name, */

/* generation # (-1, 0, +1), */
/* or blank */

char procopt[3]; /* Processing option */
char dumpopt[2]; /* Dump option */
long int retcd; /* Return code */
char errmsg[1332]; /* Error message */

/* Temporary table SYSIBM.TEXT_REC_INPUT columns */
long int rownum; /* Sequence number of the */

/* table row */
char textrec[81]; /* Text record */
EXEC SQL END DECLARE SECTION;

/******************************************************************/
/* Create the records to be saved */
/******************************************************************/
char dsrecord[12][50] = {
"//IEBCOPY JOB ,CLASS=K,MSGCLASS=H,MSGLEVEL=(1,1)",
"//STEP010 EXEC PGM=IEBCOPY",
"//SYSPRINT DD SYSOUT=*",
"//SYSUT3 DD SPACE=(TRK,(1,1)),UNIT=SYSDA",
"//SYSUT4 DD SPACE=(TRK,(1,1)),UNIT=SYSDA",
"//*",
"//DDI1 DD DSN=USER.DEV.LOADLIB1,DISP=SHR",
"//DDO1 DD DSN=USER.DEV.LOADLIB2,DISP=SHR",
"//SYSIN DD *",
" COPY OUTDD=DDO1,INDD=DDI1",
"/*",
"//*"
} ;
int i = 0; /* Loop counter */

/******************************************************************/
/* Assign the values to input parameters to create a new */
/* partitioned data set and member */
/******************************************************************/
datatype = 1;
strcpy(dsname, "USER.DATASET.PDS");
strcpy(mbrname, "MEMBER01");
strcpy(procopt, "ND");
strcpy(dumpopt, "N");

/******************************************************************/
/* Clear temporary table SYSIBM.TEXT_REC_INPUT */
/******************************************************************/
EXEC SQL DELETE FROM SYSIBM.TEXT_REC_INPUT;

Appendix B. Stored procedures for administration 911



/******************************************************************/
/* Insert the records to be saved in the new library member */
/* into the temporary table SYSIBM.TEXT_REC_INPUT */
/******************************************************************/
for (i = 0; i < 12; i++)
{

rownum = i+1;
strcpy(textrec, dsrecord[i]);
EXEC SQL INSERT INTO SYSIBM.TEXT_REC_INPUT

( ROWNUM, TEXT_REC)
VALUES (:rownum, :textrec);

};

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_DS_WRITE */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_DS_WRITE

(:datatype, :dsname, :mbrname, :procopt,
:dumpopt, :retcd, :errmsg );

return(retcd);
}

Output

This stored procedure returns the following output parameters, which are
described in “Option descriptions” on page 909:
v return-code

v message

ADMIN_INFO_HOST stored procedure
The SYSPROC.ADMIN_INFO_HOST stored procedure returns the host name of a
connected DB2 subsystem or the host name of every member of a data sharing
group.

Environment

ADMIN_INFO_HOST runs in a WLM-established stored procedures address space.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges on each
package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNADMIH
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

The ADMIN_INFO_HOST stored procedure internally calls the
ADMIN_COMMAND_DB2 stored procedure to execute the following DB2
commands:
v -DISPLAY DDF
v -DISPLAY GROUP

912 Administration Guide



The owner of the package or plan that contains the CALL ADMIN_INFO_HOST
statement must also have the authorization required to execute the stored
procedure ADMIN_COMMAND_DB2 and the specified DB2 commands. To
determine the privilege or authority required to issue a DB2 command, see DB2
Command Reference.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_INFO_HOST ( processing-option, DB2-member ,
NULL

return-code, message �

� ) ��

Option descriptions

processing-option
Specifies processing option. Possible values are:

1 Return the host name of the connected DB2 subsystem or the host
name of a specified DB2 data sharing group member.

For a data sharing group member, you must specify DB2-member.

2 Return the host name of every DB2 member of the same data sharing
group.

This is an input parameter of type INTEGER and cannot be null.

DB2-member
Specifies the DB2 data sharing group member name.

This parameter must be null if processing-option is 2.

This is an input parameter of type CHAR(8).

return-code
Provides the return code from the stored procedure. Possible values are:

0 The call completed successfully.

4 Unable to list the host name of the connected DB2 subsystem or of
every DB2 member of the same data sharing group due to one of the
following reasons:
v The IPADDR field returned when the -DISPLAY DDF command is

executed on the connected DB2 subsystem or DB2 member contains
the value -NONE

v One of the DB2 members is down

12 The call did not complete successfully. The message output parameter
contains messages describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If
no error occurred, then no message is returned.

Appendix B. Stored procedures for administration 913



The first messages in this area are generated by the stored procedure. Messages
that are generated by DB2 might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_INFO_HOST:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_INFO_HOST parameters */
long int procopt; /* Processing option */
short int ind_procopt; /* Indicator variable */
char db2mbr[9]; /* Data sharing group member */

/* name */
short int ind_db2mbr; /* Indicator variable */
long int retcd; /* Return code */
short int ind_retcd; /* Indicator variable */
char errmsg[1332]; /* Error message */
short int ind_errmsg; /* Indicator variable */

/* Result set locators */
volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;

/* Result set row */
long int rownum; /* Sequence number of the */

/* table row */
char db2member[9]; /* DB2 data sharing group */

/* member name */
char hostname[256]; /* Host name of the connected */

/* DB2 subsystem or DB2 */
/* member name */

EXEC SQL END DECLARE SECTION;

/******************************************************************/
/* Assign values to input parameters to find the host name of */
/* the connected DB2 subsystem */
/* Set the indicator variables to 0 for non-null input parameters */
/* Set the indicator variables to -1 for null input parameters */
/******************************************************************/
procopt = 1;
ind_procopt = 0;
ind_db2mbr = -1;

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_INFO_HOST */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_INFO_HOST

(:procopt :ind_procopt,
:db2mbr :ind_db2mbr,
:retcd :ind_retcd,
:errmsg :ind_errmsg);

/******************************************************************/
/* Retrieve result set when the SQLCODE from the call is +446, */
/* which indicates that result sets were returned */

914 Administration Guide



/******************************************************************/
if (SQLCODE == +466) /* Result sets were returned */
{

/* Establish a link between the result set and its locator */
EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)

WITH PROCEDURE SYSPROC.ADMIN_INFO_HOST;

/* Associate a cursor with the result set */
EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;

/* Use C1 to fetch the only row from the result set */
EXEC SQL FETCH C1 INTO :rownum, :db2mbr, :hostname;

}

return(retcd);
}

Output

This stored procedure returns the following output parameters, which are
described in “Option descriptions” on page 913:
v return-code

v message

In addition to the preceding output, the stored procedure returns one result set
that contains the host names.

The following table shows the format of the result set returned in the created
global temporary table SYSIBM.SYSTEM_HOSTNAME:

Table 196. Result set row for ADMIN_INFO_HOST result set

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n.

DB2_MEMBER CHAR(8) DB2 data sharing group
member name.

HOSTNAME VARCHAR(255) Host name of the connected
DB2 subsystem if the
processing-option input
parameter is 1 and the
DB2-member input parameter
is null. Otherwise, the host
name of the DB2 member
specified in the
DB2_MEMBER column.

ADMIN_INFO_SSID stored procedure
The SYSPROC.ADMIN_INFO_SSID stored procedure returns the name of the
connected DB2 subsystem.

Appendix B. Stored procedures for administration 915

|

|
|

|



Environment

ADMIN_INFO_SSID must run in a WLM-established stored procedure address
space.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on the ADMIN_INFO_SSID stored procedure
v Ownership of the stored procedure
v SYSADM authority

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_INFO_SSID ( subsystem-ID, return-code, message ) ��

Option descriptions

subsystem-ID
Identifies the subsystem ID of the connected DB2 subsystem

This is an output parameter of type VARCHAR(4).

return-code
Provides the return code from the stored procedure. Possible values are:

0 The call completed successfully.

12 The call did not complete successfully. The message output parameter
contains messages describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If
no error occurred, then no message is returned.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_INFO_SSID:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

916 Administration Guide

|

|
|

|

|
|

|

|

|

|

|
|
|

|||||||||||||||||||
|
||

|

|
|

|

|
|

||

||
|

|

|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|



/* SYSPROC.ADMIN_INFO_SSID PARAMETERS */
char ssid[5]; /* DB2 subsystem identifier */
long int retcd; /* Return code */
char errmsg[1332]; /* Error message */
EXEC SQL END DECLARE SECTION;

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_INFO_SSID */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_INFO_SSID

(:ssid, :retcd, :errmsg);

return(retcd);
}

Output

The output of this stored procedure is the following output parameters, which are
described in “Option descriptions” on page 916:
v subsystem-ID

v return-code

v message

ADMIN_INFO_SYSPARM stored procedure
The SYSPROC.ADMIN_INFO_SYSPARM stored procedure returns the system
parameters, DSNHDECP parameters, and IRLM parameters of a connected DB2
subsystem, or member of its data sharing group.

This stored procedure functions the same as the SYSPROC.DSNWZP stored
procedure, except that the ADMIN_INFO_SYSPARM stored procedure returns
IRLM parameters, accepts a DB2 member as input, and returns the parameter
settings in a result set.

Environment

ADMIN_INFO_SYSPARM runs in a WLM-established stored procedures address
space, where NUMTCB=1 is required.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges on each
package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNADMIZ
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

The user who calls this stored procedure must have MONITOR1 privilege.

Appendix B. Stored procedures for administration 917

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|
|
|

|
|
|
|

|

|
|

|

|
|
|

|

|

|

|

|



Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_INFO_SYSPARM ( DB2-member ,
NULL

return-code, message ) ��

Option descriptions

DB2-member
Specifies the name of the DB2 data sharing group member that you want to
get the system parameters, DSNHDECP values, and IRLM parameters from.

Specify NULL for this parameter if you are retrieving the system parameters,
DSNHDECP values, and IRLM parameters from the connected DB2 subsystem.

This is an input parameter of type VARCHAR(8).

return-code
Provides the return code from the stored procedure. The following values are
possible:

0 The call completed successfully.

12 The call did not complete successfully. The message output parameter
contains messages that describe the IFI error or SQL error that is
encountered by the stored procedure.

This is an output parameter of type INTEGER.

message
Contains messages that describe the IFI error or SQL error that was
encountered by the stored procedure. If an error did not occur, a message is
not returned.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_INFO_SYSPARM:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_INFO_SYSPARM parameters */
char db2_member[9]; /* Data sharing group member */
short int ind_db2_member; /* Indicator variable */
long int retcd; /* Return code */
short int ind_retcd; /* Indicator variable */
char errmsg[1332]; /* Error message */

918 Administration Guide

|

|
|
|

|||||||||||||||||||||||||||

|
||

|

|
|
|

|
|

|

|
|
|

||

||
|
|

|

|
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



short int ind_errmsg; /* Indicator variable */
/* Result set locators */
volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;
/* Result set row */
long int rownum; /* Sequence number of the */

/* table row (1,...,n) */
char macro[9]; /* Macro that contains the */

/* system parameter, or */
/* DSNHDECP parameter, or the */
/* name of the IRLM procedure */
/* that z/OS invokes if IRLM */
/* is automatically started */
/* by DB2 */

char parameter[41]; /* Name of the system */
/* parameter, DSNHDECP */
/* parameter, or IRLM */
/* parameter */

char install_panel[9]; /* Name of the installation */
/* panel where the parameter */
/* value can be changed when */
/* installing or migrating DB2*/

short int ind_install_panel; /* Indicator variable */
char install_field[41]; /* Name of the parameter on */

/* the installation panel */
short int ind_install_field; /* Indicator variable */
char install_location[13]; /* Location of the parameter */

/* on the installation panel */
short int ind_install_location; /* Indicator variable */
char value[2049]; /* Value of the parameter */
char additional_info[201]; /* Reserved for future use */
short int ind_additional_info; /* Indicator variable */

EXEC SQL END DECLARE SECTION;
/******************************************************************/
/* Set the db2_member indicator variable to -1 to get the DB2 */
/* subsystem parameters, DSNHDECP values, and IRLM parameters of */
/* the connected DB2 subsystem. */
/******************************************************************/
ind_db2_member = -1;
/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_INFO_SYSPARM */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_INFO_SYSPARM

(:db2_member :ind_db2_member,
:retcd :ind_retcd,
:errmsg :ind_errmsg);

/******************************************************************/
/* Retrieve result set when the SQLCODE from the call is +446, */
/* which indicates that result sets were returned */
/******************************************************************/
if (SQLCODE == +466) /* Result sets were returned */
{

/* Establish a link between the result set and its locator */
EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)

WITH PROCEDURE SYSPROC.ADMIN_INFO_SYSPARM;
/* Associate a cursor with the result set */
EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;
/* Perform fetches using C1 to retrieve all rows from the */
/* result set */
EXEC SQL FETCH C1

INTO :rownum, :macro, :parameter,
:install_panel :ind_install_panel,
:install_field :ind_install_field,
:install_location :ind_install_location,
:value,
:additional_info :ind_additional_info;

while(SQLCODE==0)

Appendix B. Stored procedures for administration 919

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



{
EXEC SQL FETCH C1

INTO :rownum, :macro, :parameter,
:install_panel :ind_install_panel,
:install_field :ind_install_field,
:install_location :ind_install_location,
:value,
:additional_info :ind_additional_info;

}
}
return(retcd);

}

Output

This stored procedure returns the following output parameters, which are
described in “Option descriptions” on page 918:
v return-code

v message

In addition to the preceding output, the stored procedure returns one result set
that contains the parameter settings.

The following table shows the format of the result set that is returned in the
created global temporary table SYSIBM.DB2_SYSPARM:

Table 197. Result set row for ADMIN_INFO_SYSPARM result set

Column name Data type Contents

ROWNUM INTEGER
NOT NULL

Sequence number of the table
row, from 1 to n.

MACRO VARCHAR(8)
NOT NULL

Macro that contains the
system parameter, the
DSNHDECP parameter, or
the name of the IRLM
procedure that z/OS invokes
if IRLM is started
automatically by DB2.

PARAMETER VARCHAR(40)
NOT NULL

Name of the system
parameter, DSNHDECP
parameter, or IRLM
parameter.

INSTALL_PANEL VARCHAR(8) Name of the installation
panel where the parameter
value can be changed when
installing or migrating DB2.

INSTALL_FIELD VARCHAR(40) Name of the parameter on
the installation panel.

INSTALL_LOCATION VARCHAR(12) Location of the parameter on
the installation panel.

VALUE VARCHAR(2048)
NOT NULL

The value of the parameter.

ADDITIONAL_INFO VARCHAR(200) Reserved for future use.

920 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

|
|

|
|

||

|||

||
|
|
|

||
|
|
|
|
|
|
|
|

||
|
|
|
|
|

|||
|
|
|

|||
|

|||
|

||
|
|

|||
|



ADMIN_JOB_CANCEL stored procedure
The SYSPROC.ADMIN_JOB_CANCEL stored procedure purges or cancels a job.

Environment

The load module for ADMIN_JOB_CANCEL, DSNADMJP, must reside in an
APF-authorized library. ADMIN_JOB_CANCEL runs in a WLM-established stored
procedures address space, and all libraries in this WLM procedure STEPLIB DD
concatenation must be APF-authorized.

The load module for ADMIN_JOB_CANCEL, DSNADMJP, must be program
controlled if the BPX.DAEMON.HFSCTL FACILITY class profile has not been set
up. For information on how to define DSNADMJP to program control, see
installation job DSNTIJRA.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on the ADMIN_JOB_CANCEL stored procedure
v Ownership of the stored procedure
v SYSADM authority

The user specified in the user-ID input parameter of the SQL CALL statement also
needs authorization from an external security system, such as RACF, in order to
perform the requested operation.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_JOB_CANCEL ( user-ID, password, processing-option, job-ID, �

� return-code, message ) ��

Option descriptions

user-ID
Specifies the user ID under which the job is canceled or purged.

This is an input parameter of type VARCHAR(128) and cannot be null.

password
Specifies the password associated with the input parameter user-ID.

The value of password is passed to the stored procedure as part of payload, and
is not encrypted. It is not stored in dynamic cache when parameter markers
are used.

This is an input parameter of type VARCHAR(24) and cannot be null.

Appendix B. Stored procedures for administration 921

|



processing-option
Identifies the type of command to invoke. Possible values are:

1 Cancel a job.

2 Purge a job.

This is an input parameter of type INTEGER and cannot be null.

job-ID
Specifies the job ID of the job to be canceled or purged. Acceptable formats are:
v Jnnnnnnn

v JOBnnnnn

where n is a digit between 0 and 9. For example: JOB01035

Both Jnnnnnnn and JOBnnnnn must be exactly 8 characters in length.

This is an input parameter of type CHAR(8) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:

0 The call completed successfully.

12 The call did not complete successfully. The message output parameter
contains messages describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If
no error occurred, then no message is returned.

The first messages in this area are generated by the stored procedure. Messages
that are generated by z/OS might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_JOB_CANCEL:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_JOB_CANCEL parameters */
char userid[129]; /* User ID */
short int ind_userid; /* Indicator variable */
char password[25]; /* Password */
short int ind_password; /* Indicator variable */
long int procopt; /* Processing option */
short int ind_procopt; /* Indicator variable */
char jobid[9]; /* Job ID */
short int ind_jobid; /* Indicator variable */
long int retcd; /* Return code */
short int ind_retcd; /* Indicator variable */
char errmsg[1332]; /* Error message */

922 Administration Guide



short int ind_errmsg; /* Indicator variable */
EXEC SQL END DECLARE SECTION;

/******************************************************************/
/* Assign values to input parameters to purge a job */
/* Set the indicator variables to 0 for non-null input parameters */
/******************************************************************/
strcpy(userid, "USRT001");
ind_userid = 0;
strcpy(password, "N1CETEST");
ind_password = 0;
procopt = 2;
ind_procopt = 0;
strcpy(jobid, "JOB00105");
ind_jobid = 0;

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_JOB_CANCEL */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_JOB_CANCEL

(:userid :ind_userid,
:password :ind_password,
:procopt :ind_procopt,
:jobid :ind_jobid,
:retcd :ind_retcd,
:errmsg :ind_errmsg);

return(retcd);
}

Output

This stored procedure returns the following output parameters, which are
described in “Option descriptions” on page 921:
v return-code

v message

ADMIN_JOB_FETCH stored procedure
The SYSPROC.ADMIN_JOB_FETCH stored procedure retrieves SYSOUT from JES
spool and returns the SYSOUT.

Environment

The load module for ADMIN_JOB_FETCH, DSNADMJF, must reside in an
APF-authorized library. ADMIN_JOB_FETCH runs in a WLM-established stored
procedures address space, and all libraries in this WLM procedure STEPLIB DD
concatenation must be APF-authorized.

The load module for ADMIN_JOB_FETCH, DSNADMJF, must be program
controlled if the BPX.DAEMON.HFSCTL FACILITY class profile has not been set
up. For information on how to define DSNADMJF to program control, see
installation job DSNTIJRA.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges on each
package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNADMJF

Appendix B. Stored procedures for administration 923



v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_JOB_FETCH ( user-ID, password, job-ID, return-code, message ) ��

Option descriptions

user-ID
Specifies the user ID under which SYSOUT is retrieved.

This is an input parameter of type VARCHAR(128) and cannot be null.

password
Specifies the password associated with the input parameter user-ID.

The value of password is passed to the stored procedure as part of payload, and
is not encrypted. It is not stored in dynamic cache when parameter markers
are used.

This is an input parameter of type VARCHAR(24) and cannot be null.

job-ID
Specifies the JES2 or JES3 job ID whose SYSOUT data sets are to be retrieved.

This is an input parameter of type CHAR(8) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:

0 The call completed successfully.

12 The call did not complete successfully. The message output parameter
contains messages describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If
no error occurred, then no message is returned.

The first messages in this area are generated by the stored procedure. Messages
that are generated by DB2 might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_JOB_FETCH:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/

924 Administration Guide



EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_JOB_FETCH parameters */
char userid[129]; /* User ID */
short int ind_userid; /* Indicator variable */
char password[25]; /* Password */
short int ind_password; /* Indicator variable */
char jobid[9]; /* Job ID */
short int ind_jobid; /* Indicator variable */
long int retcd; /* Return code */
short int ind_retcd; /* Indicator variable */
char errmsg[1332]; /* Error message */
short int ind_errmsg; /* Indicator variable */

/* Result set locators */
volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;

/* Result set row */
long int rownum; /* Sequence number of the */

/* table row */
char text[4097]; /* A row in SYSOUT data set */
EXEC SQL END DECLARE SECTION;

/******************************************************************/
/* Assign values to input parameters to fetch the SYSOUT of a job */
/* Set the indicator variables to 0 for non-null input parameters */
/******************************************************************/
strcpy(userid, "USRT001");
ind_userid = 0;
strcpy(password, "N1CETEST");
ind_password = 0;
strcpy(jobid, "JOB00100");
ind_jobid = 0;

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_JOB_FETCH */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_JOB_FETCH

(:userid :ind_userid,
:password :ind_password,
:jobid :ind_jobid,
:retcd :ind_retcd,
:errmsg :ind_errmsg);

/******************************************************************/
/* Retrieve result set when the SQLCODE from the call is +446, */
/* which indicates that result sets were returned */
/******************************************************************/
if (SQLCODE == +466) /* Result sets were returned */
{

/* Establish a link between the result set and its locator */
EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)

WITH PROCEDURE SYSPROC.ADMIN_JOB_FETCH;

/* Associate a cursor with the result set */
EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;

/* Perform fetches using C1 to retrieve all rows from the */
/* result set */
EXEC SQL FETCH C1 INTO :rownum, :text;
while(SQLCODE==0)
{

Appendix B. Stored procedures for administration 925



EXEC SQL FETCH C1 INTO :rownum, :text;
}

}

return(retcd);
}

Output

This stored procedure returns the following output parameters, which are
described in “Option descriptions” on page 924:
v return-code

v message

In addition to the preceding output, the stored procedure returns one result set
that contains the data from the JES-managed SYSOUT data set that belong to the
job ID specified in the input parameter job-ID.

The following table shows the format of the result set returned in the created
global temporary table SYSIBM.JES_SYSOUT:

Table 198. Result set row for ADMIN_JOB_FETCH result set

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row

TEXT VARCHAR(4096) A record in the SYSOUT data
set

ADMIN_JOB_QUERY stored procedure
The SYSPROC.ADMIN_JOB_QUERY stored procedure displays the status and
completion information about a job.

Environment

The load module for ADMIN_JOB_QUERY, DSNADMJQ, must reside in an
APF-authorized library. ADMIN_JOB_QUERY runs in a WLM-established stored
procedures address space, and all libraries in this WLM procedure STEPLIB DD
concatenation must be APF-authorized.

The load module for ADMIN_JOB_QUERY, DSNADMJQ, must be program
controlled if the BPX.DAEMON.HFSCTL FACILITY class profile has not been set
up. For information on how to define DSNADMJQ to program control, see
installation job DSNTIJRA.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on the ADMIN_JOB_QUERY stored procedure
v Ownership of the stored procedure
v SYSADM authority

926 Administration Guide



Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_JOB_QUERY ( user-ID, password, job-ID, status, max-RC, �

� completion-type, system-abend-code, user-abend-code, return-code, message ) ��

Option descriptions

user-ID
Specifies the user ID under which the job is queried.

This is an input parameter of type VARCHAR(128) and cannot be null.

password
Specifies the password associated with the input parameter user-ID.

The value of password is passed to the stored procedure as part of payload, and
is not encrypted. It is not stored in dynamic cache when parameter markers
are used.

This is an input parameter of type VARCHAR(24) and cannot be null.

job-ID
Specifies the job ID of the job being queried. Acceptable formats are:
v Jnnnnnnn

v JOBnnnnn

where n is a digit between 0 and 9. For example: JOB01035

Both Jnnnnnnn and JOBnnnnn must be exactly 8 characters in length.

This is an input parameter of type CHAR(8) and cannot be null.

status
Identifies the current status of the job. Possible values are:

1 Job received, but not yet run (INPUT).

2 Job running (ACTIVE).

3 Job finished and has output to be printed or retrieved (OUTPUT).

4 Job not found.

5 Job in an unknown phase.

This is an output parameter of type INTEGER.

max-RC
Provides the job completion code.

This parameter is always null if querying in a JES3 z/OS Version 1.7 or earlier
system. For JES3, this feature is only supported for z/OS Version 1.8 or higher.

This is an output parameter of type INTEGER.

completion-type
Identifies the job’s completion type. Possible values are:

Appendix B. Stored procedures for administration 927



0 No completion information is available.

1 Job ended normally.

2 Job ended by completion code.

3 Job had a JCL error.

4 Job was canceled.

5 Job terminated abnormally.

6 Converter terminated abnormally while processing the job.

7 Job failed security checks.

8 Job failed in end-of-memory .

This parameter is always null if querying in a JES3 z/OS Version 1.7 or earlier
system. For JES3, this feature is only supported for z/OS Version 1.8 or higher.

The completion-type information is the last six bits in the field STTRMXRC of
the IAZSSST mapping macro. This information is returned via SSI 80. For
additional information, see the discussion of the SSST macro in z/OS MVS Data
Areas.

This is an output parameter of type INTEGER.

system-abend-code
Returns the system abend code if an abnormal termination occurs.

This parameter is always null if querying in a JES3 z/OS Version 1.7 or earlier
system. For JES3, this feature is only supported for z/OS Version 1.8 or higher.

This is an output parameter of type INTEGER.

user-abend-code
Returns the user abend code if an abnormal termination occurs.

This parameter is always null if querying in a JES3 z/OS Version 1.7 or earlier
system. For JES3, this feature is only supported for z/OS Version 1.8 or higher.

This is an output parameter of type INTEGER.

return-code
Provides the return code from the stored procedure. Possible values are:

0 The call completed successfully.

4 The job was not found, or the job status is unknown.

12 The call did not complete successfully. The message output parameter
contains messages describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If
no error occurred, then no message is returned.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_JOB_QUERY:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

928 Administration Guide



/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_JOB_QUERY parameters */
char userid[129]; /* User ID */
short int ind_userid; /* Indicator variable */
char password[25]; /* Password */
short int ind_password; /* Indicator variable */
char jobid[9]; /* Job ID */
short int ind_jobid; /* Indicator variable */
long int stat; /* Job status */
short int ind_stat; /* Indicator variable */
long int maxrc; /* Job maxcc */
short int ind_maxrc; /* Indicator variable */
long int comptype; /* Job completion type */
short int ind_comptype; /* Indicator variable */
long int sabndcd; /* System abend code */
short int ind_sabndcd; /* Indicator variable */
long int uabndcd; /* User abend code */
short int ind_uabndcd; /* Indicator variable */
long int retcd; /* Return code */
short int ind_retcd; /* Indicator variable */
char errmsg[1332]; /* Error message */
short int ind_errmsg; /* Indicator variable */
EXEC SQL END DECLARE SECTION;

/******************************************************************/
/* Assign values to input parameters to query the status and */
/* completion code of a job */
/* Set the indicator variables to 0 for non-null input parameters */
/******************************************************************/
strcpy(userid, "USRT001");
ind_userid = 0;
strcpy(password, "N1CETEST");
ind_password = 0;
strcpy(jobid, "JOB00111");
ind_jobid = 0;

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_JOB_QUERY */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_JOB_QUERY

(:userid :ind_userid,
:password :ind_password,
:jobid :ind_jobid,
:stat :ind_stat,
:maxrc :ind_maxrc,
:comptype :ind_comptype,
:sabndcd :ind_sabndcd,
:uabndcd :ind_uabndcd,
:retcd :ind_retcd,
:errmsg :ind_errmsg);

return(retcd);
}

Output

This stored procedure returns the following output parameters, which are
described in “Option descriptions” on page 927:

Appendix B. Stored procedures for administration 929



v status

v max-RC

v completion-type

v system-abend-code

v user-abend-code

v return-code

v message

ADMIN_JOB_SUBMIT stored procedure
The SYSPROC.ADMIN_JOB_SUBMIT stored procedure submits a job to a JES2 or
JES3 system.

Environment

ADMIN_JOB_SUBMIT runs in a WLM-established stored procedures address
space.

The load module for ADMIN_JOB_SUBMIT, DSNADMJS, must be program
controlled if the BPX.DAEMON.HFSCTL FACILITY class profile has not been set
up. For information on how to define DSNADMJS to program control, see
installation job DSNTIJRA.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges on each
package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNADMJS
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_JOB_SUBMIT ( user-ID, password, job-ID, return-code, message ) ��

Option descriptions

user-ID
Specifies the user ID under which the job is submitted.

This is an input parameter of type VARCHAR(128) and cannot be null.

password
Specifies the password associated with the input parameter user-ID.

930 Administration Guide



The value of password is passed to the stored procedure as part of payload, and
is not encrypted. It is not stored in dynamic cache when parameter markers
are used.

This is an input parameter of type VARCHAR(24) and cannot be null.

job-ID
Identifies the JES2 or JES3 job ID of the submitted job.

This is an output parameter of type CHAR(8).

return-code
Provides the return code from the stored procedure. Possible values are:

0 The call completed successfully.

12 The call did not complete successfully. The message output parameter
contains messages describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If
no error occurred, then no message is returned.

The first messages in this area are generated by the stored procedure. Messages
that are generated by DB2 might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Additional input

In addition to the input parameters, the stored procedure submits the job’s JCL
from the created global temporary table SYSIBM.JOB_JCL for execution.

The following table shows the format of the created global temporary table
SYSIBM.JOB_JCL:

Table 199. Additional input for the ADMIN_JOB_SUBMIT stored procedure

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

STMT VARCHAR(80) A JCL statement

Example

The following C language sample shows how to invoke ADMIN_JOB_SUBMIT:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_JOB_SUBMIT parameters */
char userid[129]; /* User ID */
short int ind_userid; /* Indicator variable */

Appendix B. Stored procedures for administration 931



char password[25]; /* Password */
short int ind_password; /* Indicator variable */
char jobid[9]; /* Job ID */
short int ind_jobid; /* Indicator variable */
long int retcd; /* Return code */
short int ind_retcd; /* Indicator variable */
char errmsg[1332]; /* Error message */
short int ind_errmsg; /* Indicator variable */

/* Temporary table SYSIBM.JOB_JCL columns */
long int rownum; /* Sequence number of the */

/* table row */
char stmt[81]; /* JCL statement */
EXEC SQL END DECLARE SECTION;

/******************************************************************/
/* Create the JCL job to be submitted for execution */
/******************************************************************/
char jclstmt[12][50] = {
"//IEBCOPY JOB ,CLASS=K,MSGCLASS=H,MSGLEVEL=(1,1)",
"//STEP010 EXEC PGM=IEBCOPY",
"//SYSPRINT DD SYSOUT=*",
"//SYSUT3 DD SPACE=(TRK,(1,1)),UNIT=SYSDA",
"//SYSUT4 DD SPACE=(TRK,(1,1)),UNIT=SYSDA",
"//*",
"//DDI1 DD DSN=USER.DEV.LOADLIB1,DISP=SHR",
"//DDO1 DD DSN=USER.DEV.LOADLIB2,DISP=SHR",
"//SYSIN DD *",
" COPY OUTDD=DDO1,INDD=DDI1",
"/*",
"//*"
} ;
int i = 0; /* loop counter */

/******************************************************************/
/* Assign values to input parameters */
/* Set the indicator variables to 0 for non-null input parameters */
/******************************************************************/
strcpy(userid, "USRT001");
ind_userid = 0;
strcpy(password, "N1CETEST");
ind_password = 0;

/******************************************************************/
/* Clear temporary table SYSIBM.JOB_JCL */
/******************************************************************/
EXEC SQL DELETE FROM SYSIBM.JOB_JCL;

/******************************************************************/
/* Insert the JCL job into the temporary table SYSIBM.JOB_JCL */
/******************************************************************/
for (i = 0; i < 12; i++)
{

rownum = i+1;
strcpy(stmt, jclstmt[i]);
EXEC SQL INSERT INTO SYSIBM.JOB_JCL

( ROWNUM, STMT)
VALUES (:rownum, :stmt);

};

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_JOB_SUBMIT */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_JOB_SUBMIT

(:userid :ind_userid,
:password :ind_password,
:jobid :ind_jobid,

932 Administration Guide



:retcd :ind_retcd,
:errmsg :ind_errmsg);

return(retcd);
}

Output

This stored procedure returns the following output parameters, which are
described in “Option descriptions” on page 930:
v job-ID

v return-code

v message

ADMIN_UTL_SCHEDULE stored procedure
The SYSPROC.ADMIN_UTL_SCHEDULE stored procedure executes utilities in
parallel.

Environment

ADMIN_UTL_SCHEDULE runs in a WLM-established stored procedures address
space.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges on each
package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNADMUM
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

The ADMIN_UTL_SCHEDULE stored procedure internally calls the following
stored procedures:
v ADMIN_COMMAND_DB2, to execute the DB2 DISPLAY UTILITY command
v ADMIN_INFO_SSID, to obtain the subsystem ID of the connected DB2

subsystem
v ADMIN_UTL_SORT, to sort objects into parallel execution units
v DSNUTILU, to run the requested utilities

The owner of the package or plan that contains the CALL
ADMIN_UTL_SCHEDULE statement must also have the authorization required to
execute these stored procedures and run the requested utilities. To determine the
privilege or authority required to call DSNUTILU, see DB2 Utility Guide and
Reference.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

Appendix B. Stored procedures for administration 933



�� CALL SYSPROC.ADMIN_UTL_SCHEDULE ( max-parallel, optimize-workload ,
NULL

�

� stop-condition ,
NULL

utility-ID-stem, shutdown-duration ,
NULL

number-of-objects, �

� utilities-run, highest-return-code, parallel-tasks, return-code, message ) ��

Option descriptions

max-parallel
Specifies the maximum number of parallel threads that may be started. The
actual number may be lower than the requested number based on the
optimizing sort result. Possible values are 1 to 99.

This is an input parameter of type SMALLINT and cannot be null.

optimize-workload
Specifies whether the parallel utility executions should be sorted to achieve
shortest overall execution time. Possible values are:

NO or null
The workload is not to be sorted.

YES The workload is to be sorted.

This is an input parameter of type VARCHAR(8). The default value is NO.

stop-condition
Specifies the utility execution condition after which ADMIN_UTL_SCHEDULE
will not continue starting new utility executions in parallel, but will wait until
all currently running utilities have completed and will then return to the caller.
Possible values are:

AUTHORIZ or null
No new utility executions will be started after one of the currently
running utilities has encountered a return code from DSNUTILU of 12
or higher.

WARNING
No new utility executions will be started after one of the currently
running utilities has encountered a return code from DSNUTILU of 4
or higher.

ERROR
No new utility executions will be started after one of the currently
running utilities has encountered a return code from DSNUTILU of 8
or higher.

This is an input parameter of type VARCHAR(8). The default value is
AUTHORIZ.

utility-ID-stem
Specifies the first part of the utility ID of a utility execution in a parallel
thread. The complete utility ID is dynamically created in the form
utility-ID-stem followed by TT followed by NNNNNN, where:

TT The zero-padded number of the subtask executing the utility

NNNNNN
A consecutive number of utilities executed in a subtask.

934 Administration Guide



For example, utilityidstem02000005 is the fifth utility execution that has been
processed by the second subtask.

This is an input parameter of type VARCHAR(8) and cannot be null.

shutdown-duration
Specifies the number of seconds that ADMIN_UTL_SCHEDULE will wait for a
utility execution to complete before a shutdown is initiated. When a shutdown
is initiated, current utility executions can run to completion, and no new utility
will be started. Possible values are:

null A shutdown will not be performed

1 to 999999999999999
A shutdown will be performed after this many seconds

This is an input parameter of type FLOAT(8). The default value is null.

number-of-objects
As an input parameter, this specifies the number of utility executions and their
sorting objects that were passed in the SYSIBM.UTILITY_OBJECTS table.
Possible values are 1 to 999999.

As an output parameter, this specifies the number of objects that were passed
in SYSIBM.UTILITY_OBJECTS table that are found in the DB2 catalog.

This is an input and output parameter of type INTEGER and cannot be null.

utilities-run
Indicates the number of actual utility executions.

This is an output parameter of type INTEGER.

highest-return-code
Indicates the highest return code from DSNUTILU for all utility executions.

This is an output parameter of type INTEGER.

parallel-tasks
Indicates the actual number of parallel tasks that were started to execute the
utility in parallel.

This is an output parameter of type SMALLINT.

return-code
Provides the return code from the stored procedure. Possible values are:

0 All parallel utility executions ran successfully.

4 The statistics for one or more sorting objects have not been gathered in
the catalog.

12 An ADMIN_UTL_SCHEDULE error occurred or all the objects passed
in the SYSIBM.UTILITY_OBJECTS table are not found in the DB2
catalog. The message parameter contains details.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If
no error occurred, then no message is returned.

The first messages in this area are generated by the stored procedure. Messages
that are generated by DB2 might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Appendix B. Stored procedures for administration 935



Additional input

In addition to the input parameters, the stored procedure reads from the created
global temporary tables SYSIBM.UTILITY_OBJECTS and SYSIBM.UTILITY_STMT.

The stored procedure reads objects for utility execution from
SYSIBM.UTILITY_OBJECTS. The following table shows the format of the created
global temporary table SYSIBM.UTILITY_OBJECTS:

Table 200. Format of the input objects

Column name Data type Contents

OBJECTID INTEGER A unique positive identifier
for the object the utility
execution is associated with.
When you insert multiple
rows, increment OBJECTID
by 1, starting at 0 for every
insert.

STMTID INTEGER A statement row in
SYSIBM.UTILITY_STMT

TYPE VARCHAR(10) Object type:

v TABLESPACE

v INDEXSPACE

v TABLE

v INDEX

v STOGROUP

QUALIFIER VARCHAR(128) Qualifier (database or creator)
of the object in NAME,
empty or null for
STOGROUP. If the qualifier is
not provided and the type of
the object is TABLESPACE or
INDEXSPACE, then the
default database is DSNDB04.
If the object is of the type
TABLE or INDEX, the
schema is the current SQL
authorization ID.

NAME VARCHAR(128) Unqualified name of the
object. NAME cannot be null.
If the object no longer exists,
it will be ignored and the
corresponding utility will not
be executed.

PART SMALLINT Partition number of the object
for which the utility will be
invoked. Null or 0 if the
object is not partitioned.

RESTART VARCHAR(8) Restart parameter of
DSNUTILU

936 Administration Guide



Table 200. Format of the input objects (continued)

Column name Data type Contents

UTILITY_NAME VARCHAR(20) Utility name.
UTILITY_NAME cannot be
null.
Recommendation: Sort
objects for the same utility.

Possible values are:

v CHECK DATA

v CHECK INDEX

v CHECK LOB

v COPY

v COPYTOCOPY

v DIAGNOSE

v LOAD

v MERGECOPY

v MODIFY RECOVERY

v MODIFY STATISTICS

v QUIESCE

v REBUILD INDEX

v RECOVER

v REORG INDEX

v REORG LOB

v REORG TABLESPACE

v REPAIR

v REPORT RECOVERY

v REPORT TABLESPACESET

v RUNSTATS INDEX

v RUNSTATS TABLESPACE

v STOSPACE

v UNLOAD

The stored procedure reads the corresponding utility statements from
SYSIBM.UTILITY_STMT. The following table shows the format of the created
global temporary table SYSIBM.UTILITY_STMT:

Table 201. Format of the utility statements

Column name Data type Contents

STMTID INTEGER A unique positive identifier
for a single utility execution
statement

Appendix B. Stored procedures for administration 937



Table 201. Format of the utility statements (continued)

Column name Data type Contents

STMTSEQ INTEGER If a utility statement exceeds
4000 characters, it can be split
up and inserted into
SYSIBM.UTILITY_STMT with
the sequence starting at 0,
and then being incremented
with every insert. During the
actual execution, the
statement pieces are
concatenated without any
separation characters or
blanks in between.

UTSTMT VARCHAR(4000) A utility statement or part of
a utility statement. A
placeholder &OBJECT. can be
used to be replaced by the
object name passed in
SYSIBM.UTILITY_OBJECTS.
A placeholder &THDINDEX.
can be used to be replaced by
the current thread index
(01-99) of the utility being
executed. You can use this
when running REORG with
SHRLEVEL CHANGE in
parallel, so that you can
specify a different mapping
table for each thread of the
utility execution.

Example

The following C language sample shows how to invoke
ADMIN_UTL_SCHEDULE:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_UTL_SCHEDULE parameters */
short int maxparallel; /* Max parallel */
short int ind_maxparallel; /* Indicator variable */
char optimizeworkload[9]; /* Optimize workload */
short int ind_optimizeworkload; /* Indicator variable */
char stoponcond[9]; /* Stop on condition */
short int ind_stoponcond; /* Indicator variable */
char utilityidstem[9]; /* Utility ID stem */
short int ind_utilityidstem; /* Indicator variable */
float shutdownduration; /* Shutdown duration */
short int ind_shutdownduration; /* Indicator variable */
long int numberofobjects; /* Number of objects */

938 Administration Guide



short int ind_numberofobjects; /* Indicator variable */
long int utilitiesexec; /* Utilities executed */
short int ind_utilitiesexec; /* Indicator variable */
long int highestretcd; /* DSNUTILU highest ret code */
short int ind_highestretcd; /* Indicator variable */
long int paralleltasks; /* Parallel tasks */
short int ind_paralleltasks; /* Indicator variable */
long int retcd; /* Return code */
short int ind_retcd; /* Indicator variable */
char errmsg[1332]; /* Error message */
short int ind_errmsg; /* Indicator variable */

/* Temporary table SYSIBM.UTILITY_OBJECTS columns */
long int objectid; /* Object id */
long int stmtid; /* Statement ID */
char type[11]; /* Object type (e.g. "INDEX") */
char qualifier[129]; /* Object qualifier */
short int ind_qualifier; /* Object qualifier ind. var. */
char name[129]; /* Object name (qual. or unq.)*/
short int part; /* Optional partition */
short int ind_part; /* Partition indicator var */
char restart[9]; /* DSNUTILU restart parm */
char utname[21]; /* Utility name */

/* Temporary table SYSIBM.UTILITY_STMT columns */
long int stmtid2; /* Statement ID */
long int stmtseq; /* Utility stmt sequence */
char utstmt[4001]; /* Utility statement */

/* Result set locators */
volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;
volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc2;

/* First result set row */
long int objectid1; /* Object id */
long int textseq; /* Object utility output seq */
char text[255]; /* Object utility output */

/* Second result set row */
long int objectid2; /* Object id */
long int utilretcd; /* DSNUTILU return code */
EXEC SQL END DECLARE SECTION;

/******************************************************************/
/* Set up the objects to be sorted */
/******************************************************************/
long int objid_array[4] = {1, 2, 3, 4};
long int stmtid_array[4] = {1, 1, 1, 1};
char type_array[4][11] = {"TABLESPACE", "TABLESPACE",

"TABLESPACE", "TABLESPACE"};
char qual_array[4][129] = {"QUAL01", "QUAL01",

"QUAL01", "QUAL01"};
char name_array[4][129] = {"TBSP01", "TBSP02",

"TBSP03", "TBSP04"};
short int part_array[4] = {0, 0, 0, 0};
char restart_array[4][9] = {"NO", "NO",

"NO", "NO"};
char utname_array[4][21]= {"RUNSTATS TABLESPACE",

"RUNSTATS TABLESPACE",
"RUNSTATS TABLESPACE",
"RUNSTATS TABLESPACE"};

int i = 0; /* Loop counter */

/******************************************************************/
/* Set up utility statement */
/******************************************************************/

Appendix B. Stored procedures for administration 939



stmtid2 = 1;
stmtseq = 1;
strcpy(utstmt,
"RUNSTATS TABLESPACE &OBJECT. TABLE(ALL) SAMPLE 25 INDEX(ALL)");

/******************************************************************/
/* Assign values to input parameters */
/* Set the indicator variables to 0 for non-null input parameters */
/* Set the indicator variables to -1 for null input parameters */
/******************************************************************/
maxparallel = 2;
ind_maxparallel = 0;
strcpy(optimizeworkload, "YES");
ind_optimizeworkload = 0;
strcpy(stoponcond, "AUTHORIZ");
ind_stoponcond = 0;
strcpy(utilityidstem, "DSNADMUM");
ind_utilityidstem = 0;
numberofobjects = 4;
ind_numberofobjects = 0;
ind_shutdownduration = -1;

/******************************************************************/
/* Clear temporary table SYSIBM.UTILITY_OBJECTS */
/******************************************************************/
EXEC SQL DELETE FROM SYSIBM.UTILITY_OBJECTS;

/******************************************************************/
/* Insert the objects into the temporary table */
/* SYSIBM.UTILITY_OBJECTS */
/******************************************************************/
for (i = 0; i < 4; i++)
{

objectid = objid_array[i];
stmtid = stmtid_array[i];
strcpy(type, type_array[i]);
strcpy(qualifier, qual_array[i]);
strcpy(name, name_array[i]);
part = part_array[i];
strcpy(restart, restart_array[i]);
strcpy(utname, utname_array[i]);
EXEC SQL INSERT INTO SYSIBM.UTILITY_OBJECTS

(OBJECTID, STMTID, TYPE,
QUALIFIER, NAME, PART,
RESTART, UTILITY_NAME)

VALUES (:objectid, :stmtid, :type,
:qualifier, :name, :part,
:restart, :utname);

};

/******************************************************************/
/* Clear temporary table SYSIBM.UTILITY_STMT */
/******************************************************************/
EXEC SQL DELETE FROM SYSIBM.UTILITY_STMT;

/******************************************************************/
/* Insert the utility statement into the temporary table */
/* SYSIBM.UTILITY_STMT */
/******************************************************************/
EXEC SQL INSERT INTO SYSIBM.UTILITY_STMT

(STMTID, STMTSEQ, UTSTMT)
VALUES (:stmtid2, :stmtseq, :utstmt);

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_UTL_SCHEDULE */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_UTL_SCHEDULE

940 Administration Guide



(:maxparallel :ind_maxparallel,
:optimizeworkload :ind_optimizeworkload,
:stoponcond :ind_stoponcond,
:utilityidstem :ind_utilityidstem,
:shutdownduration :ind_shutdownduration,
:numberofobjects :ind_numberofobjects,
:utilitiesexec :ind_utilitiesexec,
:highestretcd :ind_highestretcd,
:paralleltasks :ind_paralleltasks,
:retcd :ind_retcd,
:errmsg :ind_errmsg);

/******************************************************************/
/* Retrieve result set when the SQLCODE from the call is +446, */
/* which indicates that result sets were returned */
/******************************************************************/
if (SQLCODE == +466) /* Result sets were returned */
{

/* Establish a link between the result set and its locator */
EXEC SQL ASSOCIATE LOCATORS (:rs_loc1, :rs_loc2)

WITH PROCEDURE SYSPROC.ADMIN_UTL_SCHEDULE;

/* Associate a cursor with the first result set */
EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;

/* Associate a cursor with the second result set */
EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :rs_loc2;

/* Perform fetches using C1 to retrieve all rows from the */
/* first result set */
EXEC SQL FETCH C1 INTO :objectid1, :textseq, :text;
while(SQLCODE==0)
{

EXEC SQL FETCH C1 INTO :objectid1, :textseq, :text;
}

/* Perform fetches using C2 to retrieve all rows from the */
/* second result set */
EXEC SQL FETCH C2 INTO :objectid2, :utilretcd;
while(SQLCODE==0)
{

EXEC SQL FETCH C2 INTO :objectid2, :utilretcd;
}

}

return(retcd);
}

Output

This stored procedure returns the following output parameters, which are
described in “Option descriptions” on page 934:
v number-of-objects

v utilities-run

v highest-return-code

v parallel-tasks

v return-code

v message

In addition to the preceding output, the stored procedure returns two results sets.

Appendix B. Stored procedures for administration 941



The first result set is returned in the created global temporary table
SYSIBM.UTILITY_SYSPRINT and contains the output from the individual utility
executions. The following table shows the format of the created global temporary
table SYSIBM.UTILITY_SYSPRINT:

Table 202. Result set row for first ADMIN_UTL_SCHEDULE result set

Column name Data type Contents

OBJECTID INTEGER A unique positive identifier
for the object the utility
execution is associated with

TEXTSEQ INTEGER Sequence number of utility
execution output statements
for the object whose unique
identifier is specified in the
OBJECTID column

TEXT VARCHAR(254) A utility execution output
statement

The second result set is returned in the created global temporary table
SYSIBM.UTILITY_RETCODE and contains the return code for each of the
individual DSNUTILU executions. The following table shows the format of the
output created global temporary table SYSIBM.UTILITY_RETCODE:

Table 203. Result set row for second ADMIN_UTL_SCHEDULE result set

Column name Data type Contents

OBJECTID INTEGER A unique positive identifier
for the object the utility
execution is associated with

RETCODE INTEGER Return code from DSNUTILU
for this utility execution

ADMIN_UTL_SORT stored procedure
The SYSPROC.ADMIN_UTL_SORT stored procedure sorts objects for parallel
utility execution using JCL or the ADMIN_UTL_SCHEDULE stored procedure.

Environment

ADMIN_UTL_SORT runs in a WLM-established stored procedures address space.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges on each
package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNADMUS
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

The owner of the package or plan that contains the CALL statement must also
have SELECT authority on the following catalog tables:

942 Administration Guide



v SYSIBM.SYSTABLEPART
v SYSIBM.SYSINDEXPART
v SYSIBM.SYSINDEXES
v SYSIBM.SYSTABLES

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.ADMIN_UTL_SORT ( max-parallel, max-per-job ,
NULL

optimize-workload ,
NULL

�

� batch-execution ,
NULL

number-of-objects, parallel-units, max-objects, max-sequences, �

� return-code, message ) ��

Option descriptions

max-parallel
Specifies the maximum number of parallel units. The actual number may be
lower than the requested number based on the optimizing sort result. Possible
values are: 1 to 99.

This is an input parameter of type SMALLINT and cannot be null.

max-per-job
Specifies the maximum number of steps per job for batch execution. Possible
values are:

1 to 255
Steps per job for batch execution

null Online execution

This is an input parameter of type SMALLINT. This parameter cannot be null
if batch-execution is YES.

optimize-workload
Specifies whether the parallel units should be sorted to achieve shortest overall
execution time. Possible values are:

NO or null
The workload is not to be sorted.

YES The workload is to be sorted.

This is an input parameter of type VARCHAR(8). The default value is NO.

batch-execution
Indicates whether the objects should be sorted for online or batch (JCL)
execution.

NO or null
The workload is for online execution.

YES The workload is for batch execution.

Appendix B. Stored procedures for administration 943



This is an input parameter of type VARCHAR(8). The default value is NO.

number-of-objects
As an input parameter, this specifies the number of objects that were passed in
SYSIBM.UTILITY_SORT_OBJ. Possible values are: 1 to 999999.

As an output parameter, this specifies the number of objects that were passed
in SYSIBM.UTILITY_SORT_OBJ table that are found in the DB2 catalog.

This is an input and output parameter of type INTEGER and cannot be null.

parallel-units
Indicates the number of recommended parallel units.

This is an output parameter of type SMALLINT.

max-objects
Indicates the maximum number of objects in any parallel unit.

This is an output parameter of type INTEGER.

max-sequences
Indicates the number of jobs in any parallel unit.

This is an output parameter of type INTEGER.

return-code
Provides the return code from the stored procedure. Possible values are:

0 Sort ran successfully.

4 The statistics for one or more sorting objects have not been gathered in
the catalog or the object no longer exists.

12 An ADMIN_UTL_SORT error occurred. The message parameter will
contain details.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If
no error occurred, then no message is returned.

The first messages in this area are generated by the stored procedure. Messages
that are generated by DB2 might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Additional input

In addition to the input parameters, this stored procedure reads the objects for
sorting and the corresponding utility names from the created global temporary
table SYSIBM.UTILITY_SORT_OBJ.

The following table shows the format of the created global temporary table
SYSIBM.UTILITY_SORT_OBJ:

944 Administration Guide



Table 204. Input for the ADMIN_UTL_SORT stored procedure

Column name Data type Contents

OBJECTID INTEGER A unique positive identifier
for the object the utility
execution is associated with.
When you insert multiple
rows, increment OBJECTID
by 1, starting at 0 for every
insert.

TYPE VARCHAR(10) Object type:

v TABLESPACE

v INDEXSPACE

v TABLE

v INDEX

v STOGROUP

QUALIFIER VARCHAR(128) Qualifier (database or creator)
of the object in NAME,
empty or null for
STOGROUP. If the qualifier is
not provided and the type of
the object is TABLESPACE or
INDEXSPACE, then the
default database is DSNDB04.
If the object is of the type
TABLE or INDEX, the
schema is the current SQL
authorization ID. If the object
no longer exists, it will be
ignored.

NAME VARCHAR(128) Unqualified name of the
object.

NAME cannot be null.

PART SMALLINT Partition number of the object
for which the utility will be
invoked. Null or 0 if the
object is not partitioned.

Appendix B. Stored procedures for administration 945



Table 204. Input for the ADMIN_UTL_SORT stored procedure (continued)

Column name Data type Contents

UTILITY_NAME VARCHAR(20) Utility name.
UTILITY_NAME cannot be
null.
Recommendation: Sort
objects for the same utility.

Possible values are:
v CHECK DATA
v CHECK INDEX
v CHECK LOB
v COPY
v COPYTOCOPY
v DIAGNOSE
v LOAD
v MERGECOPY
v MODIFY RECOVERY
v MODIFY STATISTICS
v QUIESCE
v REBUILD INDEX
v RECOVER
v REORG INDEX
v REORG LOB
v REORG TABLESPACE
v REPAIR
v REPORT RECOVERY
v REPORT TABLESPACESET
v RUNSTATS INDEX
v RUNSTATS TABLESPACE
v STOSPACE
v UNLOAD

Example

The following C language sample shows how to invoke ADMIN_UTL_SORT:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;

int main( int argc, char *argv[] ) /* Argument count and list */
{

/****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;

/* SYSPROC.ADMIN_UTL_SORT parameters */
short int maxparallel; /* Max parallel */
short int ind_maxparallel; /* Indicator variable */
short int maxperjob; /* Max per job */
short int ind_maxperjob; /* Indicator variable */
char optimizeworkload[9]; /* Optimize workload */
short int ind_optimizeworkload; /* Indicator variable */
char batchexecution[9]; /* Batch execution */
short int ind_batchexecution; /* Indicator variable */
long int numberofobjects; /* Number of objects */
short int ind_numberofobjects; /* Indicator variable */
short int parallelunits; /* Parallel units */
short int ind_parallelunits; /* Indicator variable */

946 Administration Guide



long int maxobjects; /* Maximum objects per */
/* parallel unit */

short int ind_maxobjects; /* Indicator variable */
long int maxseqs; /* Maximum jobs per unit */
short int ind_maxseqs; /* Indicator variable */
long int retcd; /* Return code */
short int ind_retcd; /* Indicator variable */
char errmsg[1332]; /* Error message */
short int ind_errmsg; /* Indicator variable */

/* Temporary table SYSIBM.UTILITY_SORT_OBJ columns */
long int objectid; /* Object id */
char type[11]; /* Object type (e.g. "INDEX") */
char qualifier[129]; /* Object qualifier */
short int ind_qualifier; /* Object qualifier ind. var. */
char name[129]; /* Object name (qual. or unq.)*/
short int part; /* Optional partition */
short int ind_part; /* Partition indicator var */
char utname[21]; /* Utility name */

/* Result set locators */
volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;

/* Result set row */
long int resobjectid; /* Object id */
short int unit; /* Execution unit value */
long int unitseq; /* Job seq within exec unit */
long int unitseqpos; /* Pos within exec unit or */

/* step within job */
char exclusive[2]; /* Exclusive execution flag */
EXEC SQL END DECLARE SECTION;

/******************************************************************/
/* Set up the objects to be sorted */
/******************************************************************/
long int objid_array[4] = {0, 1, 2, 3};
char type_array[4][11] = {"TABLESPACE", "TABLESPACE",

"TABLESPACE", "TABLESPACE"};
char qual_array[4][129] = {"QUAL01", "QUAL01",

"QUAL01", "QUAL01"};
char name_array[4][129] = {"TBSP01", "TBSP02",

"TBSP03", "TBSP04"};
short int part_array[4] = {0, 0, 0, 0};
char utname_array[4][21]= {"RUNSTATS TABLESPACE",

"RUNSTATS TABLESPACE",
"RUNSTATS TABLESPACE",
"RUNSTATS TABLESPACE"};

int i = 0; /* Loop counter */

/******************************************************************/
/* Assign values to input parameters */
/* Set the indicator variables to 0 for non-null input parameters */
/* Set the indicator variables to -1 for null input parameters */
/******************************************************************/
maxparallel = 2;
ind_maxparallel = 0;
ind_maxperjob = -1;
strcpy(optimizeworkload, "YES");
ind_optimizeworkload = 0;
strcpy(batchexecution, "NO");
ind_batchexecution = 0;
numberofobjects = 4;
ind_numberofobjects = 0;

/******************************************************************/
/* Clear temporary table SYSIBM.UTILITY_SORT_OBJ */

Appendix B. Stored procedures for administration 947



/******************************************************************/
EXEC SQL DELETE FROM SYSIBM.UTILITY_SORT_OBJ;

/******************************************************************/
/* Insert the objects into the temporary table */
/* SYSIBM.UTILITY_SORT_OBJ */
/******************************************************************/
for (i = 0; i < 4; i++)
{

objectid = objid_array[i];
strcpy(type, type_array[i]);
strcpy(qualifier, qual_array[i]);
strcpy(name, name_array[i]);
part = part_array[i];
strcpy(utname, utname_array[i]);
EXEC SQL INSERT INTO SYSIBM.UTILITY_SORT_OBJ

(OBJECTID, TYPE, QUALIFIER, NAME, PART,
UTILITY_NAME)

VALUES (:objectid, :type, :qualifier, :name, :part,
:utname);

};

/******************************************************************/
/* Call stored procedure SYSPROC.ADMIN_UTL_SORT */
/******************************************************************/
EXEC SQL CALL SYSPROC.ADMIN_UTL_SORT

(:maxparallel :ind_maxparallel,
:maxperjob :ind_maxperjob,
:optimizeworkload :ind_optimizeworkload,
:batchexecution :ind_batchexecution,
:numberofobjects :ind_numberofobjects,
:parallelunits :ind_parallelunits,
:maxobjects :ind_maxobjects,
:maxseqs :ind_maxseqs,
:retcd :ind_retcd,
:errmsg :ind_errmsg);

/******************************************************************/
/* Retrieve result set when the SQLCODE from the call is +446, */
/* which indicates that result sets were returned */
/******************************************************************/
if (SQLCODE == +466) /* Result sets were returned */
{

/* Establish a link between the result set and its locator */
EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)

WITH PROCEDURE SYSPROC.ADMIN_UTL_SORT;

/* Associate a cursor with the result set */
EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;

/* Perform fetches using C1 to retrieve all rows from the */
/* result set */
EXEC SQL FETCH C1 INTO :resobjectid, :unit,

:unitseq, :unitseqpos, :exclusive;
while(SQLCODE==0)
{

EXEC SQL FETCH C1 INTO :resobjectid, :unit,
:unitseq, :unitseqpos, :exclusive;

}
}

return(retcd);
}

948 Administration Guide



Output

This stored procedure returns the following output parameters, which are
described in “Option descriptions” on page 943:
v number-of-objects

v parallel-units

v max-objects

v max-sequences

v return-code

v message

In addition to the preceding output, the stored procedure returns one result set
that contains the objects sorted into parallel execution units.

The following table shows the format of the result set returned in the created
global temporary table SYSIBM.UTILITY_SORT_OUT:

Table 205. Result set row for ADMIN_UTL_SORT result set

Column name Data type Contents

OBJECTID INTEGER A unique positive identifier
for the object

UNIT SMALLINT Number of parallel execution
unit

UNIT_SEQ INTEGER Job sequence within parallel
execution unit

UNIT_SEQ_POS INTEGER Step within job

EXCLUSIVE CHAR(1) Requires execution with
nothing running in parallel

Common SQL API stored procedures
Common SQL API stored procedures implement a cross-database and
cross-operating system SQL API that is portable across IBM data servers, including
DB2 for Linux®, UNIX, and Windows.

The Common SQL API is a solution-level API that supports common tooling across
IBM data servers. This Common SQL API ensures that tooling does not break
when a data server is upgraded, and it notifies the caller when an upgrade to
tooling is available to capitalize on new data server functionality. Applications that
support more than one IBM data server will benefit from using the Common SQL
API, as it lowers the complexity of implementation. Such applications typically
perform a variety of common administrative functions. For example, you can use
these stored procedures to retrieve data server configuration information, return
system information about the data server, and return the short message text for an
SQLCODE.

These stored procedures use version-stable XML documents as parameters. These
XML parameter documents adhere to a single, common document type definition
(DTD). This DTD is flexible enough to represent hierarchical structures and binary
data. The XML parameter documents can be parsed by using the Apache
Commons Configuration component.

Appendix B. Stored procedures for administration 949

|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|



Each of the three XML parameter documents has a name and a version, and is
typically associated with one stored procedure. The three types of XML parameter
documents are:
v XML input documents
v XML output documents
v XML message documents

The XML input document is passed as input to the stored procedure. The XML
output document is returned as output, and the XML message document returns
messages. If the structure, attributes, or types in an XML parameter document
change, the version of the XML parameter document changes. The version of all
three of these documents remains in sync when you call a stored procedure. For
example, if you call the GET_SYSTEM_INFO stored procedure and specify the
major_version parameter as 1 and the minor_version parameter as 1, the XML input,
XML output, and XML message documents will be Version 1.1 documents.
Related information

DB2 9 for z/OS Stored Procedures: Through the CALL and Beyond

Common DTD

Apache Commons Configuration component

Versioning of XML documents
Common SQL API stored procedures support multiple versions of the three XML
parameter documents: XML input documents, XML output documents, and XML
message documents.

If the structure, attributes, or types in an XML parameter document change, the
version of the XML parameter document changes. Therefore, the content of an
XML parameter document varies depending on the version that you specify.

The version of all three of these documents remains in sync when you call a stored
procedure. For example, if you call the GET_SYSTEM_INFO stored procedure and
specify the major_version parameter as 1 and the minor_version parameter as 1, the
XML input, XML output, and XML message documents will be Version 1.1
documents.

Version information in an XML parameter document is expressed as key and value
pairs for Document Type Major Version and Document Type Minor Version. For
example, an XML output document might define the following keys and values in
a dictionary element:

<key>Document Type Name</key><string>Data Server Configuration Output</string>
<key>Document Type Major Version</key><integer>2</integer>
<key>Document Type Minor Version</key><integer>0</integer>

To determine the highest supported document version for a stored procedure,
specify NULL for the major_version parameter, the minor_version parameter, and all
other required parameters. The stored procedure returns the highest supported
document version as values in the major_version and minor_version output
parameters, and sets the xml_output and xml_message output parameters to NULL.

If you specify non-null values for the major_version and minor_version parameters,
you must specify a document version that is supported . If the version is invalid,
the stored procedure returns an error (-20457).

950 Administration Guide

|
|
|

|

|

|

|
|
|
|
|
|
|
|

|

|

|

|

|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

http://www.redbooks.ibm.com/abstracts/sg247604.html
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://commons.apache.org/configuration/


If the XML input document in the xml_input parameter specifies the Document
Type Major Version and Document Type Minor Version keys, the value for those
keys must be equal to the values that you specified in the major_version and
minor_version parameters, or an error (+20458) is raised.

XML input documents
The XML input document is passed as input to common SQL API stored
procedures and adheres to a single, common document type definition (DTD).

The XML input document consists of a set of entries that are common to all stored
procedures, and a set of entries that are specific to each stored procedure. The
XML input document has the following general structure:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Message Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Document Locale</key><string>en_US</string>
<key>Complete</key><false/>

<!-- Document type specific data appears here. -->
</dict>
</plist>

The Document Type Name key varies depending on the stored procedure. This
example shows an XML input document for the GET_MESSAGE stored procedure.
In addition, the values of the Document Type Major Version and Document Type
Minor Version keys depend on the values that you specified in the major_version
and minor_version parameters for the stored procedure.

If the stored procedure is not running in Complete mode, you must specify the
Document Type Name key, the required parameters, and any optional parameters
that you want to specify. Specifying the Document Type Major Version and
Document Type Minor Version keys are optional. If you specify the Document
Type Major Version and Document Type Minor Version keys, the values must be
the same as the values that you specified in the major_version and minor_version
parameters. You must either specify both or omit both of the Document Type
Major Version and Document Type Minor Version keys. Specifying the Document
Locale key is optional. If you specify the Document Locale key, the value is
ignored.

Important: XML input documents must be encoded in UTF-8 and contain only
English characters.

Complete mode for returning valid XML input documents
You can use Complete mode to create a valid XML input document for the common
SQL API stored procedures. Then, you can customize the XML input document
and pass it back to the procedure.

If the Complete key is included and you set the value to true, the stored
procedure will run in Complete mode, and all other entries in the XML input
document will be ignored. The following example shows the minimal XML input
document that is required for the stored procedure to run in Complete mode:

Appendix B. Stored procedures for administration 951

|
|
|
|

|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|



<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Complete</key><true/>
</dict>
</plist>

If the stored procedure runs in Complete mode, a complete input document is
returned by the xml_output parameter of the stored procedure. The returned XML
document is a full XML input document that includes a Document Type and
sections for all possible required and optional parameters. The returned XML input
document also includes entries for Display Name, Hint, and the Document
Locale. Although these entries are not required (and will be ignored) in the XML
input document, they are usually needed when rendering the document in a client
application.

All entries in the returned XML input document can be rendered and changed in
ways that are independent of the operating system or data server. Subsequently,
the modified XML input document can be passed in the xml_input parameter in a
new call to the same stored procedure. This enables you to programmatically
create valid xml_input documents.

XML output documents
The XML output documents that are returned as output from common SQL API
stored procedures share a common set of entries.

At a minimum, the XML output documents that are returned in the xml_output
parameter include the following key and value pairs, followed by information that
is specific to each stored procedure:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key>
<string>Data Server Configuration Output</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Data Server Product Name</key><string>DSN</string>
<key>Data Server Product Version</key><string>9.1.5</string>
<key>Data Server Major Version</key><integer>9</integer>
<key>Data Server Minor Version</key><integer>1</integer>
<key>Data Server Platform</key><string>z/OS</string>
<key>Document Locale</key><string>en_US</string>
<!-- Document type specific data appears here. -->

</dict>
</plist>

The Document Type Name key varies depending on the stored procedure. This
example shows an XML output document for the GET_CONFIG stored procedure.
In addition, the values of the Document Type Major Version and Document Type
Minor Version keys depend on the values that you specified in the major_version
and minor_version parameters for the stored procedure.

Entries in the XML output document are grouped by using nested dictionaries.
Each entry in the XML output document describes a single piece of information. In
general, an XML output document is comprised of Display Name, Value, and
Hint, as shown in the following example:
<key>SQL Domain</key>
<dict>

<key>Display Name</key>

952 Administration Guide

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|



<string>SQL Domain</string>
<key>Value</key>
<string>v33ec059.svl.ibm.com</string>
<key>Hint</key>
<string />

</dict>

XML output documents are generated in UTF-8 and contain only English
characters.

XPath expressions for filtering output
You can use an XPath expression to filter the XML output that is returned by the
GET_CONFIG, GET_MESSAGE, and GET_SYSTEM_INFO stored procedures.

To filter the output, specify a valid XPath query string in the xml_filter parameter
of the stored procedure.

The following restrictions apply to the XPath expression that you specify:
v The XPath expression must reference a single value.
v The XPath expression must always be absolute from the root node. For example,

the following path expressions are allowed: /, nodename, ., and ... The following
expressions are not allowed: // and @

v The only predicates allowed are [path='value'] and [n].
v The only axis allowed is following-sibling.
v The XPath expression must end with one of the following, and, if necessary, be

appended with the predicate [1]: following-sibling::string,
following-sibling:: data, following-sibling::date, following-sibling::real,
or following-sibling::integer.

v Unless the axis is found at the end of the XPath expression, it must be followed
by a ::dict, ::string, ::data, ::date, ::real, or ::integer, and if necessary, be
appended with the predicate [1].

v The only supported XPath operator is =.
v The XPath expression cannot contain a function, namespace, processing

instruction, or comment.

Tip: If the stored procedure operates in complete mode, do not apply filtering, or
an SQLCODE (+20458) is raised.

Example: The following XPath expression selects the value for the Data Server
Product Version key from an XML output document:
/plist/dict/key[.='Data Server Product Version']/following-sibling::string[1]

The stored procedure returns the string 9.1.5 in the xml_output parameter if the
value of the Data Server Product Version is 9.1.5. Therefore, the stored procedure
call returns a single value rather than an XML document.

XML message documents
An XML message document provides detailed information about an SQL warning
condition.

When a common SQL API stored procedure encounters an internal processing
error or invalid parameter, the data server returns an SQLCODE and the

Appendix B. Stored procedures for administration 953

|
|
|
|
|
|

|
|

|
|
|

|
|

|

|

|
|
|

|

|

|
|
|
|

|
|
|

|

|
|

|
|

|
|

|

|
|
|

|

|
|

|
|



corresponding SQL message to the caller. When this occurs, the procedure returns
an XML message document in the xml_message parameter that contains additional
information about the warning.

An XML message document contains key and value pairs followed by details
about an SQL warning condition. The general structure of an XML message
document is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key>
<string>Data Server Message</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Data Server Product Name</key><string>DSN</string>
<key>Data Server Product Version</key><string>9.1.5</string>
<key>Data Server Major Version</key><integer>9</integer>
<key>Data Server Minor Version</key><integer>1</integer>
<key>Data Server Platform</key><string>z/OS</string>
<key>Document Locale</key><string>en_US</string>
--- Details about an SQL warning condition are included here. ---

</dict>
</plist>

The details about an SQL warning will be encapsulated in a dictionary entry,
which is comprised of Display Name, Value, and Hint, as shown in the following
example:
<key>Short Message Text</key>
<dict>

<key>Display Name</key><string>Short Message Text</string>
<key>Value</key>
<string>DSNA630I DSNADMGC A PARAMETER FORMAT OR CONTENT ERROR WAS FOUND.

The XML input document must be empty or NULL.</string>
<key>Hint</key><string />

</dict>

XML message documents are generated in UTF-8 and contain only English
characters.

GET_CONFIG stored procedure
The GET_CONFIG stored procedure retrieves data server configuration
information.

This data server configuration information includes:
v Data sharing group information
v DB2 subsystem status information
v DB2 subsystem parameters, DSNHDECP parameters, and the IRLM parameters

that are found in IFCID 106 section 5
v DB2 distributed access information
v Active log data set information
v The time of the last restart of DB2
v Resource limit facility information
v Connected DB2 subsystems information

954 Administration Guide

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|

|
|

|

|

|

|
|

|

|

|

|

|



Environment

The GET_CONFIG stored procedure runs in a WLM-established stored procedures
address space.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have EXECUTE privilege on the GET_CONFIG stored
procedure.

Syntax

�� CALL GET_CONFIG ( major_version , minor_version ,
NULL NULL

�

� requested_locale , xml_input , xml_filter , xml_output , xml_message )
NULL NULL NULL

��

The schema is SYSPROC.

Option descriptions

major_version
An input and output parameter of type INTEGER that indicates the major
document version. On input, this parameter indicates the major document
version that you support for the XML documents that are passed as parameters
in the stored procedure (xml_input, xml_output, and xml_message). The stored
procedure processes all XML documents in the specified version, or returns an
error (-20457) if the version is invalid.

On output, this parameter specifies the highest major document version that is
supported by the procedure. To determine the highest supported document
version, specify NULL for this input parameter and all other required
parameters. Currently, the highest major document version that is supported is
2. Major document version 1 is also supported.

If the XML document in the xml_input parameter specifies the Document Type
Major Version key, the value for that key must be equal to the value provided
in the major_version parameter, or an error (+20458) is raised.

This parameter is used in conjunction with the minor_version parameter.
Therefore, you must specify both parameters together. For example, you must
specify both as either NULL, or non-NULL.

minor_version
An input and output parameter of type INTEGER that indicates the minor
document version. On input, this parameter specifies the minor document
version that you support for the XML documents that are passed as parameters
for this stored procedure (xml_input, xml_output, and xml_message). The stored
procedure processes all XML documents in the specified version, or returns an
error (-20457) if the version is invalid.

On output, this parameter indicates the highest minor document version that is
supported for the highest supported major version. To determine the highest

Appendix B. Stored procedures for administration 955

|

|
|

|

|
|
|

|
|

|||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||||||

|
||

|

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|



supported document version, specify NULL for this input parameter and all
other required parameters. Currently, the highest and only minor document
version that is supported is 0 (zero).

If the XML document in the xml_input parameter specifies the Document Type
Minor Version key, the value for that key must be equal to the value provided
in the minor_version parameter, or an error (+20458) is raised.

This parameter is used in conjunction with the major_version parameter.
Therefore, you must specify both parameters together. For example, you must
specify both as either NULL, or non-NULL.

requested_locale
An input parameter of type VARCHAR(33) that specifies a locale. If the
specified language is supported on the server, translated content is returned in
the xml_output and xml_message parameters. Otherwise, content is returned in
the default language. Only the language and possibly the territory information
is used from the locale. The locale is not used to format numbers or influence
the document encoding. For example, key names are not translated. The only
translated portion of XML output and XML message documents are Display
Name, Display Unit, and Hint. The value might be globalized where
applicable. You should always compare the requested language to the language
that is used in the XML output document (see the Document Locale entry in
the XML output document).

Currently, the supported values for requested_locale are en_US and NULL. If
you specify a null value, the result is the same as specifying en_US.

xml_input
An input parameter of type BLOB(2G) that specifies an XML input document
of type Data Server Configuration Input in UTF-8 that contains input values
for the stored procedure.

To pass an XML input document to the stored procedure, you must specify the
major_version parameter as 2 and the minor_version parameter as 0 (zero).

For a non-data sharing system, a sample of a Version 2.0 XML input document
is as follows:

<plist version="1.0">
<?xml version="1.0" encoding="UTF-8" ?>
<dict>

<key>Document Type Name</key>
<string>Data Server Configuration Input</string>
<key>Document Type Major Version</key>
<integer>2</integer>
<key>Document Type Minor Version</key>
<integer>0</integer>
<key>Document Locale</key>
<string>en_US</string>
<key>Complete</key><false/>
<key>Optional Parameters</key>
<dict>

<key>Include</key>
<dict>

<key>Value</key>
<array>

<string>DB2 Subsystem Status Information</string>
<string>DB2 Subsystem Parameters</string>
<string>DB2 Distributed Access Information</string>
<string>Active Log Data Set Information</string>
<string>Time of Last DB2 Restart</string>
<string>Resource Limit Facility Information</string>
<string>Connected DB2 Subsystem</string>

956 Administration Guide

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



</array>
</dict>

</dict>
</dict>
</plist>

For a data sharing system, a sample of a Version 2.0 XML input document is as
follows:

<plist version="1.0">
<?xml version="1.0" encoding="UTF-8" ?>
<dict>

<key>Document Type Name</key>
<string>Data Server Configuration Input</string>
<key>Document Type Major Version</key>
<integer>2</integer>
<key>Document Type Minor Version</key>
<integer>0</integer>
<key>Document Locale</key>
<string>en_US</string>
<key>Complete</key><false/>
<key>Optional Parameters</key>
<dict>

<key>Include</key>
<dict>

<key>Value</key>
<array>

<string>Common Data Sharing Group Information</string>
<string>DB2 Subsystem Status Information</string>
<string>DB2 Subsystem Parameters</string>
<string>DB2 Distributed Access Information</string>
<string>Active Log Data Set Information</string>
<string>Time of Last DB2 Restart</string>
<string>Resource Limit Facility Information</string>
<string>Connected DB2 Subsystem</string>

</array>
</dict>
<key>DB2 Data Sharing Group Members</key>
<dict>

<key>Value</key>
<array>

<string>DB2A</string>
<string>DB2B</string>

</array>
</dict>

</dict>
</dict>
</plist>

When passing an XML input document to the stored procedure, you must
specify the Document Type Name key. In a non-data sharing system, you must
specify the Include parameter. In a data sharing system, you must specify at
least one of the following parameters:
v Include

v DB2 Data Sharing Group Members

If no XML input document is passed to the stored procedure, and you
specified the major_version parameter as 2 and the minor_version parameter as 0
(zero), the stored procedure returns the following parameters for a non-data
sharing system in a Version 2.0 XML output document by default:
v DB2 Subsystem Status Information

v DB2 Subsystem Parameters

v DB2 Distributed Access Information

v Active Log Data Set Information

Appendix B. Stored procedures for administration 957

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|

|
|
|
|

|

|

|

|



v Time of Last DB2 Restart

v Resource Limit Facility Information

v Connected DB2 Subsystem

For a data sharing system, the same information is returned for each member
of a data sharing group, plus the Common Data Sharing Group Information
parameter.

If you passed a Version 2.0 XML input document to the stored procedure, the
stored procedure returns the information in a Version 2.0 XML output
document. The information returned is dependent on what you specified in the
Include array and in the DB2 Data Sharing Group Members array (if
applicable). For a non-data sharing system, the items that are specified in the
Include array are returned. For a data sharing system, the following
information is returned:
v The items that are specified in the Include array for each DB2 member that

is specified in the DB2 Data Sharing Group Members array, if both the
Include parameter and the DB2 Data Sharing Group Members parameter
are specified.

v The items that are specified in the Include array for every DB2 member in
the data sharing group, if only the Include parameter is specified.

v The Common Data Sharing Group Information and the following items for
each member that is specified in the DB2 Data Sharing Group Members
array, if only the DB2 Data Sharing Group Members parameter is specified:
– DB2 Subsystem Status Information

– DB2 Subsystem Parameters

– DB2 Distributed Access Information

– Active Log Data Set Information

– Time of Last DB2 Restart

– Resource Limit Facility Information

– Connected DB2 Subsystem

Note: If the Common Data Sharing Group Information item is specified in
the Include array, this information is returned only once for the data sharing
group. This information is not returned repeatedly for every DB2 member that
is processed.

Complete mode: For an example of a Version 2.0 XML input document that is
returned by the xml_output parameter when the stored procedure is running in
Complete mode in a non-data sharing system, see Example 4 in the Examples
section. For an example of a Version 2.0 XML input document that is returned
by the xml_output parameter when the stored procedure is running in
Complete mode in a data sharing system with two DB2 members, DB2A and
DB2B, see Example 5.

xml_filter
An input parameter of type BLOB(4K) in UTF-8 that specifies a valid XPath
query string. Use a filter when you want to retrieve a single value from an
XML output document. For more information, see “XPath expressions for
filtering output” on page 953.

The following example selects the value for the Data Server Product Version
from the XML output document:
/plist/dict/key[.='Data Server Product Version']/following-sibling::string[1]

958 Administration Guide

|

|

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|

|

|

|

|

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|



If the key is not followed by the specified sibling, an error is returned.

xml_output
An output parameter of type BLOB(2G) that returns a complete XML output
document of type Data Server Configuration Output in UTF-8. If a filter is
specified, this parameter returns a string value. If the stored procedure is
unable to return a complete output document (for example, if a processing
error occurs that results in an SQL warning or error), this parameter is set to
NULL.

The xml_output parameter can return either a Version 1.0 or Version 2.0 XML
output document depending on the major_version and minor_version parameters
that you specify. For information about the content of a Version 2.0 XML
output document, see the option description for the xml_input parameter.

For a sample Version 1.0 XML output document, see Example 1 in the
Examples section.

For a sample Version 2.0 XML output document in a non-data sharing system,
see Example 6.

For a sample Version 2.0 XML output document in a data sharing system, see
Example 7.

xml_message
An output parameter of type BLOB(64K) that returns a complete XML output
document of type Data Server Message in UTF-8 that provides detailed
information about an SQL warning condition. This document is returned when
a call to the stored procedure results in an SQL warning, and the warning
message indicates that additional information is returned in the XML message
output document. If the warning message does not indicate that additional
information is returned, then this parameter is set to NULL.

The xml_message parameter can return either a Version 1.0 or Version 2.0 XML
message document depending on the major_version and minor_version
parameters that you specify.

For an example of an XML message document, see Example 2.

If the GET_CONFIG stored procedure is processing more than one DB2
member in a data sharing system and an error is encountered when processing
one of the DB2 members, the stored procedure specifies the name of the DB2
member that is causing the error as the value of the DB2 Object key in the
XML message document. The value of the Short Message Text key applies to
the DB2 member that is specified.

The following example shows a fragment of a Version 2.0 XML message
document with the DB2 Object key specified:
<key>Short Message Text</key>

<dict>
<key>Display Name</key>
<string>Short Message Text</string>
<key>Value</key>
<string>DSNA6xxI DSNADMGC .....</string>
<key>DB2 Object</key>
<string>DB2B</string>
<key>Hint</key>
<string />

</dict>

Appendix B. Stored procedures for administration 959

|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|



Examples

Example 1: The following example shows a fragment of a Version 1.0 XML output
document for the GET_CONFIG stored procedure for a data sharing member. For a
non-data sharing member, the following entries in the DB2 Distributed Access
Information item are not included: Resynchronization Domain, Alias List,
Member IPv4 Address, Member IPv6 Address, and Location Server List.

The two major sections that the XML output document always contains are
Common Data Sharing Group Information and DB2 Subsystem Specific
Information. In this example, the ellipsis (. . .) represent a dictionary entry that is
comprised of Display Name, Value, and Hint, such as:
<dict>

<key>Display Name</key>
<string>DDF Status</string>
<key>Value</key>
<string>STARTD</string>
<key>Hint</key>
<string />

</dict>

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key>
<string>Data Server Configuration Output</string>
<key>Document Type Major Version</key>
<integer>1</integer>
<key>Document Type Minor Version</key>
<integer>0</integer>
<key>Data Server Product Name</key>
<string>DSN</string>
<key>Data Server Product Version</key>
<string>9.1.5</string>
<key>Data Server Major Version</key>
<integer>9</integer>
<key>Data Server Minor Version</key>
<integer>1</integer>
<key>Data Server Platform</key>
<string>z/OS</string>
<key>Document Locale</key>
<string>en_US</string>

<key>Common Data Sharing Group Information</key>
<dict>

<key>Display Name</key>
<string>Common Data Sharing Group Information</string>
<key>Data Sharing Group Name</key>
...
<key>Data Sharing Group Level</key>
...
<key>Data Sharing Group Mode</key>
...
<key>Data Sharing Group Protocol Level</key>
...
<key>Data Sharing Group Attach Name</key>
...
<key>SCA Structure Size</key>
...
<key>SCA Status</key>
...
<key>SCA in Use</key>
...
<key>LOCK1 Structure Size</key>
...

960 Administration Guide

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



<key>Number of Lock Entries</key>
...
<key>Number of List Entries</key>
...
<key>List Entries in Use</key>
...
<key>Hint</key><string></string>

</dict>

<key>DB2 Subsystem Specific Information</key>
<dict>

<key>Display Name</key>
<string>DB2 Subsystem Specific Information</string>
<key>V91A</key>
<dict>

<key>Display Name</key>
<string>V91A</string>
<key>DB2 Subsystem Status Information</key>
<dict>

<key>Display Name</key>
<string>DB2 Subsystem Status Information</string>
<key>DB2 Member Identifier</key>
...
<key>DB2 Member Name</key>
...
<key>DB2 Command Prefix</key>
...
<key>DB2 Status</key>
...
<key>DB2 System Level</key>
...
<key>System Name</key>
...
<key>IRLM Subsystem Name</key>
...
<key>IRLM Procedure Name</key>
...
<key>Parallel Coordinator</key>
...
<key>Parallel Assistant</key>
...
<key>Hint</key><string></string>

</dict>

<key>DB2 Subsystem Parameters</key>
<dict>

<key>Display Name</key>
<string>DB2 Subsystem Parameters</string>
<key>DSNHDECP</key>
<dict>

<key>Display Name</key>
<string>DSNHDECP</string>
<key>AGCCSID</key>
<dict>

<key>Display Name</key>
<string>AGCCSID</string>
<key>Installation Panel Name</key>
...
<key>Installation Panel Field Name</key>
...
<key>Location on Installation Panel</key>
...
<key>Subsystem Parameter Value</key>
...
<key>Hint</key><string></string>

</dict>

Appendix B. Stored procedures for administration 961

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



--- This is only a fragment of the
DSNHDECP parameters that are returned
by the GET_CONFIG stored procedure. ---

<key>Hint</key><string></string>
</dict>

--- This is only a fragment of the
DB2 subsystem parameters that are returned
by the GET_CONFIG stored procedure. ---

<key>Hint</key><string></string>
</dict>

<key>DB2 Distributed Access Information</key>
<dict>

<key>Display Name</key>
<string>DB2 Distributed Access Information</string>
<key>DDF Status</key>
...
<key>Location Name</key>
...
<key>LU Name</key>
...
<key>Generic LU Name</key>
...
<key>TCP/IP Port</key>
...
<key>Secure Port</key>
...
<key>Resynchronization Port</key>
...
<key>IP Name</key>
...
<key>IPv4 Address</key>
...
<key>IPv6 Address</key>
...
<key>SQL Domain</key>
...
<key>Resynchronization Domain</key>
...
<key>Alias List</key>
<dict>

<key>Display Name</key>
<string>Alias List</string>
<key>1</key>
<dict>

<key>Display Name</key>
<string>1</string>
<key>Name</key>
...
<key>Port</key>
...
<key>Secure Port</key>
...
<key>Hint</key><string />

</dict>
<key>2</key>
<dict>

<key>Display Name</key>
<string>2</string>
<key>Name</key>
...
<key>Port</key>
...
<key>Secure Port</key>

962 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



...
<key>Hint</key><string />

</dict>
<key>Hint</key><string />

</dict>
<key>Member IPv4 Address</key>
...
<key>Member IPv6 Address</key>
...
<key>DT - DDF Thread Value</key>
...
<key>CONDBAT - Maximum Inbound Connections</key>
...
<key>MDBAT - Maximum Concurrent Active DBATs</key>
...
<key>ADBAT - Active DBATs</key>
...
<key>QUEDBAT - Times that ADBAT Reached MDBAT Limit</key>
...
<key>INADBAT - Inactive DBATs (Type 1)</key>
...
<key>CONQUED - Queued Connections</key>
...
<key>DSCDBAT - Pooled DBATs</key>
...
<key>INACONN - Inactive Connections (Type 2)</key>
...
<key>Location Server List</key>
<dict>

<key>Display Name</key>
<string>Location Server List</string>
<key>1</key>
<dict>

<key>Display Name</key>
<string>1</string>
<key>Weight</key>
...
<key>IPv4 Address</key>
...
<key>IPv6 Address</key>
...
<key>Hint</key><string />

</dict>
<key>2</key>
<dict>

<key>Display Name</key>
<string>2</string>
<key>Weight</key>
...
<key>IPv4 Address</key>
...
<key>IPv6 Address</key>
...
<key>Hint</key><string />

</dict>
<key>Hint</key><string></string>

</dict>
<key>Hint</key><string></string>

</dict>

<key>Active Log Data Set Information</key>
<dict>

<key>Display Name</key>
<string>Active Log Data Set Information</string>
<key>Active Log Copy 01</key>
<dict>

<key>Display Name</key>

Appendix B. Stored procedures for administration 963

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



<string>Active Log Copy 01</string>
<key>Data Set Name</key>
...
<key>Data Set Volumes</key>
<dict>

<key>Display Name</key>
<string>Data Set Volumes</string>
<key>Value</key>
<array>

<string>CATLGJ</string>
</array>
<key>Hint</key><string></string>

</dict>
<key>Hint</key><string></string>

</dict>
<key>Active Log Copy 02</key>
<dict>

--- The format of this dictionary entry is
the same as that of Active Log Copy 01. ---

</dict>
<key>Hint</key><string></string>

</dict>

<key>Time of Last DB2 Restart</key>
...

<key>Resource Limit Facility Information</key>
<dict>

<key>Display Name</key>
<string>Resource Limit Facility Information</string>
<key>RLF Table Names</key>
<dict>

<key>Display Name</key>
<string>RLF Table Names</string>
<key>Value</key>
<array>

<string>SYSADM.DSNRLST01</string>
</array>
<key>Hint</key><string></string>

</dict>
<key>Hint</key><string></string>

</dict>

<key>Connected DB2 Subsystem</key>
...
<key>Hint</key><string></string>

</dict>
<key>Hint</key><string></string>

</dict>
<key>Hint</key><string></string>

</dict>
</plist>

Example 2: The following example shows a sample XML message document for
the GET_CONFIG stored procedure. Similar to an XML output document, the
details about an SQL warning condition are encapsulated in a dictionary entry,
which is comprised of Display Name, Value, and Hint.

<?xml version="1.0" encoding="UTF-8" ?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Message</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Data Server Product Name</key><string>DSN</string>
<key>Data Server Product Version</key><string>9.1.5</string>
<key>Data Server Major Version</key><integer>9</integer>

964 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|



<key>Data Server Minor Version</key><integer>1</integer>
<key>Data Server Platform</key><string>z/OS</string>
<key>Document Locale</key><string>en_US</string>
<key>Short Message Text</key>
<dict>

<key>Display Name</key><string>Short Message Text</string>
<key>Value</key>
<string>DSNA630I DSNADMGC A PARAMETER FORMAT OR CONTENT ERROR WAS FOUND.

The XML input document must be empty or NULL.</string>
<key>Hint</key><string />

</dict>
</dict>
</plist>

Example 3: This example shows a simple and static Java program that calls the
GET_CONFIG stored procedure with an XPath that queries the value of the data
server’s IP address. The XPath is statically created as a string object by the
program, and then converted to a BLOB to serve as input for the xml_filter
parameter. After the stored procedure is called, the xml_output parameter contains
only a single string and no XML document. This output is materialized as a file
called xml_output.xml that is in the same directory where the GetConfDriver class
resides.
//***************************************************************************
// Licensed Materials - Property of IBM
// 5635-DB2
// (C) COPYRIGHT 1982, 2006 IBM Corp. All Rights Reserved.
//
// STATUS = Version 9
//***************************************************************************
// Source file name: GetConfDriver.java
//
// Sample: How to call SYSPROC.GET_CONFIG with a valid XPath to extract the
// IP Address.
//
//The user runs the program by issuing:
//java GetConfDriver <alias or //server/database> <userid> <password>
//
//The arguments are:
//<alias> - DB2 subsystem alias for type 2 or //server/database for type 4
// connectivity
//<userid> - user ID to connect as
//<password> - password to connect with
//***************************************************************************
import java.io.*;
import java.sql.*;
public class GetConfDriver
{

public static void main (String[] args)
{

Connection con = null;
CallableStatement cstmt = null;
String driver = "com.ibm.db2.jcc.DB2Driver";
String url = "jdbc:db2:";
String userid = null;
String password = null;

// Parse arguments
if (args.length != 3)
{

System.err.println("Usage: GetConfDriver <alias or //server/database>
<userid> <password>");

System.err.println("where <alias or //server/database> is DB2
subsystem alias or //server/database for type 4 connectivity");

System.err.println(" <userid> is user ID to connect as");

Appendix B. Stored procedures for administration 965

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



System.err.println(" <password> is password to connect with");
return;

}
url += args[0];
userid = args[1];
password = args[2];

try {

byte[] xml_input;
String str_xmlfilter = new String(
"/plist/dict/key[.='DB2 Subsystem Specific Information']/following-

sibling::dict[1]" +
"/key[.='V91A']/following-sibling::dict[1]" +
"/key[.='DB2 Distributed Access Information']/following-sibling::dict[1]" +
"/key[.='IP Address']/following-sibling::dict[1]" +
"/key[.='Value']/following-sibling::string[1]");

/* Convert XML_FILTER to byte array to pass as BLOB */
byte[] xml_filter = str_xmlfilter.getBytes("UTF-8");

// Load the DB2 Universal JDBC Driver
Class.forName(driver);

// Connect to database
con = DriverManager.getConnection(url, userid, password);
con.setAutoCommit(false);

cstmt = con.prepareCall("CALL SYSPROC.GET_CONFIG(?,?,?,?,?,?,?)");

// Major / Minor Version / Requested Locale
cstmt.setInt(1, 1);
cstmt.setInt(2, 0);
cstmt.setString(3, "en_US");
// No Input document
cstmt.setObject(4, null, Types.BLOB);
cstmt.setObject(5, xml_filter, Types.BLOB);

// Output Parms
cstmt.registerOutParameter(1, Types.INTEGER);
cstmt.registerOutParameter(2, Types.INTEGER);
cstmt.registerOutParameter(6, Types.BLOB);
cstmt.registerOutParameter(7, Types.BLOB);

cstmt.execute();
con.commit();

SQLWarning ctstmt_warning = cstmt.getWarnings();
if (ctstmt_warning != null) {

System.out.println("SQL Warning: " + ctstmt_warning.getMessage());
}
else {

System.out.println("SQL Warning: None\r\n");
}

System.out.println("Major Version returned " + cstmt.getInt(1) );
System.out.println("Minor Version returned " + cstmt.getInt(2) );

/* get output BLOBs */
Blob b_out = cstmt.getBlob(6);

if(b_out != null)
{

int out_length = (int)b_out.length();
byte[] bxml_output = new byte[out_length];

966 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



/* open an inputstream on BLOB data */
InputStream instr_out = b_out.getBinaryStream();

/* copy from inputstream into byte array */
int out_len = instr_out.read(bxml_output, 0, out_length);

/* write byte array into FileOutputStream */
FileOutputStream fxml_out = new FileOutputStream("xml_output.xml");

/* write byte array content into FileOutputStream */
fxml_out.write(bxml_output, 0, out_length );

//Close streams
instr_out.close();
fxml_out.close();

}

Blob b_msg = cstmt.getBlob(7);
if(b_msg != null)
{

int msg_length = (int)b_msg.length();
byte[] bxml_message = new byte[msg_length];

/* open an inputstream on BLOB data */
InputStream instr_msg = b_msg.getBinaryStream();

/* copy from inputstream into byte array */
int msg_len = instr_msg.read(bxml_message, 0, msg_length);

/* write byte array content into FileOutputStream */
FileOutputStream fxml_msg = new FileOutputStream(new File

("xml_message.xml"));
fxml_msg.write(bxml_message, 0, msg_length);

//Close streams
instr_msg.close();
fxml_msg.close();

}
}
catch (SQLException sqle) {

System.out.println("Error during CALL "
+ " SQLSTATE = " + sqle.getSQLState()
+ " SQLCODE = " + sqle.getErrorCode()
+ " : " + sqle.getMessage());

}
catch (Exception e) {

System.out.println("Internal Error " + e.toString());
}
finally
{

if(cstmt != null)
try { cstmt.close(); } catch ( SQLException sqle)

{ sqle.printStackTrace(); }
if(con != null)

try { con.close(); } catch ( SQLException sqle)
{ sqle.printStackTrace(); }

}
}

}

Example 4: The following example shows a Version 2.0 XML input document that
is returned by the xml_output parameter when the stored procedure is running in
Complete mode in a non-data sharing system:

<plist version="1.0">
<?xml version="1.0" encoding="UTF-8" ?>
<dict>

Appendix B. Stored procedures for administration 967

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|



<key>Document Type Name</key>
<string>Data Server Configuration Input</string>
<key>Document Type Major Version</key>
<integer>2</integer>
<key>Document Type Minor Version</key>
<integer>0</integer>
<key>Document Locale</key>
<string>en_US</string>
<key>Optional Parameters</key>
<dict>

<key>Display Name</key>
<string>Optional Parameters</string>
<key>Include</key>
<dict>

<key>Display Name</key>
<string>Include</string>
<key>Value</key>
<array>

<string>DB2 Subsystem Status Information</string>
<string>DB2 Subsystem Parameters</string>
<string>DB2 Distributed Access Information</string>
<string>Active Log Data Set Information</string>
<string>Time of Last DB2 Restart</string>
<string>Resource Limit Facility Information</string>
<string>Connected DB2 Subsystem</string>

</array>
<key>Hint</key><string />

</dict>
<key>Hint</key><string />

</dict>
</dict>
</plist>

Example 5: The following example shows a Version 2.0 XML input document that
is returned by the xml_output parameter when the stored procedure is running in
Complete mode in a data sharing system with two DB2 members, DB2A and
DB2B:

<plist version="1.0">
<?xml version="1.0" encoding="UTF-8" ?>
<dict>

<key>Document Type Name</key>
<string>Data Server Configuration Input</string>
<key>Document Type Major Version</key>
<integer>2</integer>
<key>Document Type Minor Version</key>
<integer>0</integer>
<key>Document Locale</key>
<string>en_US</string>
<key>Optional Parameters</key>
<dict>

<key>Display Name</key>
<string>Optional Parameters</string>
<key>Include</key>
<dict>

<key>Display Name</key>
<string>Include</string>
<key>Value</key>
<array>

<string>Common Data Sharing Group Information</string>
<string>DB2 Subsystem Status Information</string>
<string>DB2 Subsystem Parameters</string>
<string>DB2 Distributed Access Information</string>
<string>Active Log Data Set Information</string>
<string>Time of Last DB2 Restart</string>
<string>Resource Limit Facility Information</string>
<string>Connected DB2 Subsystem</string>

968 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



</array>
<key>Hint</key><string />

</dict>
<key>DB2 Data Sharing Group Members</key>
<dict>

<key>Display Name</key>
<string>DB2 Data Sharing Group Members</string>
<key>Value</key>
<array>

<string>DB2A</string>
<string>DB2B</string>

</array>
<key>Hint</key><string />

</dict>
<key>Hint</key><string />
</dict>

</dict>
</plist>

Example 6: This example shows a fragment of a Version 2.0 XML output document
for the GET_CONFIG stored procedure in a non-data sharing system. An XML
input document is not passed to the stored procedure. The ellipsis (. . .) represent a
dictionary entry that is comprised of Display Name, Value, and Hint, as in the
following example, or an entry that is the same as the corresponding entry in a
Version 1.0 XML output document:
<dict>

<key>Display Name</key>
<string>DDF Status</string>
<key>Value</key>
<string>STARTD</string>
<key>Hint</key>
<string />

</dict>

<?xml version="1.0" encoding="UTF-8" ?>
<plist version="1.0">
<dict>

<key>Document Type Name</key>
<string>Data Server Configuration Output</string>
<key>Document Type Major Version</key>
<integer>2</integer>
<key>Document Type Minor Version</key>
<integer>0</integer>
<key>Data Server Product Name</key>
<string>DSN</string>
<key>Data Server Product Version</key>
<string>9.1.5</string>
<key>Data Server Major Version</key>
<integer>9</integer>
<key>Data Server Minor Version</key>
<integer>1</integer>
<key>Data Server Platform</key>
<string>z/OS</string>
<key>Document Locale</key>
<string>en_US</string>
<key>DB2 Subsystem Specific Information</key>
<dict>

<key>Display Name</key>
<string>DB2 Subsystem Specific Information</string>
<key>V91A</key>
<dict>

<key>Display Name</key>
<string>V91A</string>
<key>DB2 Subsystem Status Information</key>
<dict>...</dict>
<key>DB2 Subsystem Parameters</key>

Appendix B. Stored procedures for administration 969

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



<dict>...</dict>
<key>DB2 Distributed Access Information</key>
<dict>

<key>Display Name</key>
<string>DB2 Distributed Access Information</string>
<key>DDF Status</key> ...
<key>Location Name</key> ...
<key>LU Name</key> ...
<key>Generic LU Name</key> ...
<key>TCP/IP Port</key> ...
<key>Secure Port</key> ...
<key>Resynchronization Port</key> ...
<key>IP Name</key> ...
<key>IPv4 Address</key> ...
<key>IPv6 Address</key> ...
<key>SQL Domain</key> ...
<key>DT - DDF Thread Value</key> ...
<key>CONDBAT - Maximum Inbound Connections</key> ...
<key>MDBAT - Maximum Concurrent Active DBATs</key> ...
<key>ADBAT - Active DBATs</key> ...
<key>QUEDBAT - Times that ADBAT Reached MDBAT Limit</key> ...
<key>INADBAT - Inactive DBATs (Type 1)</key> ...
<key>CONQUED - Queued Connections</key> ...
<key>DSCDBAT - Pooled DBATs</key> ...
<key>INACONN - Inactive Connections (Type 2)</key> ...
<key>Hint</key><string></string>

</dict>
<key>Active Log Data Set Information</key>
<dict>...</dict>
<key>Time of Last DB2 Restart</key>
<dict>...</dict>
<key>Resource Limit Facility Information</key>
<dict>

<key>Display Name</key>
<string>Resource Limit Facility Information</string>
<key>RLF Status</key>
<dict>

<key>Display Name</key>
<string>RLF Status</string>
<key>Value</key><string>Active</string>
<key>Hint</key><string />

</dict>
<key>RLF Table Names</key>
<dict>

<key>Display Name</key>
<string>RLF Table Names</string>
<key>Value</key>
<array>

<string>SYSADM.DSNRLST01</string>
</array>
<key>Hint</key><string />

</dict>
<key>Hint</key><string />

</dict>
<key>Connected DB2 Subsystem</key>
<dict>...</dict>
<key>Hint</key><string />

</dict>
<key>Hint</key><string />

</dict>
</dict>
</plist>

Example 7: This example shows a fragment of a Version 2.0 XML output document
for the GET_CONFIG stored procedure in a data sharing system with two DB2
members, DB2A and DB2B. An XML input document is not passed to the stored

970 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|



procedure. The ellipsis (. . .) represent a dictionary entry that is comprised of
Display Name, Value, and Hint, as in the following example, or an entry that is
the same as the corresponding entry in a Version 1.0 XML output document:
<dict>

<key>Display Name</key>
<string>DDF Status</string>
<key>Value</key>
<string>STARTD</string>
<key>Hint</key>
<string />

</dict>

<?xml version="1.0" encoding="UTF-8" ?>
<plist version="1.0">
<dict>

<key>Document Type Name</key>
<string>Data Server Configuration Output</string>
<key>Document Type Major Version</key>
<integer>2</integer>
<key>Document Type Minor Version</key>
<integer>0</integer>
<key>Data Server Product Name</key>
<string>DSN</string>
<key>Data Server Product Version</key>
<string>9.1.5</string>
<key>Data Server Major Version</key>
<integer>9</integer>
<key>Data Server Minor Version</key>
<integer>1</integer>
<key>Data Server Platform</key>
<string>z/OS</string>
<key>Document Locale</key>
<string>en_US</string>
<key>Common Data Sharing Group Information</key>
<dict>

<key>Display Name</key>
<string>Common Data Sharing Group Information</string>
<key>Data Sharing Group Name</key>
<dict>...</dict>
<key>Data Sharing Group Level</key>
<dict>...</dict>
<key>Data Sharing Group Mode</key>
<dict>...</dict>
<key>Data Sharing Group Protocol Level</key>
<dict>...</dict>
<key>Data Sharing Group Attach Name</key>
<dict>...</dict>
<key>SCA Structure Size</key>
<dict>...</dict>
<key>SCA Status</key>
<dict>...</dict>
<key>SCA in Use</key>
<dict>...</dict>
<key>LOCK1 Structure Size</key>
<dict>...</dict>
<key>Number of Lock Entries</key>
<dict>...</dict>
<key>Number of List Entries</key>
<dict>...</dict>
<key>List Entries in Use</key>
<dict>...</dict>
<key>Hint</key><string />

</dict>
<key>DB2 Subsystem Specific Information</key>
<dict>

<key>Display Name</key>
<string>DB2 Subsystem Specific Information</string>

Appendix B. Stored procedures for administration 971

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



<key>DB2A</key>
<dict>

<key>Display Name</key>
<string>DB2A</string>
<key>DB2 Subsystem Status Information</key>
<dict>...</dict>
<key>DB2 Subsystem Parameters</key>
<dict>...</dict>
<key>DB2 Distributed Access Information</key>
<dict>

<key>Display Name</key>
<string>DB2 Distributed Access Information</string>
<key>DDF Status</key> ...
<key>Location Name</key> ...
<key>LU Name</key> ...
<key>Generic LU Name</key> ...
<key>TCP/IP Port</key> ...
<key>Secure Port</key> ...
<key>Resynchronization Port</key> ...
<key>IP Name</key> ...
<key>IPv4 Address</key> ...
<key>IPv6 Address</key> ...
<key>SQL Domain</key> ...
<key>Resynchronization Domain</key> ...
<key>Alias List</key>
<dict>

<key>Display Name</key>
<string>Alias List</string>
<key>1</key>
<dict>

<key>Display Name</key>
<string>1</string>
<key>Name</key> ...
<key>Port</key> ...
<key>Secure Port</key> ...
<key>Hint</key><string />

</dict>
<key>2</key>
<dict>

<key>Display Name</key>
<string>2</string>
<key>Name</key> ...
<key>Port</key> ...
<key>Secure Port</key> ...
<key>Hint</key><string />

</dict>
<key>Hint</key><string />

</dict>
<key>Member IPv4 Address</key> ...
<key>Member IPv6 Address</key> ...
<key>DT - DDF Thread Value</key> ...
<key>CONDBAT - Maximum Inbound Connections</key> ...
<key>MDBAT - Maximum Concurrent Active DBATs</key> ...
<key>ADBAT - Active DBATs</key> ...
<key>QUEDBAT - Times that ADBAT Reached MDBAT Limit</key> ...
<key>INADBAT - Inactive DBATs (Type 1)</key> ...
<key>CONQUED - Queued Connections</key> ...
<key>DSCDBAT - Pooled DBATs</key> ...
<key>INACONN - Inactive Connections (Type 2)</key> ...
<key>Location Server List</key>
<dict>

<key>Display Name</key>
<string>Location Server List</string>
<key>1</key>
<dict>

<key>Display Name</key>
<string>1</string>

972 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



<key>Weight</key> ...
<key>IPv4 Address</key> ...
<key>IPv6 Address</key> ...
<key>Hint</key><string />

</dict>
<key>2</key>
<dict>

<key>Display Name</key>
<string>1</string>
<key>Weight</key> ...
<key>IPv4 Address</key> ...
<key>IPv6 Address</key> ...
<key>Hint</key><string />

</dict>
<key>Hint</key><string />

</dict>
<key>Hint</key><string></string>

</dict>
<key>Active Log Data Set Information</key>
<dict>...</dict>
<key>Time of Last DB2 Restart</key>
<dict>...</dict>
<key>Resource Limit Facility Information</key>
<dict>

<key>Display Name</key>
<string>Resource Limit Facility Information</string>
<key>RLF Status</key>
<dict>

<key>Display Name</key>
<string>RLF Status</string>
<key>Value</key><string>Active</string>
<key>Hint</key><string />

</dict>
<key>RLF Table Names</key>
<dict>

<key>Display Name</key>
<string>RLF Table Names</string>
<key>Value</key>
<array>

<string>SYSADM.DSNRLST01</string>
</array>
<key>Hint</key><string />

</dict>
<key>Hint</key><string />

</dict>
<key>Connected DB2 Subsystem</key>
<dict>...</dict>
<key>Hint</key><string />

</dict>
<key>DB2B</key>
<dict>

--- This dictionary entry describes the second DB2
member: DB2B. Its format is the same as that
of member DB2A. ---

</dict>
<key>Hint</key><string />

</dict>
</dict>
</plist>

GET_MESSAGE stored procedure
The GET_MESSAGE stored procedure returns the short message text for an
SQLCODE.

Appendix B. Stored procedures for administration 973

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|



Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have EXECUTE privilege on the GET_MESSAGE stored
procedure.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL GET_MESSAGE ( major_version , minor_version ,
NULL NULL

�

� requested_locale , xml_input , xml_filter , xml_output , xml_message )
NULL NULL NULL

��

The schema is SYSPROC.

Option descriptions

major_version
An input and output parameter of type INTEGER that indicates the major
document version. On input, this parameter indicates the major document
version that you support for the XML documents that are passed as parameters
in the stored procedure (xml_input, xml_output, and xml_message). The stored
procedure processes all XML documents in the specified version, or returns an
error (-20457) if the version is invalid.

On output, this parameter specifies the highest major document version that is
supported by the stored procedure. To determine the highest supported
document version, specify NULL for this input parameter and all other
required parameters. Currently, the highest and only major document version
that is supported is 1.

If the XML document in the xml_input parameter specifies the Document Type
Major Version key, the value for that key must be equal to the value provided
in the major_version parameter, or an error (+20458) is raised.

This parameter is used in conjunction with the minor_version parameter.
Therefore, you must specify both parameters together. For example, you must
specify both as either NULL, or non-NULL.

minor_version
An input and output parameter of type INTEGER that indicates the minor
document version. On input, this parameter specifies the minor document
version that you support for the XML documents that are passed as parameters
for this stored procedure (xml_input, xml_output, and xml_message). The stored
procedure processes all XML documents in the specified version, or returns an
error (-20457) if the version is invalid.

On output, this parameter indicates the highest minor document version that is
supported for the highest supported major version. To determine the highest
supported document version, specify NULL for this input parameter and all
other required parameters. Currently, the highest and only minor document
version that is supported is 0 (zero).

974 Administration Guide

|

|
|
|

|

|
|
|

|||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||||||

|
||

|

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|



If the XML document in the xml_input parameter specifies the Document Type
Minor Version key, the value for that key must be equal to the value provided
in the minor_version parameter, or an error (+20458) is raised.

This parameter is used in conjunction with the major_version parameter.
Therefore, you must specify both parameters together. For example, you must
specify both as either NULL, or non-NULL.

requested_locale
An input parameter of type VARCHAR(33) that specifies a locale. If the
specified language is supported on the server, translated content is returned in
the xml_output and xml_message parameters. Otherwise, content is returned in
the default language. Only the language and possibly the territory information
is used from the locale. The locale is not used to format numbers or influence
the document encoding. For example, key names are not translated. The only
translated portion of the XML output and XML message documents are
Display Name, Display Unit, and Hint. The value might be globalized where
applicable. You should always compare the requested language to the language
that is used in the XML output document (see the Document Locale entry in
the XML output document).

Currently, the supported values for requested_locale are en_US and NULL. If
you specify a null value, the result is the same as specifying en_US.

xml_input
An input parameter of type BLOB(2G) that specifies an XML input document
of type Data Server Message Input in UTF-8 that contains input values for the
stored procedure.

For this stored procedure, the general structure of an XML input document is
as follows:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Message Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Document Locale</key><string>en_US</string>
<key>Complete</key><false/>
<key>Required Parameters</key>
<dict>

<key>SQLCODE</key>
<dict>

<key>Value</key><integer>sqlcode</integer>
</dict>

</dict>
<key>Optional Parameters</key>
<dict>

<key>Message Tokens</key>
<dict>

<key>Value</key>
<array>

<string>token1 in SQLCA</string>
<string>token2 in SQLCA</string>

</array>
</dict>

</dict>
</dict>
</plist>

For an example of an XML input document that will not run in Complete
mode, see Example 2 in the Examples section.

Appendix B. Stored procedures for administration 975

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|



Complete mode: For an example of an XML input document that is returned
by the xml_output parameter when the stored procedure is running in
Complete mode, see Example 1 in the Examples section.

xml_filter
An input parameter of type BLOB(4K) in UTF-8 that specifies a valid XPath
query string. Use a filter when you want to retrieve a single value from an
XML output document. For more information, see “XPath expressions for
filtering output” on page 953.

The following example selects the value for the short message text from the
XML output document:
/plist/dict/key[.='Short Message Text']/following-sibling::dict[1]/key
[.='Value']/following-sibling::string[1]

If the key is not followed by the specified sibling, an error is returned.

xml_output
An output parameter of type BLOB(2G) that returns a complete XML output
document of type Data Server Message Output in UTF-8. If a filter is specified,
this parameter returns a string value. If the stored procedure is unable to
return a complete output document (for example, if a processing error occurs
that results in an SQL warning or error), this parameter is set to NULL.

For an example of an XML output document, see Example 3.

xml_message
An output parameter of type BLOB(64K) that returns a complete XML output
document of type Data Server Message in UTF-8 that provides detailed
information about an SQL warning condition. This document is returned when
a call to the procedure results in an SQL warning, and the warning message
indicates that additional information is returned in the XML message output
document. If the warning message does not indicate that additional
information is returned, then this parameter is set to NULL.

For an example of an XML message document, see Example 4.

Example

Example 1: The following example shows an XML input document that is returned
by the xml_output parameter when the stored procedure is running in Complete
mode.

<?xml version="1.0" encoding="UTF-8" ?>
<plist version="1.0">
<dict>

<key>Document Type Name</key>
<string>Data Server Message Input</string>
<key>Document Type Major Version</key>
<integer>1</integer>
<key>Document Type Minor Version</key>
<integer>0</integer>
<key>Document Locale</key>
<string>en_US</string>
<key>Required Parameters</key>
<dict>

<key>Display Name</key>
<string>Required Parameters</string>
<key>SQLCODE</key>
<dict>

<key>Display Name</key>
<string>SQLCODE</string>
<key>Value</key>

976 Administration Guide

|
|
|

|
|
|
|
|

|
|

|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



<integer />
<key>Hint</key>
<string />

</dict>
<key>Hint</key>
<string />

</dict>
<key>Optional Parameters</key>
<dict>

<key>Display Name</key>
<string>Optional Parameters</string>
<key>Message Tokens</key>
<dict>

<key>Display Name</key>
<string>Message Tokens</string>
<key>Value</key>
<array>

<string />
</array>
<key>Hint</key>
<string />

</dict>
<key>Hint</key>
<string />

</dict>
</dict>
</plist>

Example 2: The following example shows a complete sample of an XML input
document for the GET_MESSAGE stored procedure.
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key>
<string>Data Server Message Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Document Locale</key><string>en_US</string>
<key>Required Parameters</key>
<dict>

<key>SQLCODE</key>
<dict>

<key>Value</key><integer>-104</integer>
</dict>

</dict>
<key>Optional Parameters</key>
<dict>

<key>Message Tokens</key>
<dict>

<key>Value</key>
<array>

<string>X</string>
<string>( . LIKE AS</string>

</array>
</dict>

</dict>
</dict>
</plist>

Example 3: The following example shows a complete sample of an XML output
document for the GET_MESSAGE stored procedure. The short message text for an
SQLCODE will be encapsulated in a dictionary entry, which is comprised of
Display Name, Value, and Hint.

Appendix B. Stored procedures for administration 977

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|



<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key>
<string>Data Server Message Output</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Data Server Product Name</key><string>DSN</string>
<key>Data Server Product Version</key><string>9.1.5</string>
<key>Data Server Major Version</key><integer>9</integer>
<key>Data Server Minor Version</key><integer>1</integer>
<key>Data Server Platform</key><string>z/OS</string>
<key>Document Locale</key><string>en_US</string>

<key>Short Message Text</key>
<dict>

<key>Display Name</key><string>Short Message Text</string>
<key>Hint</key><string />

</dict>

</dict>
</plist>

Example 4: The following example shows a sample XML message document for
the GET_MESSAGE stored procedure. Similar to an XML output document, the
details about an SQL warning condition will be encapsulated in a dictionary entry,
which is comprised of Display Name, Value, and Hint.

<?xml version="1.0" encoding="UTF-8" ?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Message</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Data Server Product Name</key><string>DSN</string>
<key>Data Server Product Version</key><string>9.1.5</string>
<key>Data Server Major Version</key><integer>9</integer>
<key>Data Server Minor Version</key><integer>1</integer>
<key>Data Server Platform</key><string>z/OS</string>
<key>Document Locale</key><string>en_US</string>
<key>Short Message Text</key>
<dict>

<key>Display Name</key><string>Short Message Text</string>
<key>Value</key>
<string>DSNA630I DSNADMGM A PARAMETER FORMAT OR CONTENT ERROR WAS FOUND.

The value for key 'Document Type Minor Version' is '2'. It does
not match the value '0', which was specified for parameter 2 of
the stored procedure. Both values must be equal.</string>

<key>Hint</key><string />
</dict>

</dict>
</plist>

Example 5: This example shows a simple and static Java program that calls the
GET_MESSAGE stored procedure with an XML input document and an XPath that
queries the short message text of an SQLCODE.

The XML input document is initially saved as a file called xml_input.xml that is in
the same directory where the GetMessageDriver class resides. This sample program
uses the following xml_input.xml file:

<?xml version="1.0" encoding="UTF-8" ?>
<plist version="1.0">

<dict>
<key>Document Type Name</key>
<string>Data Server Message Input</string>

978 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|



<key>Document Type Major Version</key>
<integer>1</integer>
<key>Document Type Minor Version</key>
<integer>0</integer>
<key>Document Locale</key>
<string>en_US</string>
<key>Complete</key>
<false />
<key>Required Parameters</key>
<dict>

<key>SQLCODE</key>
<dict>

<key>Value</key>
<integer>-204</integer>

</dict>
</dict>
<key>Optional Parameters</key>
<dict>

<key>Message Tokens</key>
<dict>

<key>Value</key>
<array>

<string>SYSIBM.DDF_CONFIG</string>
</array>

</dict>
</dict>

</dict>
</plist>

The XPath is statically created as a string object by the program and then
converted to a BLOB to serve as input for the xml_filter parameter. After the stored
procedure is called, the xml_output parameter contains only a single string and no
XML document. This output is materialized as a file called xml_output.xml that is
in the same directory where the GetMessageDriver class resides.

Sample invocation of the GET_MESSAGE stored procedure with a valid XML input
document and a valid XPath:
//***************************************************************************
// Licensed Materials - Property of IBM
// 5635-DB2
// (C) COPYRIGHT 1982, 2006 IBM Corp. All Rights Reserved.
//
// STATUS = Version 9
//***************************************************************************
// Source file name: GetSystemDriver.java
//
// Sample: How to call SYSPROC.GET_SYSTEM_INFO with a valid XML input document
// and a valid XPath to extract the operating system name and release.
//
// The user runs the program by issuing:
// java GetSystemDriver <alias or //server/database> <userid> <password>
//
// The arguments are:
// <alias> - DB2 subsystem alias for type 2 or //server/database for type 4
// connectivity
// <userid> - user ID to connect as
// <password> - password to connect with
//***************************************************************************
import java.io.*;
import java.sql.*;

public class GetSystemDriver
{

public static void main (String[] args)

Appendix B. Stored procedures for administration 979

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



{
Connection con = null;
CallableStatement cstmt = null;
String driver = "com.ibm.db2.jcc.DB2Driver";
String url = "jdbc:db2:";
String userid = null;
String password = null;

// Parse arguments
if (args.length != 3)
{

System.err.println("Usage: GetSystemDriver <alias or //server/database>
<userid> <password>");

System.err.println("where <alias or //server/database> is DB2 subsystem
alias or //server/database for type 4 connectivity");

System.err.println(" <userid> is user ID to connect as");
System.err.println(" <password> is password to connect with");
return;

}
url += args[0];
userid = args[1];
password = args[2];

try {

String str_xmlfilter = new String(
"/plist/dict/key[.='Operating System Information']/following-sibling::

dict[1]" +
"/key[.='Name and Release']/following-sibling::dict[1]" +
"/key[.='Value']/following-sibling::string[1]");

// Convert XML_FILTER to byte array to pass as BLOB
byte[] xml_filter = str_xmlfilter.getBytes("UTF-8");

// Read XML_INPUT from file
File fptr = new File("xml_input.xml");

int file_length = (int)fptr.length();
byte[] xml_input = new byte[file_length];

FileInputStream instream = new FileInputStream(fptr);
int tot_bytes = instream.read(xml_input,0, xml_input.length);
if (tot_bytes == -1) {

System.out.println("Error during file read");
return;

}
instream.close();

// Load the DB2 Universal JDBC Driver
Class.forName(driver);

// Connect to database
con = DriverManager.getConnection(url, userid, password);
con.setAutoCommit(false);

cstmt = con.prepareCall("CALL SYSPROC.GET_SYSTEM_INFO(?,?,?,?,?,?,?)");

// Major / Minor Version / Requested Locale
cstmt.setInt(1, 1);
cstmt.setInt(2, 1);
cstmt.setString(3, "en_US");

// Input documents
cstmt.setObject(4, xml_input, Types.BLOB);
cstmt.setObject(5, xml_filter, Types.BLOB);

// Output Parms

980 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



cstmt.registerOutParameter(1, Types.INTEGER);
cstmt.registerOutParameter(2, Types.INTEGER);
cstmt.registerOutParameter(6, Types.BLOB);
cstmt.registerOutParameter(7, Types.BLOB);

cstmt.execute();
con.commit();

SQLWarning ctstmt_warning = cstmt.getWarnings();
if (ctstmt_warning != null) {

System.out.println("SQL Warning: " + ctstmt_warning.getMessage());
}
else {

System.out.println("SQL Warning: None\r\n");
}

System.out.println("Major Version returned " + cstmt.getInt(1) );
System.out.println("Minor Version returned " + cstmt.getInt(2) );

// Get output BLOBs
Blob b_out = cstmt.getBlob(6);

if(b_out != null)
{

int out_length = (int)b_out.length();
byte[] bxml_output = new byte[out_length];

// Open an inputstream on BLOB data
InputStream instr_out = b_out.getBinaryStream();

// Copy from inputstream into byte array
int out_len = instr_out.read(bxml_output, 0, out_length);

// Write byte array content into FileOutputStream
FileOutputStream fxml_out = new FileOutputStream("xml_output.xml");
fxml_out.write(bxml_output, 0, out_length );

//Close streams
instr_out.close();
fxml_out.close();

}

Blob b_msg = cstmt.getBlob(7);

if(b_msg != null)
{

int msg_length = (int)b_msg.length();
byte[] bxml_message = new byte[msg_length];

// Open an inputstream on BLOB data
InputStream instr_msg = b_msg.getBinaryStream();

// Copy from inputstream into byte array
int msg_len = instr_msg.read(bxml_message, 0, msg_length);

// Write byte array content into FileOutputStream
FileOutputStream fxml_msg = new FileOutputStream(new File

("xml_message.xml"));
fxml_msg.write(bxml_message, 0, msg_length);

//Close streams
instr_msg.close();
fxml_msg.close();

}
}

catch (SQLException sqle) {

Appendix B. Stored procedures for administration 981

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



System.out.println("Error during CALL "
+ " SQLSTATE = " + sqle.getSQLState()
+ " SQLCODE = " + sqle.getErrorCode()
+ " : " + sqle.getMessage());

}

catch (Exception e) {
System.out.println("Internal Error " + e.toString());

}

finally
{

if(cstmt != null)
try { cstmt.close(); } catch ( SQLException sqle)

{ sqle.printStackTrace(); }
if(con != null)

try { con.close(); } catch ( SQLException sqle)
{ sqle.printStackTrace(); }

}
}

}

GET_SYSTEM_INFO stored procedure
The GET_SYSTEM_INFO stored procedure returns system information about the
data server.

This system information includes:
v Operating system information
v Product information
v DB2 MEPL
v SYSMOD APPLY status
v Workload Manager (WLM) classification rules that apply to DB2 Workload for

subsystem types DB2 and DDF

Environment

The load module for the GET_SYSTEM_INFO stored procedure, DSNADMGS,
must reside in an APF-authorized library. The GET_SYSTEM_INFO stored
procedure runs in a WLM-established stored procedures address space, and all of
the libraries that are specified in the STEPLIB DD statement must be
APF-authorized. TCB=1 is also required.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have EXECUTE privilege on the GET_SYSTEM_INFO stored
procedure.

In addition, because the GET_SYSTEM_INFO stored procedure queries the SMPCSI
data set for the status of the SYSMODs, the authorization ID that is associated with
the stored procedure address space where the GET_SYSTEM_INFO stored
procedure is running must have at least RACF read authority to the SMPCSI data
set.

982 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|
|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|



Syntax

�� CALL GET_SYSTEM_INFO ( major_version , minor_version ,
NULL NULL

�

� requested_locale , xml_input , xml_filter , xml_output , xml_message )
NULL NULL NULL

��

The schema is SYSPROC.

Option descriptions

major_version
An input and output parameter of type INTEGER that indicates the major
document version. On input, this parameter indicates the major document
version that you support for the XML documents passed as parameters in the
stored procedure (xml_input, xml_output, and xml_message). The stored
procedure processes all XML documents in the specified version, or returns an
error (-20457) if the version is invalid.

On output, this parameter specifies the highest major document version that is
supported by the stored procedure. To determine the highest supported
document version, specify NULL for this input parameter and all other
required parameters. Currently, the highest and the only major document
version that is supported is 1.

If the XML document in the xml_input parameter specifies a Document Type
Major Version key, the value for that key must be equal to the value that is
provided in the major_version parameter, or an error (+20458) is raised.

This parameter is used in conjunction with the minor_version parameter.
Therefore, you must specify both parameters together. For example, you must
specify both as either NULL, or non-NULL.

minor_version
An input and output parameter of type INTEGER that indicates the minor
document version. On input, this parameter specifies the minor document
version that you support for the XML documents passed as parameters for this
stored procedure (xml_input, xml_output, and xml_message). The stored
procedure processes all XML documents in the specified version, or returns an
error (-20457) if the version is invalid.

On output, this parameter indicates the highest minor document version that is
supported for the highest supported major version. To determine the highest
supported document version, specify NULL for this input parameter and all
other required parameters. The highest minor document version that is
supported is 1. Minor document version 0 (zero) is also supported.

If the XML document in the xml_input parameter specifies a Document Type
Minor Version key, the value for that key must be equal to the value that is
provided in the minor_version parameter, or an error (+20458) is raised.

This parameter is used in conjunction with the major_version parameter.
Therefore, you must specify both parameters together. For example, you must
specify both as either NULL, or non-NULL.

requested_locale
An input parameter of type VARCHAR(33) that specifies a locale. If the

Appendix B. Stored procedures for administration 983

|
|

|||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||||||

|
||

|

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|



specified language is supported on the server, translated content is returned in
the xml_output and xml_message parameters. Otherwise, content is returned in
the default language. Only the language and possibly the territory information
is used from the locale. The locale is not used to format numbers or influence
the document encoding. For example, key names are not translated. The only
translated portion of the XML output and XML message documents are
Display Name, Display Unit, and Hint. The value might be globalized where
applicable. You should always compare the requested language to the language
that is used in the XML output document (see the Document Locale entry in
the XML output document).

Currently, the supported values for requested_locale are en_US and NULL. If
you specify a null value, the result is the same as specifying en_US.

xml_input
An input parameter of type BLOB(2G) that specifies an XML input document
of type Data Server System Input in UTF-8 that contains input values for the
stored procedure.

This XML input document is optional. If the XML input document is not
passed to the stored procedure, the stored procedure returns the following
information by default:
v Operating system information
v Product information
v DB2 MEPL
v Workload Manager (WLM) classification rules for DB2 Workload

This stored procedure supports two types of XML input documents, Version
1.0 or Version 1.1.

For Version 1.0, the general structure of an XML input document is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server System Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Document Locale</key><string>en_US</string>
<key>Complete</key><false/>
<key>Optional Parameters</key>
<dict>

<key>SMPCSI Data Set</key>
<dict>

<key>Value</key><string>SMPCSI data set name</string>
</dict>
<key>SYSMOD</key>
<dict>

<key>Value</key>
<array>

<string>SYSMOD number</string>
<string>SYSMOD number</string>

</array>
</dict>

</dict>
</dict>
</plist>

For Version 1.1, the general structure of an XML input document is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server System Input</string>

984 Administration Guide

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|

|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|



<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>1</integer>
<key>Document Locale</key><string>en_US</string>
<key>Complete</key><false/>
<key>Optional Parameters</key>
<dict>

<key>Include</key>
<dict>

<key>Value</key>
<array>

<string>Operating System Information</string>
<string>Product Information</string>
<string>DB2 MEPL</string>
<string>Workload Manager (WLM) Classification Rules for

DB2 Workload</string>
</array>

</dict>
<key>SMPCSI Data Set</key>
<dict>

<key>Value</key><string>SMPCSI data set name</string>
</dict>
<key>SYSMOD</key>
<dict>

<key>Value</key>
<array>

<string>SYSMOD number</string>
<string>SYSMOD number</string>

</array>
</dict>

</dict>
</dict>
</plist>

Version 1.0: When a Version 1.0 XML input document is passed to the stored
procedure, the stored procedure returns the following information in a Version
1.0 XML output document:
v Operating system information
v Product information
v DB2 MEPL
v SYSMOD status (APPLY status for the SYSMODs that are listed in the XML

input document)
v Workload Manager (WLM) classification rules for DB2 Workload

To use Version 1.0 of the XML input document you must specify the
major_version parameter as 1 and the minor_version parameter as 0 (zero). You
must also specify the Document Type Name key, the SMPCSI data set, and the
list of SYSMODs.

For an example of a Version 1.0 XML input document for the
GET_SYSTEM_INFO stored procedure, see Example 3 in the Examples section.

Version 1.1: A Version 1.1 XML input document supports the Include
parameter, in addition to the SMPCSI Data Set and SYSMOD parameters that
are supported by a Version 1.0 XML input document.

You can use the Version 1.1 XML input document in the following ways:
v To specify which items to include in the XML output document by

specifying these items in the Include array
v To specify the SMPCSI data set and list of SYSMODs so that the stored

procedure returns their APPLY status

Appendix B. Stored procedures for administration 985

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

|
|

|

|
|
|
|

|
|

|
|
|

|

|
|

|
|



To use Version 1.1 of the XML input document, you must specify the
major_version parameter as 1 and the minor_version parameter as 1. You must
also specify the Document Type Name key, and at least one of the following
parameters:
v Include

v SMPCSI Data Set and SYSMOD

If you pass a Version 1.1 XML input document to the stored procedure and
specify the Include, SMPCSI Data Set, and SYSMOD parameters, the stored
procedure will return the items that you specified in the Include array, and the
SYSMOD status of the SYSMODs that you specified in the SYSMOD array.

If you pass a Version 1.1 XML input document to the stored procedure and
specify the Include parameter only, the stored procedure will return only the
items that you specified in the Include array.

If you pass a Version 1.1 XML input document to the stored procedure and
specify only the SMPCSI Data Set and SYSMOD parameters, the stored
procedure returns the following information in a Version 1.1 XML output
document:
v Operating system information
v Product information
v DB2 MEPL
v SYSMOD status (APPLY status for the SYSMODs that are listed in the XML

input document)
v Workload Manager (WLM) classification rules for DB2 Workload

For an example of a complete Version 1.1 XML input document for the
GET_SYSTEM_INFO stored procedure, see Example 4.

Complete mode: For examples of Version 1.0 and Version 1.1 XML input
documents that are returned by the xml_output parameter when the stored
procedure is running in Complete mode, see Example 1 and Example 2
respectively.

xml_filter
An input parameter of type BLOB(4K) in UTF-8 that specifies a valid XPath
query string. Use a filter when you want to retrieve a single value from an
XML output document. For more information, see “XPath expressions for
filtering output” on page 953.

The following example selects the value for the Data Server Product Version
from the XML output document:
/plist/dict/key[.='Data Server Product Version']/following-sibling::string[1]

If the key is not followed by the specified sibling, an error is returned.

xml_output
An output parameter of type BLOB(2G) that returns a complete XML output
document of type Data Server System Output in UTF-8. If a filter is specified,
this parameter returns a string value. If the stored procedure is unable to
return a complete output document (for example, if a processing error occurs
that results in an SQL warning or error), this parameter is set to NULL.

The xml_output parameter can return either a Version 1.0 or Version 1.1 XML
output document depending on the major_version and minor_version parameters
that you specify. For more information about the content differences between
the Version 1.0 and Version 1.1 XML output documents, see the option
description for the xml_input parameter.

986 Administration Guide

|
|
|
|

|

|

|
|
|
|

|
|
|

|
|
|
|

|

|

|

|
|

|

|
|

|
|
|
|

|
|
|
|
|

|
|

|

|

|
|
|
|
|
|

|
|
|
|
|



A complete XML output document provides the following system information:
v Operating system information
v Product information
v DB2 MEPL
v The APPLY status of SYSMODs
v Workload Manager (WLM) classification rules for DB2 Workload for

subsystem types DB2 and DDF

For an example of an XML output document, see Example 5.

xml_message
An output parameter of type BLOB(64K) that returns a complete XML output
document of type Data Server Message in UTF-8 that provides detailed
information about a SQL warning condition. This document is returned when a
call to the stored procedure results in a SQL warning, and the warning
message indicates that additional information is returned in the XML message
output document. If the warning message does not indicate that additional
information is returned, then this parameter is set to NULL.

The xml_message parameter can return either a Version 1.0 or Version 1.1 XML
message document, depending on the major_version and minor_version
parameters that you specify. The format of a Version 1.0 or Version 1.1. XML
message document is similar. For an example of an XML message document,
see Example 6.

Examples

Example 1: The following example shows a Version 1.0 XML input document that
is returned by the xml_output parameter when the stored procedure is running in
Complete mode.

<?xml version="1.0" encoding="UTF-8" ?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server System Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Document Locale</key><string>en_US</string>
<key>Optional Parameters</key>
<dict>

<key>Display Name</key><string>Optional Parameters</string>
<key>SMPCSI Data Set</key>
<dict>

<key>Display Name</key><string>SMPCSI Data Set</string>
<key>Value</key><string />
<key>Hint</key><string />

</dict>
<key>SYSMOD</key>
<dict>

<key>Display Name</key><string>SYSMOD</string>
<key>Value</key>
<array>

<string />
</array>
<key>Hint</key><string />

</dict>
<key>Hint</key><string />

</dict>
</dict>
</plist>

Appendix B. Stored procedures for administration 987

|

|

|

|

|

|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



Example 2: The following example shows a Version 1.1 XML input document that
is returned by the xml_output parameter when the stored procedure is running in
Complete mode.

<?xml version="1.0" encoding="UTF-8" ?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server System Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>1</integer>
<key>Document Locale</key><string>en_US</string>
<key>Optional Parameters</key>
<dict>

<key>Display Name</key><string>Optional Parameters</string>
<key>Include</key>
<dict>

<key>Display Name</key><string>Include</string>
<key>Value</key>
<array>

<string>Operating System Information</string>
<string>Product Information</string>
<string>DB2 MEPL</string>
<string>Workload Manager (WLM) Classification Rules for

DB2 Workload</string>
</array>
<key>Hint</key><string />

</dict>
<key>SMPCSI Data Set</key>
<dict>

<key>Display Name</key><string>SMPCSI Data Set</string>
<key>Value</key><string />
<key>Hint</key><string />

</dict>
<key>SYSMOD</key>
<dict>

<key>Display Name</key><string>SYSMOD</string>
<key>Value</key>
<array>

<string />
</array>
<key>Hint</key><string />

</dict>
<key>Hint</key><string />

</dict>
</dict>
</plist>

Example 3: The following example shows a complete sample of a Version 1.0 XML
input document for the GET_SYSTEM_INFO stored procedure.
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key>
<string>Data Server System Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Document Locale</key><string>en_US</string>
<key>Optional Parameters</key>
<dict>

<key>SMPCSI Data Set</key>
<dict>

<key>Value</key><string>IXM180.GLOBAL.CSI</string>
</dict>
<key>SYSMOD</key>
<dict>

<key>Value</key>

988 Administration Guide

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



<array>
<string>UK20028</string>
<string>UK20030</string>

</array>
</dict>

</dict>
</dict>
</plist>

You must specify the SMPCSI data set and one or more SYSMODs. SYSMOD
status information will be returned for only the SYSMODs that are listed in the
Optional Parameters section, provided that the SMPCSI data set that you specify is
valid.

Example 4: The following example shows a complete sample of a Version 1.1 XML
input document for the GET_SYSTEM_INFO stored procedure.
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server System Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>1</integer>
<key>Document Locale</key><string>en_US</string>
<key>Optional Parameters</key>
<dict>

<key>Include</key>
<dict>

<key>Value</key>
<array>

<string>Operating System Information</string>
<string>Product Information</string>
<string>DB2 MEPL</string>
<string>Workload Manager (WLM) Classification Rules for

DB2 Workload</string>
</array>

</dict>
<key>SMPCSI Data Set</key>
<dict>

<key>Value</key><string>IXM180.GLOBAL.CSI</string>
</dict>
<key>SYSMOD</key>
<dict>

<key>Value</key>
<array>

<string>UK24596</string>
<string>UK24709</string>

</array>
</dict>

</dict>
</dict>
</plist>

Example 5: The following example shows a fragment of an XML output document
for the GET_SYSTEM_INFO stored procedure. In this example, the ellipsis (. . .)
represent a dictionary entry that is comprised of Display Name, Value, and Hint,
such as:
<dict>

<key>Display Name</key>
<string>Name</string>
<key>Value</key>
<string>JES2</string>
<key>Hint</key>
<string />

</dict>

Appendix B. Stored procedures for administration 989

|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|



<?xml version="1.0" encoding="UTF-8" ?>
<plist version="1.0">
<dict>

<key>Document Type Name</key>
<string>Data Server System Output</string>
<key>Document Type Major Version</key>
<integer>1</integer>
<key>Document Type Minor Version</key>
<integer>1</integer>
<key>Data Server Product Name</key>
<string>DSN</string>
<key>Data Server Product Version</key>
<string>9.1.5</string>
<key>Data Server Major Version</key>
<integer>9</integer>
<key>Data Server Minor Version</key>
<integer>1</integer>
<key>Data Server Platform</key>
<string>z/OS</string>
<key>Document Locale</key>
<string>en_US</string>
<key>Operating System Information</key>
<dict>

<key>Display Name</key><string>Operating System Information</string>
<key>Name and Release</key>
...
<key>CPU</key>
<dict>

<key>Display Name</key><string>CPU</string>
<key>Model</key>
...
<key>Number of Online CPUs</key>
...
<key>Online CPUs</key>
<dict>

<key>Display Name</key><string>Online CPUs</string>
<key>CPU ID 01</key>
<dict>

<key>Display Name</key><string>CPU ID 01</string>
<key>Serial Number</key>
...
<key>Hint</key><string />

</dict>
<key>Hint</key><string />

</dict>
<key>Hint</key><string />

</dict>
<key>Real Storage Size</key>
<dict>

<key>Display Name</key><string>Real Storage Size</string>
<key>Value</key><integer>256</integer>
<key>Display Unit</key><string>MB</string>
<key>Hint</key><string />

</dict>
<key>Sysplex Name</key>
<dict>

<key>Display Name</key>
<string>Sysplex Name</string>
<key>Value</key>
<string>XESDEV</string>
<key>Hint</key>
<string />

</dict>
</dict>

<key>Product Information</key>
<dict>

990 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



<key>Display Name</key><string>Product Information</string>
<key>Primary Job Entry Subsystem</key>
<dict>

<key>Display Name</key><string>Primary Job Entry Subsystem</string>
<key>Name</key>
...
<key>Release</key>
...
<key>Node Name</key>
...
<key>Held Output Class</key>
...
<key>Hint</key><string />

</dict>
<key>Security Software</key>
<dict>

<key>Display Name</key><string>Security Software</string>
<key>Name</key>
...
<key>FMID</key>
...
<key>Hint</key><string />

</dict>
<key>DFSMS Release</key>
...
<key>TSO Release</key>
...
<key>VTAM Release</key>
...
<key>Hint</key><string />

</dict>

<key>DB2 MEPL</key>
<dict>

<key>Display Name</key><string>DB2 MEPL</string>
<key>DSNUTILB</key>
<dict>

<key>Display Name</key><string>DSNUTILB</string>
<key>DSNAA</key>
<dict>

<key>Display Name</key><string>DSNAA</string>
<key>PTF Level</key>
...
<key>PTF Apply Date</key>
...
<key>Hint</key><string />

</dict>

--- This is only a fragment of the utility modules that
are returned by the GET_SYSTEM_INFO stored procedure. ---

<key>Hint</key><string></string>
</dict>

--- This is only a fragment of the
DB2 MEPL information that is returned by
the GET_SYSTEM_INFO stored procedure. ---

</dict>

<key>SYSMOD Status</key>
<dict>

<key>Display Name</key><string>SYSMOD Status</string>
<key>AA15195</key>
<dict>

<key>Display Name</key><string>AA15195</string>
<key>Apply</key>

Appendix B. Stored procedures for administration 991

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



...
<key>Apply Date</key>
...
<key>Hint</key><string />

</dict>

--- This is only a fragment of the SYSMOD
status information that is returned by
the GET_SYSTEM_INFO stored procedure. ---

</dict>

<key>Workload Manager (WLM) Classification Rules for DB2 Workload</key>
<dict>

<key>Display Name</key>
<string>Workload Manager (WLM) Classification Rules for DB2 Workload</string>
<key>DB2</key>
<dict>

<key>Display Name</key><string>DB2</string>
<key>Hint</key><string />

</dict>
<key>DDF</key>
<dict>

<key>Display Name</key><string>DDF</string>
<key>1.1.1</key>
<dict>

<key>Display Name</key><string>1.1.1</string>
<key>Nesting Level</key>
...
<key>Qualifier Type</key>
...
<key>Qualifier Type Full Name</key>
...
<key>Qualifier Name</key>
...
<key>Start Position</key>
...
<key>Service Class</key>
...
<key>Report Class</key>
...
<key>Hint</key><string />

</dict>
<key>2.1.1</key>
<dict>

--- This dictionary entry describes the second classification
rule, and its format is the same as that of 1.1.1 above,
which describes the first classification rule. ---

</dict>
<key>Hint</key><string />

</dict>
<key>Hint</key><string />

</dict>
</dict>
</plist>

Example 6: The following example shows a sample XML message document for
the GET_SYSTEM_INFO stored procedure. Similar to an XML output document,
the details about an SQL warning condition will be encapsulated in a dictionary
entry, which is comprised of Display Name, Value, and Hint.
<?xml version="1.0" encoding="UTF-8" ?>

<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Message</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>1</integer>

992 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|



<key>Data Server Product Name</key><string>DSN</string>
<key>Data Server Product Version</key><string>9.1.5</string>
<key>Data Server Major Version</key><integer>9</integer>
<key>Data Server Minor Version</key><integer>1</integer>
<key>Data Server Platform</key><string>z/OS</string>
<key>Document Locale</key><string>en_US</string>
<key>Short Message Text</key>
<dict>

<key>Display Name</key><string>Short Message Text</string>
<key>Value</key>
<string>DSNA647I DSNADMGS INVOCATION OF GIMAPI FAILED. Error processing

command: QUERY . RC=12 CC=50504. GIM54701W ALLOCATION FAILED FOR
SMPCSI - IKJ56228I DATA SET IXM180.GLOBAL.CSI NOT IN CATALOG OR
CATALOG CAN NOT BE ACCESSED. GIM44232I GIMMPVIA - DYNAMIC
ALLOCATION FAILED FOR THE GLOBAL ZONE, DATA SET IXM180.GLOBAL.CSI.
GIM50504S ** OPEN PROCESSING FAILED FOR THE GLOBAL ZONE.</string>

<key>Hint</key><string />
</dict>

</dict>
</plist>

Example 7: This example shows a simple and static Java program that calls the
GET_SYSTEM_INFO stored procedure with an XML input document and an XPath
that queries the value of the operating system name and release.

The XML input document is initially saved as a file called xml_input.xml that is in
the same directory where the GetSystemDriver class resides. This sample program
uses the following xml_input.xml file:
<?xml version="1.0" encoding="UTF-8" ?>
<plist version="1.0">

<dict>
<key>Document Type Name</key>
<string>Data Server System Input</string>
<key>Document Type Major Version</key>
<integer>1</integer>
<key>Document Type Minor Version</key>
<integer>1</integer>
<key>Document Locale</key>
<string>en_US</string>
<key>Optional Parameters</key>
<dict>

<key>Include</key>
<dict>

<key>Value</key>
<array>

<string>Operating System Information</string>
</array>

</dict>
</dict>

</dict>
</plist>

The XPath is statically created as a string object by the program and then
converted to a BLOB to serve as input for the xml_filter parameter. After the stored
procedure is called, the xml_output parameter contains only a single string and no
XML document. This output is materialized as a file called xml_output.xml that is
in the same directory where the GetSystemDriver class resides.

Sample invocation of the GET_SYSTEM_INFO stored procedure with a valid XML input
document and a valid XPath:
//***************************************************************************
// Licensed Materials - Property of IBM
// 5635-DB2

Appendix B. Stored procedures for administration 993

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|



// (C) COPYRIGHT 1982, 2006 IBM Corp. All Rights Reserved.
//
// STATUS = Version 9
//***************************************************************************
// Source file name: GetSystemDriver.java
//
// Sample: How to call SYSPROC.GET_SYSTEM_INFO with a valid XML input document
// and a valid XPath to extract the operating system name and release.
//
// The user runs the program by issuing:
// java GetSystemDriver <alias or //server/database> <userid> <password>
//
// The arguments are:
// <alias> - DB2 subsystem alias for type 2 or //server/database for type 4
// connectivity
// <userid> - user ID to connect as
// <password> - password to connect with
//***************************************************************************
import java.io.*;
import java.sql.*;

public class GetSystemDriver
{

public static void main (String[] args)
{

Connection con = null;
CallableStatement cstmt = null;
String driver = "com.ibm.db2.jcc.DB2Driver";
String url = "jdbc:db2:";
String userid = null;
String password = null;

// Parse arguments
if (args.length != 3)
{

System.err.println("Usage: GetSystemDriver <alias or //server/database>
<userid> <password>");

System.err.println("where <alias or //server/database> is DB2 subsystem
alias or //server/database for type 4 connectivity");

System.err.println(" <userid> is user ID to connect as");
System.err.println(" <password> is password to connect with");
return;

}
url += args[0];
userid = args[1];
password = args[2];

try {

String str_xmlfilter = new String(
"/plist/dict/key[.='Operating System Information']/following-sibling::

dict[1]" +
"/key[.='Name and Release']/following-sibling::dict[1]" +
"/key[.='Value']/following-sibling::string[1]");

// Convert XML_FILTER to byte array to pass as BLOB
byte[] xml_filter = str_xmlfilter.getBytes("UTF-8");

// Read XML_INPUT from file
File fptr = new File("xml_input.xml");

int file_length = (int)fptr.length();
byte[] xml_input = new byte[file_length];

FileInputStream instream = new FileInputStream(fptr);
int tot_bytes = instream.read(xml_input,0, xml_input.length);

994 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



if (tot_bytes == -1) {
System.out.println("Error during file read");
return;

}
instream.close();

// Load the DB2 Universal JDBC Driver
Class.forName(driver);

// Connect to database
con = DriverManager.getConnection(url, userid, password);
con.setAutoCommit(false);

cstmt = con.prepareCall("CALL SYSPROC.GET_SYSTEM_INFO(?,?,?,?,?,?,?)");

// Major / Minor Version / Requested Locale
cstmt.setInt(1, 1);
cstmt.setInt(2, 1);
cstmt.setString(3, "en_US");

// Input documents
cstmt.setObject(4, xml_input, Types.BLOB);
cstmt.setObject(5, xml_filter, Types.BLOB);

// Output Parms
cstmt.registerOutParameter(1, Types.INTEGER);
cstmt.registerOutParameter(2, Types.INTEGER);
cstmt.registerOutParameter(6, Types.BLOB);
cstmt.registerOutParameter(7, Types.BLOB);

cstmt.execute();
con.commit();

SQLWarning ctstmt_warning = cstmt.getWarnings();
if (ctstmt_warning != null) {

System.out.println("SQL Warning: " + ctstmt_warning.getMessage());
}
else {

System.out.println("SQL Warning: None\r\n");
}

System.out.println("Major Version returned " + cstmt.getInt(1) );
System.out.println("Minor Version returned " + cstmt.getInt(2) );

// Get output BLOBs
Blob b_out = cstmt.getBlob(6);

if(b_out != null)
{

int out_length = (int)b_out.length();
byte[] bxml_output = new byte[out_length];

// Open an inputstream on BLOB data
InputStream instr_out = b_out.getBinaryStream();

// Copy from inputstream into byte array
int out_len = instr_out.read(bxml_output, 0, out_length);

// Write byte array content into FileOutputStream
FileOutputStream fxml_out = new FileOutputStream("xml_output.xml");
fxml_out.write(bxml_output, 0, out_length );

//Close streams
instr_out.close();
fxml_out.close();

}

Appendix B. Stored procedures for administration 995

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



Blob b_msg = cstmt.getBlob(7);

if(b_msg != null)
{

int msg_length = (int)b_msg.length();
byte[] bxml_message = new byte[msg_length];

// Open an inputstream on BLOB data
InputStream instr_msg = b_msg.getBinaryStream();

// Copy from inputstream into byte array
int msg_len = instr_msg.read(bxml_message, 0, msg_length);

// Write byte array content into FileOutputStream
FileOutputStream fxml_msg = new FileOutputStream(new File("xml_message.

xml"));
fxml_msg.write(bxml_message, 0, msg_length);

//Close streams
instr_msg.close();
fxml_msg.close();

}
}

catch (SQLException sqle) {
System.out.println("Error during CALL "

+ " SQLSTATE = " + sqle.getSQLState()
+ " SQLCODE = " + sqle.getErrorCode()
+ " : " + sqle.getMessage());

}

catch (Exception e) {
System.out.println("Internal Error " + e.toString());

}

finally
{

if(cstmt != null)
try { cstmt.close(); } catch ( SQLException sqle)

{ sqle.printStackTrace(); }
if(con != null)

try { con.close(); } catch ( SQLException sqle)
{ sqle.printStackTrace(); }

}
}

}

Troubleshooting DB2 stored procedures
If you encounter problems setting up, calling, or running stored procedures,
several troubleshooting techniques and tools are available in DB2 and z/OS.

To troubleshoot DB2 stored procedures, perform one or more of the following
actions:
v For general information about the available debugging tools and techniques, see

Debugging stored procedures (DB2 Application Programming and SQL Guide).
v If you encounter problems when implementing RRS, see RRS error samples (DB2

9 for z/OS Stored Procedures: Through the CALL and Beyond).
v If you have problems calling a particular stored procedure, you might not have

the required authorizations. See Privileges to execute a stored procedure called
statically (DB2 9 for z/OS Stored Procedures: Through the CALL and Beyond).

996 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db29.doc.apsg/db2z_debugsp.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=6-3-6.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=6-3-6.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=7-3-2.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=7-3-2.htm


v If you are troubleshooting Java stored procedures, see Java stored procedure
common problems (DB2 9 for z/OS Stored Procedures: Through the CALL and
Beyond).

v If your invoking program receives SQLCODE -430, see Classical debugging of
stored procedures (DB2 9 for z/OS Stored Procedures: Through the CALL and
Beyond).

Appendix B. Stored procedures for administration 997

|
|
|

|
|
|

http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=13-13.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=13-13.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=13-13.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=16-3.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=16-3.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=16-3.htm


998 Administration Guide



Information resources for DB2 for z/OS and related products

Many information resources are available to help you use DB2 for z/OS and many
related products. A large amount of technical information about IBM products is
now available online in information centers or on library Web sites.

Disclaimer: Any Web addresses that are included here are accurate at the time this
information is being published. However, Web addresses sometimes change. If you
visit a Web address that is listed here but that is no longer valid, you can try to
find the current Web address for the product information that you are looking for
at either of the following sites:
v http://www.ibm.com/support/publications/us/library/index.shtml, which lists

the IBM information centers that are available for various IBM products
v http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/

pbi.cgi, which is the IBM Publications Center, where you can download online
PDF books or order printed books for various IBM products

DB2 for z/OS product information

The primary place to find and use information about DB2 for z/OS is the
Information Management Software for z/OS Solutions Information Center
(http://publib.boulder.ibm.com/infocenter/imzic), which also contains information
about IMS, QMF, and many DB2 and IMS Tools products. This information center
is also available as an installable information center that can run on a local system
or on an intranet server. You can order the Information Management for z/OS
Solutions Information Center DVD (SK5T-7377) for a low cost from the IBM
Publications Center (www.ibm.com/shop/publications/order).

The majority of the DB2 for z/OS information in this information center is also
available in the books that are identified in the following table. You can access
these books at the DB2 for z/OS library Web site (http://www.ibm.com/software/
data/db2/zos/library.html) or at the IBM Publications Center
(http://www.ibm.com/shop/publications/order).

Table 206. DB2 Version 9.1 for z/OS book titles

Title
Publication
number

Available in
information
center

Available in
PDF

Available in
BookManager®

format
Available in
printed book

DB2 Version 9.1 for z/OS
Administration Guide

SC18-9840 X X X X

DB2 Version 9.1 for z/OS Application
Programming & SQL Guide

SC18-9841 X X X X

DB2 Version 9.1 for z/OS Application
Programming Guide and Reference for
Java

SC18-9842 X X X X

DB2 Version 9.1 for z/OS Codes GC18-9843 X X X X

DB2 Version 9.1 for z/OS Command
Reference

SC18-9844 X X X X

DB2 Version 9.1 for z/OS Data Sharing:
Planning and Administration

SC18-9845 X X X X

© Copyright IBM Corp. 1982, 2009 999

http://www.ibm.com/support/publications/us/library/index.shtml
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://publib.boulder.ibm.com/infocenter/imzic
www.ibm.com/shop/publications/order
http://www.ibm.com/software/data/db2/zos/library.html
http://www.ibm.com/software/data/db2/zos/library.html
http://www.ibm.com/shop/publications/order


Table 206. DB2 Version 9.1 for z/OS book titles (continued)

Title
Publication
number

Available in
information
center

Available in
PDF

Available in
BookManager®

format
Available in
printed book

DB2 Version 9.1 for z/OS Diagnosis
Guide and Reference 1

LY37-3218 X X X

DB2 Version 9.1 for z/OS Diagnostic
Quick Reference

LY37-3219 X

DB2 Version 9.1 for z/OS Installation
Guide

GC18-9846 X X X X

DB2 Version 9.1 for z/OS Introduction to
DB2

SC18-9847 X X X X

DB2 Version 9.1 for z/OS Licensed
Program Specifications

GC18-9848 X X

DB2 Version 9.1 for z/OS Messages GC18-9849 X X X X

DB2 Version 9.1 for z/OS ODBC Guide
and Reference

SC18-9850 X X X X

DB2 Version 9.1 for z/OS Performance
Monitoring and Tuning Guide

SC18-9851 X X X X

DB2 Version 9.1 for z/OS Optimization
Service Center

X

DB2 Version 9.1 for z/OS Program
Directory

GI10-8737 X X

DB2 Version 9.1 for z/OS RACF Access
Control Module Guide

SC18-9852 X X X

DB2 Version 9.1 for z/OS Reference for
Remote DRDA Requesters and Servers

SC18-9853 X X X

DB2 Version 9.1 for z/OS Reference
Summary

SX26-3854 X

DB2 Version 9.1 for z/OS SQL Reference SC18-9854 X X X X

DB2 Version 9.1 for z/OS Utility Guide
and Reference

SC18-9855 X X X X

DB2 Version 9.1 for z/OS What’s New? GC18-9856 X X X

DB2 Version 9.1 for z/OS XML Extender
Administration and Programming

SC18-9857 X X X X

DB2 Version 9.1 for z/OS XML Guide SC18-9858 X X X X

IRLM Messages and Codes for IMS and
DB2 for z/OS

GC19-2666 X X X

Note:

1. DB2 Version 9.1 for z/OS Diagnosis Guide and Reference is available in PDF and BookManager formats on the DB2
Version 9.1 for z/OS Licensed Collection kit, LK3T-7195. You can order this License Collection kit on the IBM
Publications Center site (http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi).
This book is also available in online format in DB2 data set DSN910.SDSNIVPD(DSNDR).

Information resources for related products

In the following table, related product names are listed in alphabetic order, and the
associated Web addresses of product information centers or library Web pages are
indicated.

1000 Administration Guide

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi


Table 207. Related product information resource locations

Related product Information resources

C/C++ for z/OS Library Web site: http://www.ibm.com/software/awdtools/czos/library/

This product is now called z/OS XL C/C++.

CICS Transaction Server for
z/OS

Information center: http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp

COBOL Information center: http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp

This product is now called Enterprise COBOL for z/OS.

DB2 Connect Information center: http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

This resource is for DB2 Connect 9.

DB2 Database for Linux,
UNIX, and Windows

Information center: http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

This resource is for DB2 9 for Linux, UNIX, and Windows.

DB2 Query Management
Facility

Information center: http://publib.boulder.ibm.com/infocenter/imzic

DB2 Server for VSE & VM One of the following locations:

v For VSE: http://www.ibm.com/support/docview.wss?rs=66&uid=swg27003758

v For VM: http://www.ibm.com/support/docview.wss?rs=66&uid=swg27003759

DB2 Tools One of the following locations:

v Information center: http://publib.boulder.ibm.com/infocenter/imzic

v Library Web site: http://www.ibm.com/software/data/db2imstools/library.html

These resources include information about the following products and others:

v DB2 Administration Tool

v DB2 Automation Tool

v DB2 Log Analysis Tool

v DB2 Object Restore Tool

v DB2 Query Management Facility

v DB2 SQL Performance Analyzer

DB2® Universal Database™

for iSeries®
Information center: http://www.ibm.com/systems/i/infocenter/

Debug Tool for z/OS Information center: http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp

Enterprise COBOL for
z/OS

Information center: http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp

Enterprise PL/I for z/OS Information center: http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp

IMS Information center: http://publib.boulder.ibm.com/infocenter/imzic

Information resources for DB2 for z/OS and related products 1001

http://www.ibm.com/software/awdtools/czos/library/
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
http://publib.boulder.ibm.com/infocenter/imzic
http://www.ibm.com/support/docview.wss?rs=66&uid=swg27003758
http://www.ibm.com/support/docview.wss?rs=66&uid=swg27003759
http://publib.boulder.ibm.com/infocenter/imzic
http://www.ibm.com/software/data/db2imstools/library.html
http://www.ibm.com/systems/i/infocenter/
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp
http://publib.boulder.ibm.com/infocenter/imzic


Table 207. Related product information resource locations (continued)

Related product Information resources

IMS Tools One of the following locations:

v Information center: http://publib.boulder.ibm.com/infocenter/imzic

v Library Web site: http://www.ibm.com/software/data/db2imstools/library.html

These resources have information about the following products and others:

v IMS Batch Terminal Simulator for z/OS

v IMS Connect

v IMS HALDB Conversion and Maintenance Aid

v IMS High Performance Utility products

v IMS DataPropagator

v IMS Online Reorganization Facility

v IMS Performance Analyzer

Integrated Data
Management products

Information center: http://publib.boulder.ibm.com/infocenter/idm/v2r2/index.jsp

This information center has information about the following products and others:

v IBM Data Studio

v InfoSphere™ Data Architect

v InfoSphere Warehouse

v Optim™ Database Administrator

v Optim Development Studio

v Optim Query Tuner

PL/I Information center: http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp

This product is now called Enterprise PL/I for z/OS.

System z® http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp

Tivoli OMEGAMONXE for
DB2 Performance Expert
on z/OS

Information center: http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/
index.jsp?topic=/com.ibm.ko2pe.doc/ko2welcome.htm

In earlier releases, this product was called DB2 Performance Expert for z/OS.

WebSphere Application
Server

Information center: http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp

WebSphere Message Broker
with Rules and Formatter
Extension

Information center: http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/
index.jsp

The product is also known as WebSphere MQ Integrator Broker.

WebSphere MQ Information center: http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

The resource includes information about MQSeries®.

WebSphere Replication
Server for z/OS

Either of the following locations:

v Information center: http://publib.boulder.ibm.com/infocenter/imzic

v Library Web site: http://www.ibm.com/software/data/db2imstools/library.html

This product is also known as DB2 DataPropagator.

z/Architecture® Library Center site: http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

1002 Administration Guide

|
|
|

http://publib.boulder.ibm.com/infocenter/imzic
http://www.ibm.com/software/data/db2imstools/library.html
http://publib.boulder.ibm.com/infocenter/idm/v2r2/index.jsp
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?topic=/com.ibm.ko2pe.doc/ko2welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?topic=/com.ibm.ko2pe.doc/ko2welcome.htm
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/imzic
http://www.ibm.com/software/data/db2imstools/library.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/


Table 207. Related product information resource locations (continued)

Related product Information resources

z/OS Library Center site: http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

This resource includes information about the following z/OS elements and components:

v Character Data Representation Architecture

v Device Support Facilities

v DFSORT

v Fortran

v High Level Assembler

v NetView

v SMP/E for z/OS

v SNA

v TCP/IP

v TotalStorage® Enterprise Storage Server

v VTAM

v z/OS C/C++

v z/OS Communications Server

v z/OS DCE

v z/OS DFSMS

v z/OS DFSMS Access Method Services

v z/OS DFSMSdss

v z/OS DFSMShsm

v z/OS DFSMSdfp

v z/OS ICSF

v z/OS ISPF

v z/OS JES3

v z/OS Language Environment

v z/OS Managed System Infrastructure

v z/OS MVS

v z/OS MVS JCL

v z/OS Parallel Sysplex®

v z/OS RMF™

v z/OS Security Server

v z/OS UNIX System Services

z/OS XL C/C++ http://www.ibm.com/software/awdtools/czos/library/

The following information resources from IBM are not necessarily specific to a
single product:
v The DB2 for z/OS Information Roadmap; available at: http://www.ibm.com/

software/data/db2/zos/roadmap.html
v DB2 Redbooks® and Redbooks about related products; available at:

http://www.ibm.com/redbooks
v IBM Educational resources:

– Information about IBM educational offerings is available on the Web at:
http://www.ibm.com/software/sw-training/

Information resources for DB2 for z/OS and related products 1003

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/software/awdtools/czos/library/
http://www.ibm.com/software/data/db2/zos/roadmap.html
http://www.ibm.com/software/data/db2/zos/roadmap.html
http://www.ibm.com/redbooks
http://www.ibm.com/software/sw-training/


– A collection of glossaries of IBM terms in multiple languages is available on
the IBM Terminology Web site at: http://www.ibm.com/software/
globalization/terminology/index.jsp

v National Language Support information; available at the IBM Publications
Center at: http://www.elink.ibmlink.ibm.com/public/applications/publications/
cgibin/pbi.cgi

v SQL Reference for Cross-Platform Development; available at the following
developerWorks® site: http://www.ibm.com/developerworks/db2/library/
techarticle/0206sqlref/0206sqlref.html

The following information resources are not published by IBM but can be useful to
users of DB2 for z/OS and related products:
v Database design topics:

– DB2 for z/OS and OS/390 Development for Performance Volume I, by Gabrielle
Wiorkowski, Gabrielle & Associates, ISBN 0-96684-605-2

– DB2 for z/OS and OS/390 Development for Performance Volume II, by Gabrielle
Wiorkowski, Gabrielle & Associates, ISBN 0-96684-606-0

– Handbook of Relational Database Design, by C. Fleming and B. Von Halle,
Addison Wesley, ISBN 0-20111-434-8

v Distributed Relational Database Architecture™ (DRDA) specifications;
http://www.opengroup.org

v Domain Name System: DNS and BIND, Third Edition, Paul Albitz and Cricket
Liu, O’Reilly, ISBN 0-59600-158-4

v Microsoft® Open Database Connectivity (ODBC) information;
http://msdn.microsoft.com/library/

v Unicode information; http://www.unicode.org

1004 Administration Guide

http://www.ibm.com/software/globalization/terminology/index.jsp
http://www.ibm.com/software/globalization/terminology/index.jsp
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.ibm.com/developerworks/db2/library/techarticle/0206sqlref/0206sqlref.html
http://www.ibm.com/developerworks/db2/library/techarticle/0206sqlref/0206sqlref.html
http://www.opengroup.org
http://msdn.microsoft.com/library/
http://www.unicode.org


How to obtain DB2 information

You can access the official information about the DB2 product in a number of
ways.
v “DB2 on the Web”
v “DB2 product information”
v “DB2 education” on page 1006
v “How to order the DB2 library” on page 1006

DB2 on the Web

Stay current with the latest information about DB2 by visiting the DB2 home page
on the Web:

www.ibm.com/software/db2zos

On the DB2 home page, you can find links to a wide variety of information
resources about DB2. You can read news items that keep you informed about the
latest enhancements to the product. Product announcements, press releases, fact
sheets, and technical articles help you plan and implement your database
management strategy.

DB2 product information

The official DB2 for z/OS information is available in various formats and delivery
methods. IBM provides mid-version updates to the information in the information
center and in softcopy updates that are available on the Web and on CD-ROM.

Information Management Software for z/OS Solutions Information Center
DB2 product information is viewable in the information center, which is
the primary delivery vehicle for information about DB2 for z/OS, IMS,
QMF, and related tools. This information center enables you to search
across related product information in multiple languages for data
management solutions for the z/OS environment and print individual
topics or sets of related topics. You can also access, download, and print
PDFs of the publications that are associated with the information center
topics. Product technical information is provided in a format that offers
more options and tools for accessing, integrating, and customizing
information resources. The information center is based on Eclipse open
source technology.

The Information Management Software for z/OS Solutions Information
Center is viewable at the following Web site:

http://publib.boulder.ibm.com/infocenter/imzic

CD-ROMs and DVD
Books for DB2 are available on a CD-ROM that is included with your
product shipment:
v DB2 V9.1 for z/OS Licensed Library Collection, LK3T-7195, in English

The CD-ROM contains the collection of books for DB2 V9.1 for z/OS in
PDF and BookManager formats. Periodically, IBM refreshes the books on
subsequent editions of this CD-ROM.

© Copyright IBM Corp. 1982, 2009 1005



The books for DB2 for z/OS are also available on the following CD-ROM
and DVD collection kits, which contain online books for many IBM
products:
v IBM z/OS Software Products Collection , SK3T-4270, in English
v IBM z/OS Software Products DVD Collection , SK3T–4271, in English

PDF format
Many of the DB2 books are available in PDF (Portable Document Format)
for viewing or printing from CD-ROM or the DB2 home page on the Web
or from the information center. Download the PDF books to your intranet
for distribution throughout your enterprise.

BookManager format
You can use online books on CD-ROM to read, search across books, print
portions of the text, and make notes in these BookManager books. Using
the IBM Softcopy Reader, appropriate IBM Library Readers, or the
BookManager Read product, you can view these books in the z/OS,
Windows, and VM environments. You can also view and search many of
the DB2 BookManager books on the Web.

DB2 education

IBM Education and Training offers a wide variety of classroom courses to help you
quickly and efficiently gain DB2 expertise. IBM schedules classes are in cities all
over the world. You can find class information, by country, at the IBM Learning
Services Web site:

www.ibm.com/services/learning

IBM also offers classes at your location, at a time that suits your needs. IBM can
customize courses to meet your exact requirements. For more information,
including the current local schedule, contact your IBM representative.

How to order the DB2 library

To order books, visit the IBM Publication Center on the Web:

www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

From the IBM Publication Center, you can go to the Publication Notification
System (PNS). PNS users receive electronic notifications of updated publications in
their profiles. You have the option of ordering the updates by using the
publications direct ordering application or any other IBM publication ordering
channel. The PNS application does not send automatic shipments of publications.
You will receive updated publications and a bill for them if you respond to the
electronic notification.

You can also order DB2 publications and CD-ROMs from your IBM representative
or the IBM branch office that serves your locality. If your location is within the
United States or Canada, you can place your order by calling one of the toll-free
numbers:
v In the U.S., call 1-800-879-2755.
v In Canada, call 1-800-426-4968.

To order additional copies of licensed publications, specify the SOFTWARE option.
To order additional publications or CD-ROMs, specify the PUBLICATIONS option.

1006 Administration Guide



Be prepared to give your customer number, the product number, and either the
feature codes or order numbers that you want.

How to obtain DB2 information 1007



1008 Administration Guide



How to use the DB2 library

Titles of books in the library begin with DB2 Version 9.1 for z/OS. However,
references from one book in the library to another are shortened and do not
include the product name, version, and release. Instead, they point directly to the
section that holds the information. The primary place to find and use information
about DB2 for z/OS is the Information Management Software for z/OS Solutions
Information Center (http://publib.boulder.ibm.com/infocenter/imzic).

If you are new to DB2 for z/OS, Introduction to DB2 for z/OS provides a
comprehensive introduction to DB2 Version 9.1 for z/OS. Topics included in this
book explain the basic concepts that are associated with relational database
management systems in general, and with DB2 for z/OS in particular.

The most rewarding task associated with a database management system is asking
questions of it and getting answers, the task called end use. Other tasks are also
necessary—defining the parameters of the system, putting the data in place, and so
on. The tasks that are associated with DB2 are grouped into the following major
categories.

Installation

If you are involved with installing DB2, you will need to use a variety of resources,
such as:
v DB2 Program Directory

v DB2 Installation Guide

v DB2 Administration Guide

v DB2 Application Programming Guide and Reference for Java

v DB2 Codes

v DB2 Internationalization Guide

v DB2 Messages

v DB2 Performance Monitoring and Tuning Guide

v DB2 RACF Access Control Module Guide

v DB2 Utility Guide and Reference

If you will be using data sharing capabilities you also need DB2 Data Sharing:
Planning and Administration, which describes installation considerations for data
sharing.

If you will be installing and configuring DB2 ODBC, you will need DB2 ODBC
Guide and Reference.

If you are installing IBM Spatial Support for DB2 for z/OS, you will need IBM
Spatial Support for DB2 for z/OS User’s Guide and Reference.

If you are installing IBM OmniFind® Text Search Server for DB2 for z/OS, you will
need IBM OmniFind Text Search Server for DB2 for z/OS Installation, Administration,
and Reference.

© Copyright IBM Corp. 1982, 2009 1009

|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic


End use

End users issue SQL statements to retrieve data. They can also insert, update, or
delete data, with SQL statements. They might need an introduction to SQL,
detailed instructions for using SPUFI, and an alphabetized reference to the types of
SQL statements. This information is found in DB2 Application Programming and SQL
Guide, and DB2 SQL Reference.

End users can also issue SQL statements through the DB2 Query Management
Facility (QMF) or some other program, and the library for that licensed program
might provide all the instruction or reference material they need. For a list of the
titles in the DB2 QMF library, see the bibliography at the end of this book.

Application programming

Some users access DB2 without knowing it, using programs that contain SQL
statements. DB2 application programmers write those programs. Because they
write SQL statements, they need the same resources that end users do.

Application programmers also need instructions for many other topics:
v How to transfer data between DB2 and a host program—written in Java, C, or

COBOL, for example
v How to prepare to compile a program that embeds SQL statements
v How to process data from two systems simultaneously, for example, DB2 and

IMS or DB2 and CICS
v How to write distributed applications across operating systems
v How to write applications that use Open Database Connectivity (ODBC) to

access DB2 servers
v How to write applications that use JDBC and SQLJ with the Java programming

language to access DB2 servers
v How to write applications to store XML data on DB2 servers and retrieve XML

data from DB2 servers.

The material needed for writing a host program containing SQL is in DB2
Application Programming and SQL Guide.

The material needed for writing applications that use JDBC and SQLJ to access
DB2 servers is in DB2 Application Programming Guide and Reference for Java. The
material needed for writing applications that use DB2 CLI or ODBC to access DB2
servers is in DB2 ODBC Guide and Reference. The material needed for working with
XML data in DB2 is in DB2 XML Guide. For handling errors, see DB2 Messages and
DB2 Codes.

If you are a software vendor implementing DRDA clients and servers, you will
need DB2 Reference for Remote DRDA Requesters and Servers.

Information about writing applications across operating systems can be found in
IBM DB2 SQL Reference for Cross-Platform Development.

System and database administration

Administration covers almost everything else. DB2 Administration Guide divides
some of those tasks among the following sections:

1010 Administration Guide

|
|

|
|

|
|
|
|
|
|



v DB2 concepts: Introduces DB2 structures, the DB2 environment, and high
availability.

v Designing a database: Discusses the decisions that must be made when
designing a database and tells how to implement the design by creating and
altering DB2 objects, loading data, and adjusting to changes.

v Security and auditing: Describes ways of controlling access to the DB2 system
and to data within DB2, to audit aspects of DB2 usage, and to answer other
security and auditing concerns.

v Operation and recovery: Describes the steps in normal day-to-day operation and
discusses the steps one should take to prepare for recovery in the event of some
failure.

DB2 Performance Monitoring and Tuning Guide explains how to monitor the
performance of the DB2 system and its parts. It also lists things that can be done to
make some parts run faster.

If you will be using the RACF access control module for DB2 authorization
checking, you will need DB2 RACF Access Control Module Guide.

If you are involved with DB2 only to design the database, or plan operational
procedures, you need DB2 Administration Guide. If you also want to carry out your
own plans by creating DB2 objects, granting privileges, running utility jobs, and so
on, you also need:
v DB2 SQL Reference, which describes the SQL statements you use to create, alter,

and drop objects and grant and revoke privileges
v DB2 Utility Guide and Reference, which explains how to run utilities
v DB2 Command Reference, which explains how to run commands

If you will be using data sharing, you need DB2 Data Sharing: Planning and
Administration, which describes how to plan for and implement data sharing.

Additional information about system and database administration can be found in
DB2 Messages and DB2 Codes, which list messages and codes issued by DB2, with
explanations and suggested responses.

Diagnosis

Diagnosticians detect and describe errors in the DB2 program. They might also
recommend or apply a remedy. The documentation for this task is in DB2 Diagnosis
Guide and Reference, DB2 Messages, and DB2 Codes.

How to use the DB2 library 1011



1012 Administration Guide



Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku
Tokyo 106-8711
Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1982, 2009 1013



IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided ″AS IS″, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

1014 Administration Guide



Programming Interface Information
This information is intended to help you to plan for and administer DB2 Version
9.1 for z/OS. This information also documents General-use Programming Interface
and Associated Guidance Information and Product-sensitive Programming
Interface and Associated Guidance Information provided by DB2 Version 9.1 for
z/OS.

General-use Programming Interface and Associated Guidance
Information

General-use Programming Interfaces allow the customer to write programs that
obtain the services of DB2 Version 9.1 for z/OS.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs by the following markings:

General-use Programming Interface and Associated Guidance Information...

Product-sensitive Programming Interface and Associated
Guidance Information

Product-sensitive Programming Interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this IBM software product. Use of such interfaces creates dependencies
on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these
specialized purposes. Because of their dependencies on detailed design and
implementation, it is to be expected that programs written to such interfaces may
need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs by the following markings:

PSPI Product-sensitive Programming Interface and Associated Guidance

Information... PSPI

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at http://www.ibm.com/
legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Notices 1015

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml


UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

1016 Administration Guide



Glossary

abend See abnormal end of task.

abend reason code
A 4-byte hexadecimal code that uniquely
identifies a problem with DB2.

abnormal end of task (abend)
Termination of a task, job, or subsystem
because of an error condition that
recovery facilities cannot resolve during
execution.

access method services
The facility that is used to define, alter,
delete, print, and reproduce VSAM
key-sequenced data sets.

access path
The path that is used to locate data that is
specified in SQL statements. An access
path can be indexed or sequential.

active log
The portion of the DB2 log to which log
records are written as they are generated.
The active log always contains the most
recent log records. See also archive log.

address space
A range of virtual storage pages that is
identified by a number (ASID) and a
collection of segment and page tables that
map the virtual pages to real pages of the
computer’s memory.

address space connection
The result of connecting an allied address
space to DB2. See also allied address
space and task control block.

address space identifier (ASID)
A unique system-assigned identifier for
an address space.

AFTER trigger
A trigger that is specified to be activated
after a defined trigger event (an insert,
update, or delete operation on the table
that is specified in a trigger definition).
Contrast with BEFORE trigger and
INSTEAD OF trigger.

agent In DB2, the structure that associates all
processes that are involved in a DB2 unit
of work. See also allied agent and system
agent.

aggregate function
An operation that derives its result by
using values from one or more rows.
Contrast with scalar function.

alias An alternative name that can be used in
SQL statements to refer to a table or view
in the same or a remote DB2 subsystem.
An alias can be qualified with a schema
qualifier and can thereby be referenced by
other users. Contrast with synonym.

allied address space
An area of storage that is external to DB2
and that is connected to DB2. An allied
address space can request DB2 services.
See also address space.

allied agent
An agent that represents work requests
that originate in allied address spaces. See
also system agent.

allied thread
A thread that originates at the local DB2
subsystem and that can access data at a
remote DB2 subsystem.

allocated cursor
A cursor that is defined for a stored
procedure result set by using the SQL
ALLOCATE CURSOR statement.

ambiguous cursor
A database cursor for which DB2 cannot
determine whether it is used for update
or read-only purposes.

APAR See authorized program analysis report.

APF See authorized program facility.

API See application programming interface.

APPL A VTAM network definition statement
that is used to define DB2 to VTAM as an
application program that uses SNA LU
6.2 protocols.

application
A program or set of programs that
performs a task; for example, a payroll
application.

application plan
The control structure that is produced
during the bind process. DB2 uses the

© Copyright IBM Corp. 1982, 2009 1017

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|



application plan to process SQL
statements that it encounters during
statement execution.

application process
The unit to which resources and locks are
allocated. An application process involves
the execution of one or more programs.

application programming interface (API)
A functional interface that is supplied by
the operating system or by a separately
orderable licensed program that allows an
application program that is written in a
high-level language to use specific data or
functions of the operating system or
licensed program.

application requester
The component on a remote system that
generates DRDA requests for data on
behalf of an application.

application server
The target of a request from a remote
application. In the DB2 environment, the
application server function is provided by
the distributed data facility and is used to
access DB2 data from remote applications.

archive log
The portion of the DB2 log that contains
log records that have been copied from
the active log. See also active log.

ASCII An encoding scheme that is used to
represent strings in many environments,
typically on PCs and workstations.
Contrast with EBCDIC and Unicode.

ASID See address space identifier.

attachment facility
An interface between DB2 and TSO, IMS,
CICS, or batch address spaces. An
attachment facility allows application
programs to access DB2.

attribute
A characteristic of an entity. For example,
in database design, the phone number of
an employee is an attribute of that
employee.

authorization ID
A string that can be verified for
connection to DB2 and to which a set of
privileges is allowed. An authorization ID
can represent an individual or an
organizational group.

authorized program analysis report (APAR)
A report of a problem that is caused by a
suspected defect in a current release of an
IBM supplied program.

authorized program facility (APF)
A facility that allows an installation to
identify system or user programs that can
use sensitive system functions.

automatic bind
(More correctly automatic rebind.) A
process by which SQL statements are
bound automatically (without a user
issuing a BIND command) when an
application process begins execution and
the bound application plan or package it
requires is not valid.

automatic query rewrite
A process that examines an SQL statement
that refers to one or more base tables or
materialized query tables, and, if
appropriate, rewrites the query so that it
performs better.

auxiliary index
An index on an auxiliary table in which
each index entry refers to a LOB or XML
document.

auxiliary table
A table that contains columns outside the
actual table in which they are defined.
Auxiliary tables can contain either LOB or
XML data.

backout
The process of undoing uncommitted
changes that an application process made.
A backout is often performed in the event
of a failure on the part of an application
process, or as a result of a deadlock
situation.

backward log recovery
The final phase of restart processing
during which DB2 scans the log in a
backward direction to apply UNDO log
records for all aborted changes.

base table
A table that is created by the SQL
CREATE TABLE statement and that holds
persistent data. Contrast with clone table,
materialized query table, result table,
temporary table, and transition table.

base table space
A table space that contains base tables.

1018 Administration Guide

|
|
|
|
|

|
|
|

|
|
|



basic row format
A row format in which values for
columns are stored in the row in the
order in which the columns are defined
by the CREATE TABLE statement.
Contrast with reordered row format.

basic sequential access method (BSAM)
An access method for storing or retrieving
data blocks in a continuous sequence,
using either a sequential-access or a
direct-access device.

BEFORE trigger
A trigger that is specified to be activated
before a defined trigger event (an insert,
an update, or a delete operation on the
table that is specified in a trigger
definition). Contrast with AFTER trigger
and INSTEAD OF trigger.

binary large object (BLOB)
A binary string data type that contains a
sequence of bytes that can range in size
from 0 bytes to 2 GB, less 1 byte. This
string does not have an associated code
page and character set. BLOBs can
contain, for example, image, audio, or
video data. In general, BLOB values are
used whenever a binary string might
exceed the limits of the VARBINARY
type.

binary string
A sequence of bytes that is not associated
with a CCSID. Binary string data type can
be further classified as BINARY,
VARBINARY, or BLOB.

bind A process by which a usable control
structure with SQL statements is
generated; the structure is often called an
access plan, an application plan, or a
package. During this bind process, access
paths to the data are selected, and some
authorization checking is performed. See
also automatic bind.

bit data

v Data with character type CHAR or
VARCHAR that is defined with the
FOR BIT DATA clause. Note that using
BINARY or VARBINARY rather than
FOR BIT DATA is highly
recommended.

v Data with character type CHAR or
VARCHAR that is defined with the
FOR BIT DATA clause.

v A form of character data. Binary data is
generally more highly recommended
than character-for-bit data.

BLOB See binary large object.

block fetch
A capability in which DB2 can retrieve, or
fetch, a large set of rows together. Using
block fetch can significantly reduce the
number of messages that are being sent
across the network. Block fetch applies
only to non-rowset cursors that do not
update data.

bootstrap data set (BSDS)
A VSAM data set that contains name and
status information for DB2 and RBA
range specifications for all active and
archive log data sets. The BSDS also
contains passwords for the DB2 directory
and catalog, and lists of conditional
restart and checkpoint records.

BSAM
See basic sequential access method.

BSDS See bootstrap data set.

buffer pool
An area of memory into which data pages
are read, modified, and held during
processing.

built-in data type
A data type that IBM supplies. Among
the built-in data types for DB2 for z/OS
are string, numeric, XML, ROWID, and
datetime. Contrast with distinct type.

built-in function
A function that is generated by DB2 and
that is in the SYSIBM schema. Contrast
with user-defined function. See also
function, cast function, external function,
sourced function, and SQL function.

business dimension
A category of data, such as products or
time periods, that an organization might
want to analyze.

cache structure
A coupling facility structure that stores
data that can be available to all members
of a Sysplex. A DB2 data sharing group
uses cache structures as group buffer
pools.

CAF See call attachment facility.

DB2 glossary 1019

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|



call attachment facility (CAF)
A DB2 attachment facility for application
programs that run in TSO or z/OS batch.
The CAF is an alternative to the DSN
command processor and provides greater
control over the execution environment.
Contrast with Recoverable Resource
Manager Services attachment facility.

call-level interface (CLI)
A callable application programming
interface (API) for database access, which
is an alternative to using embedded SQL.

cascade delete
A process by which DB2 enforces
referential constraints by deleting all
descendent rows of a deleted parent row.

CASE expression
An expression that is selected based on
the evaluation of one or more conditions.

cast function
A function that is used to convert
instances of a (source) data type into
instances of a different (target) data type.

castout
The DB2 process of writing changed
pages from a group buffer pool to disk.

castout owner
The DB2 member that is responsible for
casting out a particular page set or
partition.

catalog
In DB2, a collection of tables that contains
descriptions of objects such as tables,
views, and indexes.

catalog table
Any table in the DB2 catalog.

CCSID
See coded character set identifier.

CDB See communications database.

CDRA
See Character Data Representation
Architecture.

CEC See central processor complex.

central electronic complex (CEC)
See central processor complex.

central processor complex (CPC)
A physical collection of hardware that
consists of main storage, one or more
central processors, timers, and channels.

central processor (CP)
The part of the computer that contains the
sequencing and processing facilities for
instruction execution, initial program
load, and other machine operations.

CFRM See coupling facility resource
management.

CFRM policy
The allocation rules for a coupling facility
structure that are declared by a z/OS
administrator.

character conversion
The process of changing characters from
one encoding scheme to another.

Character Data Representation Architecture
(CDRA)

An architecture that is used to achieve
consistent representation, processing, and
interchange of string data.

character large object (CLOB)
A character string data type that contains
a sequence of bytes that represent
characters (single-byte, multibyte, or both)
that can range in size from 0 bytes to 2
GB, less 1 byte. In general, CLOB values
are used whenever a character string
might exceed the limits of the VARCHAR
type.

character set
A defined set of characters.

character string
A sequence of bytes that represent bit
data, single-byte characters, or a mixture
of single-byte and multibyte characters.
Character data can be further classified as
CHARACTER, VARCHAR, or CLOB.

check constraint
A user-defined constraint that specifies
the values that specific columns of a base
table can contain.

check integrity
The condition that exists when each row
in a table conforms to the check
constraints that are defined on that table.

check pending
A state of a table space or partition that
prevents its use by some utilities and by
some SQL statements because of rows
that violate referential constraints, check
constraints, or both.

1020 Administration Guide

|
|
|
|
|
|
|
|

|
|
|
|
|



checkpoint
A point at which DB2 records status
information on the DB2 log; the recovery
process uses this information if DB2
abnormally terminates.

child lock
For explicit hierarchical locking, a lock
that is held on either a table, page, row,
or a large object (LOB). Each child lock
has a parent lock. See also parent lock.

CI See control interval.

CICS Represents (in this information): CICS
Transaction Server for z/OS: Customer
Information Control System Transaction
Server for z/OS.

CICS attachment facility
A facility that provides a multithread
connection to DB2 to allow applications
that run in the CICS environment to
execute DB2 statements.

claim A notification to DB2 that an object is
being accessed. Claims prevent drains
from occurring until the claim is released,
which usually occurs at a commit point.
Contrast with drain.

claim class
A specific type of object access that can be
one of the following isolation levels:
v Cursor stability (CS)
v Repeatable read (RR)
v Write

class of service
A VTAM term for a list of routes through
a network, arranged in an order of
preference for their use.

clause In SQL, a distinct part of a statement,
such as a SELECT clause or a WHERE
clause.

CLI See call-level interface.

client See requester.

CLOB See character large object.

clone object
An object that is associated with a clone
table, including the clone table itself and
check constraints, indexes, and BEFORE
triggers on the clone table.

clone table
A table that is structurally identical to a
base table. The base and clone table each

have separate underlying VSAM data
sets, which are identified by their data set
instance numbers. Contrast with base
table.

closed application
An application that requires exclusive use
of certain statements on certain DB2
objects, so that the objects are managed
solely through the external interface of
that application.

clustering index
An index that determines how rows are
physically ordered (clustered) in a table
space. If a clustering index on a
partitioned table is not a partitioning
index, the rows are ordered in cluster
sequence within each data partition
instead of spanning partitions.

CM See conversion mode.

CM* See conversion mode*.

C++ member
A data object or function in a structure,
union, or class.

C++ member function
An operator or function that is declared
as a member of a class. A member
function has access to the private and
protected data members and to the
member functions of objects in its class.
Member functions are also called
methods.

C++ object
A region of storage. An object is created
when a variable is defined or a new
function is invoked.

An instance of a class.

coded character set
A set of unambiguous rules that establish
a character set and the one-to-one
relationships between the characters of
the set and their coded representations.

coded character set identifier (CCSID)
A 16-bit number that uniquely identifies a
coded representation of graphic
characters. It designates an encoding
scheme identifier and one or more pairs
that consist of a character set identifier
and an associated code page identifier.

code page
A set of assignments of characters to code

DB2 glossary 1021

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|

|



points. Within a code page, each code
point has only one specific meaning. In
EBCDIC, for example, the character A is
assigned code point X’C1’, and character
B is assigned code point X’C2’.

code point
In CDRA, a unique bit pattern that
represents a character in a code page.

code unit
The fundamental binary width in a
computer architecture that is used for
representing character data, such as 7 bits,
8 bits, 16 bits, or 32 bits. Depending on
the character encoding form that is used,
each code point in a coded character set
can be represented by one or more code
units.

coexistence
During migration, the period of time in
which two releases exist in the same data
sharing group.

cold start
A process by which DB2 restarts without
processing any log records. Contrast with
warm start.

collection
A group of packages that have the same
qualifier.

column
The vertical component of a table. A
column has a name and a particular data
type (for example, character, decimal, or
integer).

column function
See aggregate function.

″come from″ checking
An LU 6.2 security option that defines a
list of authorization IDs that are allowed
to connect to DB2 from a partner LU.

command
A DB2 operator command or a DSN
subcommand. A command is distinct
from an SQL statement.

command prefix
A 1- to 8-character command identifier.
The command prefix distinguishes the
command as belonging to an application
or subsystem rather than to z/OS.

command recognition character (CRC)
A character that permits a z/OS console

operator or an IMS subsystem user to
route DB2 commands to specific DB2
subsystems.

command scope
The scope of command operation in a
data sharing group.

commit
The operation that ends a unit of work by
releasing locks so that the database
changes that are made by that unit of
work can be perceived by other processes.
Contrast with rollback.

commit point
A point in time when data is considered
consistent.

common service area (CSA)
In z/OS, a part of the common area that
contains data areas that are addressable
by all address spaces. Most DB2 use is in
the extended CSA, which is above the
16-MB line.

communications database (CDB)
A set of tables in the DB2 catalog that are
used to establish conversations with
remote database management systems.

comparison operator
A token (such as =, >, or <) that is used
to specify a relationship between two
values.

compatibility mode
See conversion mode.

compatibility mode* (CM*)
See conversion mode*.

composite key
An ordered set of key columns or
expressions of the same table.

compression dictionary
The dictionary that controls the process of
compression and decompression. This
dictionary is created from the data in the
table space or table space partition.

concurrency
The shared use of resources by more than
one application process at the same time.

conditional restart
A DB2 restart that is directed by a
user-defined conditional restart control
record (CRCR).

1022 Administration Guide

|
|
|
|
|

|

|
|



connection
In SNA, the existence of a communication
path between two partner LUs that allows
information to be exchanged (for example,
two DB2 subsystems that are connected
and communicating by way of a
conversation).

connection context
In SQLJ, a Java object that represents a
connection to a data source.

connection declaration clause
In SQLJ, a statement that declares a
connection to a data source.

connection handle
The data object containing information
that is associated with a connection that
DB2 ODBC manages. This includes
general status information, transaction
status, and diagnostic information.

connection ID
An identifier that is supplied by the
attachment facility and that is associated
with a specific address space connection.

consistency token
A timestamp that is used to generate the
version identifier for an application. See
also version.

constant
A language element that specifies an
unchanging value. Constants are classified
as string constants or numeric constants.
Contrast with variable.

constraint
A rule that limits the values that can be
inserted, deleted, or updated in a table.
See referential constraint, check constraint,
and unique constraint.

context
An application’s logical connection to the
data source and associated DB2 ODBC
connection information that allows the
application to direct its operations to a
data source. A DB2 ODBC context
represents a DB2 thread.

contracting conversion
A process that occurs when the length of
a converted string is smaller than that of
the source string. For example, this
process occurs when an EBCDIC
mixed-data string that contains DBCS
characters is converted to ASCII mixed

data; the converted string is shorter
because the shift codes are removed.

control interval (CI)

v A unit of information that VSAM
transfers between virtual and auxiliary
storage.

v In a key-sequenced data set or file, the
set of records that an entry in the
sequence-set index record points to.

conversation
Communication, which is based on LU
6.2 or Advanced Program-to-Program
Communication (APPC), between an
application and a remote transaction
program over an SNA logical
unit-to-logical unit (LU-LU) session that
allows communication while processing a
transaction.

conversion mode (CM)
The first stage of the version-to-version
migration process. In a DB2 data sharing
group, members in conversion mode can
coexist with members that are still at the
prior version level. Fallback to the prior
version is also supported. When in
conversion mode, the DB2 subsystem
cannot use most new functions of the new
version. Contrast with conversion mode*,
enabling-new-function mode,
enabling-new-function mode*, and
new-function mode.

Previously known as compatibility mode
(CM).

conversion mode* (CM*)
A stage of the version-to-version
migration process that applies to a DB2
subsystem or data sharing group that was
in enabling-new-function mode (ENFM),
enabling-new-function mode* (ENFM*), or
new-function mode (NFM) at one time.
Fallback to a prior version is not
supported. When in conversion mode*, a
DB2 data sharing group cannot coexist
with members that are still at the prior
version level. Contrast with conversion
mode, enabling-new-function mode,
enabling-new-function mode*, and
new-function mode.

Previously known as compatibility mode*
(CM*).

coordinator
The system component that coordinates

DB2 glossary 1023

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|



the commit or rollback of a unit of work
that includes work that is done on one or
more other systems.

coprocessor
See SQL statement coprocessor.

copy pool
A collection of names of storage groups
that are processed collectively for fast
replication operations.

copy target
A named set of SMS storage groups that
are to be used as containers for copy pool
volume copies. A copy target is an SMS
construct that lets you define which
storage groups are to be used as
containers for volumes that are copied by
using FlashCopy functions.

copy version
A point-in-time FlashCopy copy that is
managed by HSM. Each copy pool has a
version parameter that specifies the
number of copy versions to be maintained
on disk.

correlated columns
A relationship between the value of one
column and the value of another column.

correlated subquery
A subquery (part of a WHERE or
HAVING clause) that is applied to a row
or group of rows of a table or view that is
named in an outer subselect statement.

correlation ID
An identifier that is associated with a
specific thread. In TSO, it is either an
authorization ID or the job name.

correlation name
An identifier that is specified and used
within a single SQL statement as the
exposed name for objects such as a table,
view, table function reference, nested table
expression, or result of a data change
statement. Correlation names are useful in
an SQL statement to allow two distinct
references to the same base table and to
allow an alternative name to be used to
represent an object.

cost category
A category into which DB2 places cost
estimates for SQL statements at the time
the statement is bound. The cost category
is externalized in the COST_CATEGORY

column of the DSN_STATEMNT_TABLE
when a statement is explained.

coupling facility
A special PR/SM logical partition (LPAR)
that runs the coupling facility control
program and provides high-speed
caching, list processing, and locking
functions in a Parallel Sysplex.

coupling facility resource management (CFRM)
A component of z/OS that provides the
services to manage coupling facility
resources in a Parallel Sysplex. This
management includes the enforcement of
CFRM policies to ensure that the coupling
facility and structure requirements are
satisfied.

CP See central processor.

CPC See central processor complex.

CRC See command recognition character.

created temporary table
A persistent table that holds temporary
data and is defined with the SQL
statement CREATE GLOBAL
TEMPORARY TABLE. Information about
created temporary tables is stored in the
DB2 catalog and can be shared across
application processes. Contrast with
declared temporary table. See also
temporary table.

cross-system coupling facility (XCF)
A component of z/OS that provides
functions to support cooperation between
authorized programs that run within a
Sysplex.

cross-system extended services (XES)
A set of z/OS services that allow multiple
instances of an application or subsystem,
running on different systems in a Sysplex
environment, to implement
high-performance, high-availability data
sharing by using a coupling facility.

CS See cursor stability.

CSA See common service area.

CT See cursor table.

current data
Data within a host structure that is
current with (identical to) the data within
the base table.

1024 Administration Guide

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|



current status rebuild
The second phase of restart processing
during which the status of the subsystem
is reconstructed from information on the
log.

cursor A control structure that an application
program uses to point to a single row or
multiple rows within some ordered set of
rows of a result table. A cursor can be
used to retrieve, update, or delete rows
from a result table.

cursor sensitivity
The degree to which database updates are
visible to the subsequent FETCH
statements in a cursor.

cursor stability (CS)
The isolation level that provides
maximum concurrency without the ability
to read uncommitted data. With cursor
stability, a unit of work holds locks only
on its uncommitted changes and on the
current row of each of its cursors. See also
read stability, repeatable read, and
uncommitted read.

cursor table (CT)
The internal representation of a cursor.

cycle A set of tables that can be ordered so that
each table is a descendent of the one
before it, and the first table is a
descendent of the last table. A
self-referencing table is a cycle with a
single member. See also referential cycle.

database
A collection of tables, or a collection of
table spaces and index spaces.

database access thread (DBAT)
A thread that accesses data at the local
subsystem on behalf of a remote
subsystem.

database administrator (DBA)
An individual who is responsible for
designing, developing, operating,
safeguarding, maintaining, and using a
database.

database alias
The name of the target server if it is
different from the location name. The
database alias is used to provide the
name of the database server as it is
known to the network.

database descriptor (DBD)
An internal representation of a DB2
database definition, which reflects the
data definition that is in the DB2 catalog.
The objects that are defined in a database
descriptor are table spaces, tables,
indexes, index spaces, relationships, check
constraints, and triggers. A DBD also
contains information about accessing
tables in the database.

database exception status
In a data sharing environment, an
indication that something is wrong with a
database.

database identifier (DBID)
An internal identifier of the database.

database management system (DBMS)
A software system that controls the
creation, organization, and modification of
a database and the access to the data that
is stored within it.

database request module (DBRM)
A data set member that is created by the
DB2 precompiler and that contains
information about SQL statements.
DBRMs are used in the bind process.

database server
The target of a request from a local
application or a remote intermediate
database server.

data currency
The state in which the data that is
retrieved into a host variable in a
program is a copy of the data in the base
table.

data dictionary
A repository of information about an
organization’s application programs,
databases, logical data models, users, and
authorizations.

data partition
A VSAM data set that is contained within
a partitioned table space.

data-partitioned secondary index (DPSI)
A secondary index that is partitioned
according to the underlying data.
Contrast with nonpartitioned secondary
index.

data set instance number
A number that indicates the data set that
contains the data for an object.

DB2 glossary 1025

|

|
|
|



data sharing
A function of DB2 for z/OS that enables
applications on different DB2 subsystems
to read from and write to the same data
concurrently.

data sharing group
A collection of one or more DB2
subsystems that directly access and
change the same data while maintaining
data integrity.

data sharing member
A DB2 subsystem that is assigned by XCF
services to a data sharing group.

data source
A local or remote relational or
non-relational data manager that is
capable of supporting data access via an
ODBC driver that supports the ODBC
APIs. In the case of DB2 for z/OS, the
data sources are always relational
database managers.

data type
An attribute of columns, constants,
variables, parameters, special registers,
and the results of functions and
expressions.

data warehouse
A system that provides critical business
information to an organization. The data
warehouse system cleanses the data for
accuracy and currency, and then presents
the data to decision makers so that they
can interpret and use it effectively and
efficiently.

DBA See database administrator.

DBAT See database access thread.

DB2 catalog
A collection of tables that are maintained
by DB2 and contain descriptions of DB2
objects, such as tables, views, and
indexes.

DBCLOB
See double-byte character large object.

DB2 command
An instruction to the DB2 subsystem that
a user enters to start or stop DB2, to
display information on current users, to
start or stop databases, to display
information on the status of databases,
and so on.

DBCS See double-byte character set.

DBD See database descriptor.

DB2I See DB2 Interactive.

DBID See database identifier.

DB2 Interactive (DB2I)
An interactive service within DB2 that
facilitates the execution of SQL
statements, DB2 (operator) commands,
and programmer commands, and the
invocation of utilities.

DBMS
See database management system.

DBRM
See database request module.

DB2 thread
The database manager structure that
describes an application’s connection,
traces its progress, processes resource
functions, and delimits its accessibility to
the database manager resources and
services. Most DB2 for z/OS functions
execute under a thread structure.

DCLGEN
See declarations generator.

DDF See distributed data facility.

deadlock
Unresolvable contention for the use of a
resource, such as a table or an index.

declarations generator (DCLGEN)
A subcomponent of DB2 that generates
SQL table declarations and COBOL, C, or
PL/I data structure declarations that
conform to the table. The declarations are
generated from DB2 system catalog
information.

declared temporary table
A non-persistent table that holds
temporary data and is defined with the
SQL statement DECLARE GLOBAL
TEMPORARY TABLE. Information about
declared temporary tables is not stored in
the DB2 catalog and can be used only by
the application process that issued the
DECLARE statement. Contrast with
created temporary table. See also
temporary table.

default value
A predetermined value, attribute, or
option that is assumed when no other

1026 Administration Guide

|
|
|
|
|
|
|

|
|



value is specified. A default value can be
defined for column data in DB2 tables by
specifying the DEFAULT keyword in an
SQL statement that changes data (such as
INSERT, UPDATE, and MERGE).

deferred embedded SQL
SQL statements that are neither fully
static nor fully dynamic. These statements
are embedded within an application and
are prepared during the execution of the
application.

deferred write
The process of asynchronously writing
changed data pages to disk.

degree of parallelism
The number of concurrently executed
operations that are initiated to process a
query.

delete hole
The location on which a cursor is
positioned when a row in a result table is
refetched and the row no longer exists on
the base table. See also update hole.

delete rule
The rule that tells DB2 what to do to a
dependent row when a parent row is
deleted. Delete rules include CASCADE,
RESTRICT, SET NULL, or NO ACTION.

delete trigger
A trigger that is defined with the
triggering delete SQL operation.

delimited identifier
A sequence of characters that are enclosed
within escape characters such as double
quotation marks (″).

delimiter token
A string constant, a delimited identifier,
an operator symbol, or any of the special
characters that are shown in DB2 syntax
diagrams.

denormalization
The intentional duplication of columns in
multiple tables to increase data
redundancy. Denormalization is
sometimes necessary to minimize
performance problems. Contrast with
normalization.

dependent
An object (row, table, or table space) that
has at least one parent. The object is also
said to be a dependent (row, table, or

table space) of its parent. See also parent
row, parent table, and parent table space.

dependent row
A row that contains a foreign key that
matches the value of a primary key in the
parent row.

dependent table
A table that is a dependent in at least one
referential constraint.

descendent
An object that is a dependent of an object
or is the dependent of a descendent of an
object.

descendent row
A row that is dependent on another row,
or a row that is a descendent of a
dependent row.

descendent table
A table that is a dependent of another
table, or a table that is a descendent of a
dependent table.

deterministic function
A user-defined function whose result is
dependent on the values of the input
arguments. That is, successive invocations
with the same input values produce the
same answer. Sometimes referred to as a
not-variant function. Contrast with
nondeterministic function (sometimes
called a variant function).

dimension
A data category such as time, products, or
markets. The elements of a dimension are
referred to as members. See also
dimension table.

dimension table
The representation of a dimension in a
star schema. Each row in a dimension
table represents all of the attributes for a
particular member of the dimension. See
also dimension, star schema, and star join.

directory
The DB2 system database that contains
internal objects such as database
descriptors and skeleton cursor tables.

disk A direct-access storage device that records
data magnetically.

distinct type
A user-defined data type that is
represented as an existing type (its source

DB2 glossary 1027

|
|
|
|
|



type), but is considered to be a separate
and incompatible type for semantic
purposes.

distributed data
Data that resides on a DBMS other than
the local system.

distributed data facility (DDF)
A set of DB2 components through which
DB2 communicates with another
relational database management system.

Distributed Relational Database Architecture
(DRDA)

A connection protocol for distributed
relational database processing that is used
by IBM relational database products.
DRDA includes protocols for
communication between an application
and a remote relational database
management system, and for
communication between relational
database management systems. See also
DRDA access.

DNS See domain name server.

DOCID
See document ID.

document ID
A value that uniquely identifies a row
that contains an XML column. This value
is stored with the row and never changes.

domain
The set of valid values for an attribute.

domain name
The name by which TCP/IP applications
refer to a TCP/IP host within a TCP/IP
network.

domain name server (DNS)
A special TCP/IP network server that
manages a distributed directory that is
used to map TCP/IP host names to IP
addresses.

double-byte character large object (DBCLOB)
A graphic string data type in which a
sequence of bytes represent double-byte
characters that range in size from 0 bytes
to 2 GB, less 1 byte. In general, DBCLOB
values are used whenever a double-byte
character string might exceed the limits of
the VARGRAPHIC type.

double-byte character set (DBCS)
A set of characters, which are used by

national languages such as Japanese and
Chinese, that have more symbols than can
be represented by a single byte. Each
character is 2 bytes in length. Contrast
with single-byte character set and
multibyte character set.

double-precision floating point number
A 64-bit approximate representation of a
real number.

DPSI See data-partitioned secondary index.

drain The act of acquiring a locked resource by
quiescing access to that object. Contrast
with claim.

drain lock
A lock on a claim class that prevents a
claim from occurring.

DRDA
See Distributed Relational Database
Architecture.

DRDA access
An open method of accessing distributed
data that you can use to connect to
another database server to execute
packages that were previously bound at
the server location.

DSN

v The default DB2 subsystem name.
v The name of the TSO command

processor of DB2.
v The first three characters of DB2

module and macro names.

dynamic cursor
A named control structure that an
application program uses to change the
size of the result table and the order of its
rows after the cursor is opened. Contrast
with static cursor.

dynamic dump
A dump that is issued during the
execution of a program, usually under the
control of that program.

dynamic SQL
SQL statements that are prepared and
executed at run time. In dynamic SQL,
the SQL statement is contained as a
character string in a host variable or as a
constant, and it is not precompiled.

EA-enabled table space
A table space or index space that is
enabled for extended addressability and

1028 Administration Guide

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|



that contains individual partitions (or
pieces, for LOB table spaces) that are
greater than 4 GB.

EB See exabyte.

EBCDIC
Extended binary coded decimal
interchange code. An encoding scheme
that is used to represent character data in
the z/OS, VM, VSE, and iSeries
environments. Contrast with ASCII and
Unicode.

embedded SQL
SQL statements that are coded within an
application program. See static SQL.

enabling-new-function mode (ENFM)
A transitional stage of the
version-to-version migration process
during which the DB2 subsystem or data
sharing group is preparing to use the new
functions of the new version. When in
enabling-new-function mode, a DB2 data
sharing group cannot coexist with
members that are still at the prior version
level. Fallback to a prior version is not
supported, and most new functions of the
new version are not available for use in
enabling-new-function mode. Contrast
with conversion mode, conversion mode*,
enabling-new-function mode*, and
new-function mode.

enabling-new-function mode* (ENFM*)
A transitional stage of the
version-to-version migration process that
applies to a DB2 subsystem or data
sharing group that was in new-function
mode (NFM) at one time. When in
enabling-new-function mode*, a DB2
subsystem or data sharing group is
preparing to use the new functions of the
new version but cannot yet use them. A
data sharing group that is in
enabling-new-function mode* cannot
coexist with members that are still at the
prior version level. Fallback to a prior
version is not supported. Contrast with
conversion mode, conversion mode*,
enabling-new-function mode, and
new-function mode.

enclave
In Language Environment , an
independent collection of routines, one of
which is designated as the main routine.

An enclave is similar to a program or run
unit. See also WLM enclave.

encoding scheme
A set of rules to represent character data
(ASCII, EBCDIC, or Unicode).

ENFM See enabling-new-function mode.

ENFM*
See enabling-new-function mode*.

entity A person, object, or concept about which
information is stored. In a relational
database, entities are represented as
tables. A database includes information
about the entities in an organization or
business, and their relationships to each
other.

enumerated list
A set of DB2 objects that are defined with
a LISTDEF utility control statement in
which pattern-matching characters (*, %;,
_, or ?) are not used.

environment
A collection of names of logical and
physical resources that are used to
support the performance of a function.

environment handle
A handle that identifies the global context
for database access. All data that is
pertinent to all objects in the environment
is associated with this handle.

equijoin
A join operation in which the
join-condition has the form expression =
expression. See also join, full outer join,
inner join, left outer join, outer join, and
right outer join.

error page range
A range of pages that are considered to be
physically damaged. DB2 does not allow
users to access any pages that fall within
this range.

escape character
The symbol, a double quotation (″) for
example, that is used to enclose an SQL
delimited identifier.

exabyte
A unit of measure for processor, real and
virtual storage capacities, and channel
volume that has a value of 1 152 921 504
606 846 976 bytes or 260.

DB2 glossary 1029

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|

|
|
|
|



exception
An SQL operation that involves the
EXCEPT set operator, which combines
two result tables. The result of an
exception operation consists of all of the
rows that are in only one of the result
tables.

exception table
A table that holds rows that violate
referential constraints or check constraints
that the CHECK DATA utility finds.

exclusive lock
A lock that prevents concurrently
executing application processes from
reading or changing data. Contrast with
share lock.

executable statement
An SQL statement that can be embedded
in an application program, dynamically
prepared and executed, or issued
interactively.

execution context
In SQLJ, a Java object that can be used to
control the execution of SQL statements.

exit routine
A user-written (or IBM-provided default)
program that receives control from DB2 to
perform specific functions. Exit routines
run as extensions of DB2.

expanding conversion
A process that occurs when the length of
a converted string is greater than that of
the source string. For example, this
process occurs when an ASCII mixed-data
string that contains DBCS characters is
converted to an EBCDIC mixed-data
string; the converted string is longer
because shift codes are added.

explicit hierarchical locking
Locking that is used to make the
parent-child relationship between
resources known to IRLM. This kind of
locking avoids global locking overhead
when no inter-DB2 interest exists on a
resource.

explicit privilege
A privilege that has a name and is held as
the result of an SQL GRANT statement
and revoked as the result of an SQL
REVOKE statement. For example, the
SELECT privilege.

exposed name
A correlation name or a table or view
name for which a correlation name is not
specified.

expression
An operand or a collection of operators
and operands that yields a single value.

Extended Recovery Facility (XRF)
A facility that minimizes the effect of
failures in z/OS, VTAM, the host
processor, or high-availability applications
during sessions between high-availability
applications and designated terminals.
This facility provides an alternative
subsystem to take over sessions from the
failing subsystem.

Extensible Markup Language (XML)
A standard metalanguage for defining
markup languages that is a subset of
Standardized General Markup Language
(SGML).

external function
A function that has its functional logic
implemented in a programming language
application that resides outside the
database, in the file system of the
database server. The association of the
function with the external code
application is specified by the EXTERNAL
clause in the CREATE FUNCTION
statement. External functions can be
classified as external scalar functions and
external table functions. Contrast with
sourced function, built-in function, and
SQL function.

external procedure
A procedure that has its procedural logic
implemented in an external programming
language application. The association of
the procedure with the external
application is specified by a CREATE
PROCEDURE statement with a
LANGUAGE clause that has a value other
than SQL and an EXTERNAL clause that
implicitly or explicitly specifies the name
of the external application. Contrast with
external SQL procedure and native SQL
procedure.

external routine
A user-defined function or stored
procedure that is based on code that is
written in an external programming
language.

1030 Administration Guide

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|



external SQL procedure
An SQL procedure that is processed using
a generated C program that is a
representation of the procedure. When an
external SQL procedure is called, the C
program representation of the procedure
is executed in a stored procedures address
space. Contrast with external procedure
and native SQL procedure.

failed member state
A state of a member of a data sharing
group in which the member’s task,
address space, or z/OS system terminates
before the state changes from active to
quiesced.

fallback
The process of returning to a previous
release of DB2 after attempting or
completing migration to a current release.
Fallback is supported only from a
subsystem that is in conversion mode.

false global lock contention
A contention indication from the coupling
facility that occurs when multiple lock
names are hashed to the same indicator
and when no real contention exists.

fan set
A direct physical access path to data,
which is provided by an index, hash, or
link; a fan set is the means by which DB2
supports the ordering of data.

federated database
The combination of a DB2 server (in
Linux, UNIX, and Windows
environments) and multiple data sources
to which the server sends queries. In a
federated database system, a client
application can use a single SQL
statement to join data that is distributed
across multiple database management
systems and can view the data as if it
were local.

fetch orientation
The specification of the desired placement
of the cursor as part of a FETCH
statement. The specification can be before
or after the rows of the result table (with
BEFORE or AFTER). The specification can
also have either a single-row fetch
orientation (for example, NEXT, LAST, or
ABSOLUTE n) or a rowset fetch

orientation (for example, NEXT ROWSET,
LAST ROWSET, or ROWSET STARTING
AT ABSOLUTE n).

field procedure
A user-written exit routine that is
designed to receive a single value and
transform (encode or decode) it in any
way the user can specify.

file reference variable
A host variable that is declared with one
of the derived data types (BLOB_FILE,
CLOB_FILE, DBCLOB_FILE); file
reference variables direct the reading of a
LOB from a file or the writing of a LOB
into a file.

filter factor
A number between zero and one that
estimates the proportion of rows in a
table for which a predicate is true.

fixed-length string
A character, graphic, or binary string
whose length is specified and cannot be
changed. Contrast with varying-length
string.

FlashCopy
A function on the IBM Enterprise Storage
Server that can, in conjunction with the
BACKUP SYSTEM utility, create a
point-in-time copy of data while an
application is running.

foreign key
A column or set of columns in a
dependent table of a constraint
relationship. The key must have the same
number of columns, with the same
descriptions, as the primary key of the
parent table. Each foreign key value must
either match a parent key value in the
related parent table or be null.

forest An ordered set of subtrees of XML nodes.

forward log recovery
The third phase of restart processing
during which DB2 processes the log in a
forward direction to apply all REDO log
records.

free space
The total amount of unused space in a
page; that is, the space that is not used to
store records or control information is free
space.

DB2 glossary 1031

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|



full outer join
The result of a join operation that
includes the matched rows of both tables
that are being joined and preserves the
unmatched rows of both tables. See also
join, equijoin, inner join, left outer join,
outer join, and right outer join.

fullselect
A subselect, a fullselect in parentheses, or
a number of both that are combined by
set operators. Fullselect specifies a result
table. If a set operator is not used, the
result of the fullselect is the result of the
specified subselect or fullselect.

fully escaped mapping
A mapping from an SQL identifier to an
XML name when the SQL identifier is a
column name.

function
A mapping, which is embodied as a
program (the function body) that is
invocable by means of zero or more input
values (arguments) to a single value (the
result). See also aggregate function and
scalar function.

Functions can be user-defined, built-in, or
generated by DB2. (See also built-in
function, cast function, external function,
sourced function, SQL function, and
user-defined function.)

function definer
The authorization ID of the owner of the
schema of the function that is specified in
the CREATE FUNCTION statement.

function package
A package that results from binding the
DBRM for a function program.

function package owner
The authorization ID of the user who
binds the function program’s DBRM into
a function package.

function signature
The logical concatenation of a fully
qualified function name with the data
types of all of its parameters.

GB Gigabyte. A value of (1 073 741 824 bytes).

GBP See group buffer pool.

GBP-dependent
The status of a page set or page set
partition that is dependent on the group

buffer pool. Either read/write interest is
active among DB2 subsystems for this
page set, or the page set has changed
pages in the group buffer pool that have
not yet been cast out to disk.

generalized trace facility (GTF)
A z/OS service program that records
significant system events such as I/O
interrupts, SVC interrupts, program
interrupts, or external interrupts.

generic resource name
A name that VTAM uses to represent
several application programs that provide
the same function in order to handle
session distribution and balancing in a
Sysplex environment.

getpage
An operation in which DB2 accesses a
data page.

global lock
A lock that provides concurrency control
within and among DB2 subsystems. The
scope of the lock is across all DB2
subsystems of a data sharing group.

global lock contention
Conflicts on locking requests between
different DB2 members of a data sharing
group when those members are trying to
serialize shared resources.

governor
See resource limit facility.

graphic string
A sequence of DBCS characters. Graphic
data can be further classified as
GRAPHIC, VARGRAPHIC, or DBCLOB.

GRECP
See group buffer pool recovery pending.

gross lock
The shared, update, or exclusive mode locks
on a table, partition, or table space.

group buffer pool duplexing
The ability to write data to two instances
of a group buffer pool structure: a
primary group buffer pool and a
secondary group buffer pool. z/OS
publications refer to these instances as the
“old” (for primary) and “new” (for
secondary) structures.

group buffer pool (GBP)
A coupling facility cache structure that is

1032 Administration Guide

|
|
|
|
|
|
|

|
|
|

|
|



used by a data sharing group to cache
data and to ensure that the data is
consistent for all members.

group buffer pool recovery pending (GRECP)
The state that exists after the buffer pool
for a data sharing group is lost. When a
page set is in this state, changes that are
recorded in the log must be applied to the
affected page set before the page set can
be used.

group level
The release level of a data sharing group,
which is established when the first
member migrates to a new release.

group name
The z/OS XCF identifier for a data
sharing group.

group restart
A restart of at least one member of a data
sharing group after the loss of either locks
or the shared communications area.

GTF See generalized trace facility.

handle
In DB2 ODBC, a variable that refers to a
data structure and associated resources.
See also statement handle, connection
handle, and environment handle.

help panel
A screen of information that presents
tutorial text to assist a user at the
workstation or terminal.

heuristic damage
The inconsistency in data between one or
more participants that results when a
heuristic decision to resolve an indoubt
LUW at one or more participants differs
from the decision that is recorded at the
coordinator.

heuristic decision
A decision that forces indoubt resolution
at a participant by means other than
automatic resynchronization between
coordinator and participant.

histogram statistics
A way of summarizing data distribution.
This technique divides up the range of
possible values in a data set into intervals,
such that each interval contains
approximately the same percentage of the
values. A set of statistics are collected for
each interval.

hole A row of the result table that cannot be
accessed because of a delete or an update
that has been performed on the row. See
also delete hole and update hole.

home address space
The area of storage that z/OS currently
recognizes as dispatched.

host The set of programs and resources that
are available on a given TCP/IP instance.

host expression
A Java variable or expression that is
referenced by SQL clauses in an SQLJ
application program.

host identifier
A name that is declared in the host
program.

host language
A programming language in which you
can embed SQL statements.

host program
An application program that is written in
a host language and that contains
embedded SQL statements.

host structure
In an application program, a structure
that is referenced by embedded SQL
statements.

host variable
In an application program written in a
host language, an application variable
that is referenced by embedded SQL
statements.

host variable array
An array of elements, each of which
corresponds to a value for a column. The
dimension of the array determines the
maximum number of rows for which the
array can be used.

IBM System z9 Integrated Processor (zIIP)
A specialized processor that can be used
for some DB2 functions.

IDCAMS
An IBM program that is used to process
access method services commands. It can
be invoked as a job or jobstep, from a
TSO terminal, or from within a user’s
application program.

DB2 glossary 1033

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|



IDCAMS LISTCAT
A facility for obtaining information that is
contained in the access method services
catalog.

identity column
A column that provides a way for DB2 to
automatically generate a numeric value
for each row. Identity columns are
defined with the AS IDENTITY clause.
Uniqueness of values can be ensured by
defining a unique index that contains
only the identity column. A table can
have no more than one identity column.

IFCID See instrumentation facility component
identifier.

IFI See instrumentation facility interface.

IFI call
An invocation of the instrumentation
facility interface (IFI) by means of one of
its defined functions.

image copy
An exact reproduction of all or part of a
table space. DB2 provides utility
programs to make full image copies (to
copy the entire table space) or incremental
image copies (to copy only those pages
that have been modified since the last
image copy).

IMS attachment facility
A DB2 subcomponent that uses z/OS
subsystem interface (SSI) protocols and
cross-memory linkage to process requests
from IMS to DB2 and to coordinate
resource commitment.

in-abort
A status of a unit of recovery. If DB2 fails
after a unit of recovery begins to be rolled
back, but before the process is completed,
DB2 continues to back out the changes
during restart.

in-commit
A status of a unit of recovery. If DB2 fails
after beginning its phase 2 commit
processing, it ″knows,″ when restarted,
that changes made to data are consistent.
Such units of recovery are termed
in-commit.

independent
An object (row, table, or table space) that
is neither a parent nor a dependent of
another object.

index A set of pointers that are logically ordered
by the values of a key. Indexes can
provide faster access to data and can
enforce uniqueness on the rows in a table.

index-controlled partitioning
A type of partitioning in which partition
boundaries for a partitioned table are
controlled by values that are specified on
the CREATE INDEX statement. Partition
limits are saved in the LIMITKEY column
of the SYSIBM.SYSINDEXPART catalog
table.

index key
The set of columns in a table that is used
to determine the order of index entries.

index partition
A VSAM data set that is contained within
a partitioning index space.

index space
A page set that is used to store the entries
of one index.

indicator column
A 4-byte value that is stored in a base
table in place of a LOB column.

indicator variable
A variable that is used to represent the
null value in an application program. If
the value for the selected column is null,
a negative value is placed in the indicator
variable.

indoubt
A status of a unit of recovery. If DB2 fails
after it has finished its phase 1 commit
processing and before it has started phase
2, only the commit coordinator knows if
an individual unit of recovery is to be
committed or rolled back. At restart, if
DB2 lacks the information it needs to
make this decision, the status of the unit
of recovery is indoubt until DB2 obtains
this information from the coordinator.
More than one unit of recovery can be
indoubt at restart.

indoubt resolution
The process of resolving the status of an
indoubt logical unit of work to either the
committed or the rollback state.

inflight
A status of a unit of recovery. If DB2 fails
before its unit of recovery completes
phase 1 of the commit process, it merely

1034 Administration Guide

|
|
|
|
|
|
|
|



backs out the updates of its unit of
recovery at restart. These units of
recovery are termed inflight.

inheritance
The passing downstream of class
resources or attributes from a parent class
in the class hierarchy to a child class.

initialization file
For DB2 ODBC applications, a file
containing values that can be set to adjust
the performance of the database manager.

inline copy
A copy that is produced by the LOAD or
REORG utility. The data set that the inline
copy produces is logically equivalent to a
full image copy that is produced by
running the COPY utility with read-only
access (SHRLEVEL REFERENCE).

inner join
The result of a join operation that
includes only the matched rows of both
tables that are being joined. See also join,
equijoin, full outer join, left outer join,
outer join, and right outer join.

inoperative package
A package that cannot be used because
one or more user-defined functions or
procedures that the package depends on
were dropped. Such a package must be
explicitly rebound. Contrast with invalid
package.

insensitive cursor
A cursor that is not sensitive to inserts,
updates, or deletes that are made to the
underlying rows of a result table after the
result table has been materialized.

insert trigger
A trigger that is defined with the
triggering SQL operation, an insert.

install The process of preparing a DB2
subsystem to operate as a z/OS
subsystem.

INSTEAD OF trigger
A trigger that is associated with a single
view and is activated by an insert,
update, or delete operation on the view
and that can define how to propagate the
insert, update, or delete operation on the
view to the underlying tables of the view.
Contrast with BEFORE trigger and
AFTER trigger.

instrumentation facility component identifier
(IFCID)

A value that names and identifies a trace
record of an event that can be traced. As a
parameter on the START TRACE and
MODIFY TRACE commands, it specifies
that the corresponding event is to be
traced.

instrumentation facility interface (IFI)
A programming interface that enables
programs to obtain online trace data
about DB2, to submit DB2 commands,
and to pass data to DB2.

Interactive System Productivity Facility (ISPF)
An IBM licensed program that provides
interactive dialog services in a z/OS
environment.

inter-DB2 R/W interest
A property of data in a table space, index,
or partition that has been opened by more
than one member of a data sharing group
and that has been opened for writing by
at least one of those members.

intermediate database server
The target of a request from a local
application or a remote application
requester that is forwarded to another
database server.

internal resource lock manager (IRLM)
A z/OS subsystem that DB2 uses to
control communication and database
locking.

internationalization
The support for an encoding scheme that
is able to represent the code points of
characters from many different
geographies and languages. To support all
geographies, the Unicode standard
requires more than 1 byte to represent a
single character. See also Unicode.

intersection
An SQL operation that involves the
INTERSECT set operator, which combines
two result tables. The result of an
intersection operation consists of all of the
rows that are in both result tables.

invalid package
A package that depends on an object
(other than a user-defined function) that
is dropped. Such a package is implicitly
rebound on invocation. Contrast with
inoperative package.

DB2 glossary 1035

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|



IP address
A value that uniquely identifies a TCP/IP
host.

IRLM See internal resource lock manager.

isolation level
The degree to which a unit of work is
isolated from the updating operations of
other units of work. See also cursor
stability, read stability, repeatable read,
and uncommitted read.

ISPF See Interactive System Productivity
Facility.

iterator
In SQLJ, an object that contains the result
set of a query. An iterator is equivalent to
a cursor in other host languages.

iterator declaration clause
In SQLJ, a statement that generates an
iterator declaration class. An iterator is an
object of an iterator declaration class.

JAR See Java Archive.

Java Archive (JAR)
A file format that is used for aggregating
many files into a single file.

JDBC A Sun Microsystems database application
programming interface (API) for Java that
allows programs to access database
management systems by using callable
SQL.

join A relational operation that allows retrieval
of data from two or more tables based on
matching column values. See also
equijoin, full outer join, inner join, left
outer join, outer join, and right outer join.

KB Kilobyte. A value of 1024 bytes.

Kerberos
A network authentication protocol that is
designed to provide strong authentication
for client/server applications by using
secret-key cryptography.

Kerberos ticket
A transparent application mechanism that
transmits the identity of an initiating
principal to its target. A simple ticket
contains the principal’s identity, a session
key, a timestamp, and other information,
which is sealed using the target’s secret
key.

key A column, an ordered collection of

columns, or an expression that is
identified in the description of a table,
index, or referential constraint. The same
column or expression can be part of more
than one key.

key-sequenced data set (KSDS)
A VSAM file or data set whose records
are loaded in key sequence and controlled
by an index.

KSDS See key-sequenced data set.

large object (LOB)
A sequence of bytes representing bit data,
single-byte characters, double-byte
characters, or a mixture of single- and
double-byte characters. A LOB can be up
to 2 GB minus 1 byte in length. See also
binary large object, character large object,
and double-byte character large object.

last agent optimization
An optimized commit flow for either
presumed-nothing or presumed-abort
protocols in which the last agent, or final
participant, becomes the commit
coordinator. This flow saves at least one
message.

latch A DB2 mechanism for controlling
concurrent events or the use of system
resources.

LCID See log control interval definition.

LDS See linear data set.

leaf page
An index page that contains pairs of keys
and RIDs and that points to actual data.
Contrast with nonleaf page.

left outer join
The result of a join operation that
includes the matched rows of both tables
that are being joined, and that preserves
the unmatched rows of the first table. See
also join, equijoin, full outer join, inner
join, outer join, and right outer join.

limit key
The highest value of the index key for a
partition.

linear data set (LDS)
A VSAM data set that contains data but
no control information. A linear data set
can be accessed as a byte-addressable
string in virtual storage.

1036 Administration Guide

|
|

|

|
|
|
|
|



linkage editor
A computer program for creating load
modules from one or more object
modules or load modules by resolving
cross references among the modules and,
if necessary, adjusting addresses.

link-edit
The action of creating a loadable
computer program using a linkage editor.

list A type of object, which DB2 utilities can
process, that identifies multiple table
spaces, multiple index spaces, or both. A
list is defined with the LISTDEF utility
control statement.

list structure
A coupling facility structure that lets data
be shared and manipulated as elements of
a queue.

L-lock See logical lock.

load module
A program unit that is suitable for
loading into main storage for execution.
The output of a linkage editor.

LOB See large object.

LOB locator
A mechanism that allows an application
program to manipulate a large object
value in the database system. A LOB
locator is a fullword integer value that
represents a single LOB value. An
application program retrieves a LOB
locator into a host variable and can then
apply SQL operations to the associated
LOB value using the locator.

LOB lock
A lock on a LOB value.

LOB table space
A table space that contains all the data for
a particular LOB column in the related
base table.

local A way of referring to any object that the
local DB2 subsystem maintains. A local
table, for example, is a table that is
maintained by the local DB2 subsystem.
Contrast with remote.

locale The definition of a subset of a user’s
environment that combines a CCSID and
characters that are defined for a specific
language and country.

local lock
A lock that provides intra-DB2
concurrency control, but not inter-DB2
concurrency control; that is, its scope is a
single DB2.

local subsystem
The unique relational DBMS to which the
user or application program is directly
connected (in the case of DB2, by one of
the DB2 attachment facilities).

location
The unique name of a database server. An
application uses the location name to
access a DB2 database server. A database
alias can be used to override the location
name when accessing a remote server.

location alias
Another name by which a database server
identifies itself in the network.
Applications can use this name to access a
DB2 database server.

lock A means of controlling concurrent events
or access to data. DB2 locking is
performed by the IRLM.

lock duration
The interval over which a DB2 lock is
held.

lock escalation
The promotion of a lock from a row, page,
or LOB lock to a table space lock because
the number of page locks that are
concurrently held on a given resource
exceeds a preset limit.

locking
The process by which the integrity of data
is ensured. Locking prevents concurrent
users from accessing inconsistent data.
See also claim, drain, and latch.

lock mode
A representation for the type of access
that concurrently running programs can
have to a resource that a DB2 lock is
holding.

lock object
The resource that is controlled by a DB2
lock.

lock promotion
The process of changing the size or mode
of a DB2 lock to a higher, more restrictive
level.

DB2 glossary 1037



lock size
The amount of data that is controlled by a
DB2 lock on table data; the value can be a
row, a page, a LOB, a partition, a table, or
a table space.

lock structure
A coupling facility data structure that is
composed of a series of lock entries to
support shared and exclusive locking for
logical resources.

log A collection of records that describe the
events that occur during DB2 execution
and that indicate their sequence. The
information thus recorded is used for
recovery in the event of a failure during
DB2 execution.

log control interval definition
A suffix of the physical log record that
tells how record segments are placed in
the physical control interval.

logical claim
A claim on a logical partition of a
nonpartitioning index.

logical index partition
The set of all keys that reference the same
data partition.

logical lock (L-lock)
The lock type that transactions use to
control intra- and inter-DB2 data
concurrency between transactions.
Contrast with physical lock (P-lock).

logically complete
A state in which the concurrent copy
process is finished with the initialization
of the target objects that are being copied.
The target objects are available for
update.

logical page list (LPL)
A list of pages that are in error and that
cannot be referenced by applications until
the pages are recovered. The page is in
logical error because the actual media
(coupling facility or disk) might not
contain any errors. Usually a connection
to the media has been lost.

logical partition
A set of key or RID pairs in a
nonpartitioning index that are associated
with a particular partition.

logical recovery pending (LRECP)
The state in which the data and the index
keys that reference the data are
inconsistent.

logical unit (LU)
An access point through which an
application program accesses the SNA
network in order to communicate with
another application program. See also LU
name.

logical unit of work identifier (LUWID)
A name that uniquely identifies a thread
within a network. This name consists of a
fully-qualified LU network name, an
LUW instance number, and an LUW
sequence number.

logical unit of work
The processing that a program performs
between synchronization points.

log initialization
The first phase of restart processing
during which DB2 attempts to locate the
current end of the log.

log record header (LRH)
A prefix, in every log record, that contains
control information.

log record sequence number (LRSN)
An identifier for a log record that is
associated with a data sharing member.
DB2 uses the LRSN for recovery in the
data sharing environment.

log truncation
A process by which an explicit starting
RBA is established. This RBA is the point
at which the next byte of log data is to be
written.

LPL See logical page list.

LRECP
See logical recovery pending.

LRH See log record header.

LRSN See log record sequence number.

LU See logical unit.

LU name
Logical unit name, which is the name by
which VTAM refers to a node in a
network.

LUW See logical unit of work.

1038 Administration Guide



LUWID
See logical unit of work identifier.

mapping table
A table that the REORG utility uses to
map the associations of the RIDs of data
records in the original copy and in the
shadow copy. This table is created by the
user.

mass delete
The deletion of all rows of a table.

materialize

v The process of putting rows from a
view or nested table expression into a
work file for additional processing by a
query.

v The placement of a LOB value into
contiguous storage. Because LOB
values can be very large, DB2 avoids
materializing LOB data until doing so
becomes absolutely necessary.

materialized query table
A table that is used to contain information
that is derived and can be summarized
from one or more source tables. Contrast
with base table.

MB Megabyte (1 048 576 bytes).

MBCS See multibyte character set.

member name
The z/OS XCF identifier for a particular
DB2 subsystem in a data sharing group.

menu A displayed list of available functions for
selection by the operator. A menu is
sometimes called a menu panel.

metalanguage
A language that is used to create other
specialized languages.

migration
The process of converting a subsystem
with a previous release of DB2 to an
updated or current release. In this
process, you can acquire the functions of
the updated or current release without
losing the data that you created on the
previous release.

mixed data string
A character string that can contain both
single-byte and double-byte characters.

mode name
A VTAM name for the collection of

physical and logical characteristics and
attributes of a session.

modify locks
An L-lock or P-lock with a MODIFY
attribute. A list of these active locks is
kept at all times in the coupling facility
lock structure. If the requesting DB2
subsystem fails, that DB2 subsystem’s
modify locks are converted to retained
locks.

multibyte character set (MBCS)
A character set that represents single
characters with more than a single byte.
UTF-8 is an example of an MBCS.
Characters in UTF-8 can range from 1 to 4
bytes in DB2. Contrast with single-byte
character set and double-byte character
set. See also Unicode.

multidimensional analysis
The process of assessing and evaluating
an enterprise on more than one level.

Multiple Virtual Storage (MVS)
An element of the z/OS operating system.
This element is also called the Base
Control Program (BCP).

multisite update
Distributed relational database processing
in which data is updated in more than
one location within a single unit of work.

multithreading
Multiple TCBs that are executing one
copy of DB2 ODBC code concurrently
(sharing a processor) or in parallel (on
separate central processors).

MVS See Multiple Virtual Storage.

native SQL procedure
An SQL procedure that is processed by
converting the procedural statements to a
native representation that is stored in the
database directory, as is done with other
SQL statements. When a native SQL
procedure is called, the native
representation is loaded from the
directory, and DB2 executes the
procedure. Contrast with external
procedure and external SQL procedure.

nested table expression
A fullselect in a FROM clause
(surrounded by parentheses).

network identifier (NID)
The network ID that is assigned by IMS

DB2 glossary 1039

|
|
|
|
|
|
|
|
|
|
|



or CICS, or if the connection type is
RRSAF, the RRS unit of recovery ID
(URID).

new-function mode (NFM)
The normal mode of operation that exists
after successful completion of a
version-to-version migration. At this
stage, all new functions of the new
version are available for use. A DB2 data
sharing group cannot coexist with
members that are still at the prior version
level, and fallback to a prior version is
not supported. Contrast with conversion
mode, conversion mode*,
enabling-new-function mode, and
enabling-new-function mode*.

NFM See new-function mode.

NID See network identifier.

node ID index
See XML node ID index.

nondeterministic function
A user-defined function whose result is
not solely dependent on the values of the
input arguments. That is, successive
invocations with the same argument
values can produce a different answer.
This type of function is sometimes called
a variant function. Contrast with
deterministic function (sometimes called a
not-variant function).

nonleaf page
A page that contains keys and page
numbers of other pages in the index
(either leaf or nonleaf pages). Nonleaf
pages never point to actual data. Contrast
with leaf page.

nonpartitioned index
An index that is not physically
partitioned. Both partitioning indexes and
secondary indexes can be nonpartitioned.

nonpartitioned secondary index (NPSI)
An index on a partitioned table space that
is not the partitioning index and is not
partitioned. Contrast with
data-partitioned secondary index.

nonpartitioning index
See secondary index.

nonscrollable cursor
A cursor that can be moved only in a

forward direction. Nonscrollable cursors
are sometimes called forward-only cursors
or serial cursors.

normalization
A key step in the task of building a
logical relational database design.
Normalization helps you avoid
redundancies and inconsistencies in your
data. An entity is normalized if it meets a
set of constraints for a particular normal
form (first normal form, second normal
form, and so on). Contrast with
denormalization.

not-variant function
See deterministic function.

NPSI See nonpartitioned secondary index.

NUL The null character (’\0’), which is
represented by the value X’00’. In C, this
character denotes the end of a string.

null A special value that indicates the absence
of information.

null terminator
In C, the value that indicates the end of a
string. For EBCDIC, ASCII, and Unicode
UTF-8 strings, the null terminator is a
single-byte value (X’00’). For Unicode
UTF-16 or UCS-2 (wide) strings, the null
terminator is a double-byte value
(X’0000’).

ODBC
See Open Database Connectivity.

ODBC driver
A dynamically-linked library (DLL) that
implements ODBC function calls and
interacts with a data source.

OLAP See online analytical processing.

online analytical processing (OLAP)
The process of collecting data from one or
many sources; transforming and
analyzing the consolidated data quickly
and interactively; and examining the
results across different dimensions of the
data by looking for patterns, trends, and
exceptions within complex relationships
of that data.

Open Database Connectivity (ODBC)
A Microsoft database application
programming interface (API) for C that
allows access to database management
systems by using callable SQL. ODBC

1040 Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|

||

|
|
|
|
|
|
|
|
|



does not require the use of an SQL
preprocessor. In addition, ODBC provides
an architecture that lets users add
modules called database drivers, which link
the application to their choice of database
management systems at run time. This
means that applications no longer need to
be directly linked to the modules of all
the database management systems that
are supported.

ordinary identifier
An uppercase letter followed by zero or
more characters, each of which is an
uppercase letter, a digit, or the underscore
character. An ordinary identifier must not
be a reserved word.

ordinary token
A numeric constant, an ordinary
identifier, a host identifier, or a keyword.

originating task
In a parallel group, the primary agent
that receives data from other execution
units (referred to as parallel tasks) that are
executing portions of the query in
parallel.

outer join
The result of a join operation that
includes the matched rows of both tables
that are being joined and preserves some
or all of the unmatched rows of the tables
that are being joined. See also join,
equijoin, full outer join, inner join, left
outer join, and right outer join.

overloaded function
A function name for which multiple
function instances exist.

package
An object containing a set of SQL
statements that have been statically
bound and that is available for
processing. A package is sometimes also
called an application package.

package list
An ordered list of package names that
may be used to extend an application
plan.

package name
The name of an object that is used for an
application package or an SQL procedure
package. An application package is a
bound version of a database request
module (DBRM) that is created by a

BIND PACKAGE or REBIND PACKAGE
command. An SQL procedural language
package is created by a CREATE or
ALTER PROCEDURE statement for a
native SQL procedure. The name of a
package consists of a location name, a
collection ID, a package ID, and a version
ID.

page A unit of storage within a table space (4
KB, 8 KB, 16 KB, or 32 KB) or index space
(4 KB, 8 KB, 16 KB, or 32 KB). In a table
space, a page contains one or more rows
of a table. In a LOB or XML table space, a
LOB or XML value can span more than
one page, but no more than one LOB or
XML value is stored on a page.

page set
Another way to refer to a table space or
index space. Each page set consists of a
collection of VSAM data sets.

page set recovery pending (PSRCP)
A restrictive state of an index space. In
this case, the entire page set must be
recovered. Recovery of a logical part is
prohibited.

panel A predefined display image that defines
the locations and characteristics of display
fields on a display surface (for example, a
menu panel).

parallel complex
A cluster of machines that work together
to handle multiple transactions and
applications.

parallel group
A set of consecutive operations that
execute in parallel and that have the same
number of parallel tasks.

parallel I/O processing
A form of I/O processing in which DB2
initiates multiple concurrent requests for a
single user query and performs I/O
processing concurrently (in parallel) on
multiple data partitions.

parallelism assistant
In Sysplex query parallelism, a DB2
subsystem that helps to process parts of a
parallel query that originates on another
DB2 subsystem in the data sharing group.

DB2 glossary 1041

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|



parallelism coordinator
In Sysplex query parallelism, the DB2
subsystem from which the parallel query
originates.

Parallel Sysplex
A set of z/OS systems that communicate
and cooperate with each other through
certain multisystem hardware components
and software services to process customer
workloads.

parallel task
The execution unit that is dynamically
created to process a query in parallel. A
parallel task is implemented by a z/OS
service request block.

parameter marker
A question mark (?) that appears in a
statement string of a dynamic SQL
statement. The question mark can appear
where a variable could appear if the
statement string were a static SQL
statement.

parameter-name
An SQL identifier that designates a
parameter in a routine that is written by a
user. Parameter names are required for
SQL procedures and SQL functions, and
they are used in the body of the routine
to refer to the values of the parameters.
Parameter names are optional for external
routines.

parent key
A primary key or unique key in the
parent table of a referential constraint.
The values of a parent key determine the
valid values of the foreign key in the
referential constraint.

parent lock
For explicit hierarchical locking, a lock
that is held on a resource that might have
child locks that are lower in the hierarchy.
A parent lock is usually the table space
lock or the partition intent lock. See also
child lock.

parent row
A row whose primary key value is the
foreign key value of a dependent row.

parent table
A table whose primary key is referenced
by the foreign key of a dependent table.

parent table space
A table space that contains a parent table.
A table space containing a dependent of
that table is a dependent table space.

participant
An entity other than the commit
coordinator that takes part in the commit
process. The term participant is
synonymous with agent in SNA.

partition
A portion of a page set. Each partition
corresponds to a single, independently
extendable data set. The maximum size of
a partition depends on the number of
partitions in the partitioned page set. All
partitions of a given page set have the
same maximum size.

partition-by-growth table space
A table space whose size can grow to
accommodate data growth. DB2 for z/OS
manages partition-by-growth table spaces
by automatically adding new data sets
when the database needs more space to
satisfy an insert operation. Contrast with
range-partitioned table space. See also
universal table space.

partitioned data set (PDS)
A data set in disk storage that is divided
into partitions, which are called members.
Each partition can contain a program,
part of a program, or data. A program
library is an example of a partitioned data
set.

partitioned index
An index that is physically partitioned.
Both partitioning indexes and secondary
indexes can be partitioned.

partitioned page set
A partitioned table space or an index
space. Header pages, space map pages,
data pages, and index pages reference
data only within the scope of the
partition.

partitioned table space
A table space that is based on a single
table and that is subdivided into
partitions, each of which can be processed
independently by utilities. Contrast with
segmented table space and universal table
space.

partitioning index
An index in which the leftmost columns

1042 Administration Guide

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|



are the partitioning columns of the table.
The index can be partitioned or
nonpartitioned.

partner logical unit
An access point in the SNA network that
is connected to the local DB2 subsystem
by way of a VTAM conversation.

path See SQL path.

PDS See partitioned data set.

physical consistency
The state of a page that is not in a
partially changed state.

physical lock (P-lock)
A type of lock that DB2 acquires to
provide consistency of data that is cached
in different DB2 subsystems. Physical
locks are used only in data sharing
environments. Contrast with logical lock
(L-lock).

physically complete
The state in which the concurrent copy
process is completed and the output data
set has been created.

piece A data set of a nonpartitioned page set.

plan See application plan.

plan allocation
The process of allocating DB2 resources to
a plan in preparation for execution.

plan member
The bound copy of a DBRM that is
identified in the member clause.

plan name
The name of an application plan.

P-lock See physical lock.

point of consistency
A time when all recoverable data that an
application accesses is consistent with
other data. The term point of consistency
is synonymous with sync point or commit
point.

policy See CFRM policy.

postponed abort UR
A unit of recovery that was inflight or
in-abort, was interrupted by system
failure or cancellation, and did not
complete backout during restart.

precision
In SQL, the total number of digits in a

decimal number (called the size in the C
language). In the C language, the number
of digits to the right of the decimal point
(called the scale in SQL). The DB2
information uses the SQL terms.

precompilation
A processing of application programs
containing SQL statements that takes
place before compilation. SQL statements
are replaced with statements that are
recognized by the host language compiler.
Output from this precompilation includes
source code that can be submitted to the
compiler and the database request
module (DBRM) that is input to the bind
process.

predicate
An element of a search condition that
expresses or implies a comparison
operation.

prefix A code at the beginning of a message or
record.

preformat
The process of preparing a VSAM linear
data set for DB2 use, by writing specific
data patterns.

prepare
The first phase of a two-phase commit
process in which all participants are
requested to prepare for commit.

prepared SQL statement
A named object that is the executable
form of an SQL statement that has been
processed by the PREPARE statement.

primary authorization ID
The authorization ID that is used to
identify the application process to DB2.

primary group buffer pool
For a duplexed group buffer pool, the
structure that is used to maintain the
coherency of cached data. This structure
is used for page registration and
cross-invalidation. The z/OS equivalent is
old structure. Compare with secondary
group buffer pool.

primary index
An index that enforces the uniqueness of
a primary key.

primary key
In a relational database, a unique, nonnull
key that is part of the definition of a

DB2 glossary 1043

|
|
|



table. A table cannot be defined as a
parent unless it has a unique key or
primary key.

principal
An entity that can communicate securely
with another entity. In Kerberos,
principals are represented as entries in the
Kerberos registry database and include
users, servers, computers, and others.

principal name
The name by which a principal is known
to the DCE security services.

privilege
The capability of performing a specific
function, sometimes on a specific object.
See also explicit privilege.

privilege set

v For the installation SYSADM ID, the set
of all possible privileges.

v For any other authorization ID,
including the PUBLIC authorization ID,
the set of all privileges that are
recorded for that ID in the DB2 catalog.

process
In DB2, the unit to which DB2 allocates
resources and locks. Sometimes called an
application process, a process involves the
execution of one or more programs. The
execution of an SQL statement is always
associated with some process. The means
of initiating and terminating a process are
dependent on the environment.

program
A single, compilable collection of
executable statements in a programming
language.

program temporary fix (PTF)
A solution or bypass of a problem that is
diagnosed as a result of a defect in a
current unaltered release of a licensed
program. An authorized program analysis
report (APAR) fix is corrective service for
an existing problem. A PTF is preventive
service for problems that might be
encountered by other users of the
product. A PTF is temporary, because a
permanent fix is usually not incorporated
into the product until its next release.

protected conversation
A VTAM conversation that supports
two-phase commit flows.

PSRCP
See page set recovery pending.

PTF See program temporary fix.

QSAM
See queued sequential access method.

query A component of certain SQL statements
that specifies a result table.

query block
The part of a query that is represented by
one of the FROM clauses. Each FROM
clause can have multiple query blocks,
depending on DB2 processing of the
query.

query CP parallelism
Parallel execution of a single query, which
is accomplished by using multiple tasks.
See also Sysplex query parallelism.

query I/O parallelism
Parallel access of data, which is
accomplished by triggering multiple I/O
requests within a single query.

queued sequential access method (QSAM)
An extended version of the basic
sequential access method (BSAM). When
this method is used, a queue of data
blocks is formed. Input data blocks await
processing, and output data blocks await
transfer to auxiliary storage or to an
output device.

quiesce point
A point at which data is consistent as a
result of running the DB2 QUIESCE
utility.

RACF Resource Access Control Facility. A
component of the z/OS Security Server.

range-partitioned table space
A type of universal table space that is
based on partitioning ranges and that
contains a single table. Contrast with
partition-by-growth table space. See also
universal table space.

RBA See relative byte address.

RCT See resource control table.

RDO See resource definition online.

read stability (RS)
An isolation level that is similar to
repeatable read but does not completely
isolate an application process from all
other concurrently executing application

1044 Administration Guide

|
|

|
|
|
|

|
|
|
|
|
|

||



processes. See also cursor
stabilityrepeatable read, and uncommitted
read.

rebind
The creation of a new application plan for
an application program that has been
bound previously. If, for example, you
have added an index for a table that your
application accesses, you must rebind the
application in order to take advantage of
that index.

rebuild
The process of reallocating a coupling
facility structure. For the shared
communications area (SCA) and lock
structure, the structure is repopulated; for
the group buffer pool, changed pages are
usually cast out to disk, and the new
structure is populated only with changed
pages that were not successfully cast out.

record The storage representation of a row or
other data.

record identifier (RID)
A unique identifier that DB2 uses to
identify a row of data in a table. Compare
with row identifier.

record identifier (RID) pool
An area of main storage that is used for
sorting record identifiers during
list-prefetch processing.

record length
The sum of the length of all the columns
in a table, which is the length of the data
as it is physically stored in the database.
Records can be fixed length or varying
length, depending on how the columns
are defined. If all columns are
fixed-length columns, the record is a
fixed-length record. If one or more
columns are varying-length columns, the
record is a varying-length record.

Recoverable Resource Manager Services
attachment facility (RRSAF)

A DB2 subcomponent that uses Resource
Recovery Services to coordinate resource
commitment between DB2 and all other
resource managers that also use RRS in a
z/OS system.

recovery
The process of rebuilding databases after
a system failure.

recovery log
A collection of records that describes the
events that occur during DB2 execution
and indicates their sequence. The
recorded information is used for recovery
in the event of a failure during DB2
execution.

recovery manager
A subcomponent that supplies
coordination services that control the
interaction of DB2 resource managers
during commit, abort, checkpoint, and
restart processes. The recovery manager
also supports the recovery mechanisms of
other subsystems (for example, IMS) by
acting as a participant in the other
subsystem’s process for protecting data
that has reached a point of consistency.

A coordinator or a participant (or both),
in the execution of a two-phase commit,
that can access a recovery log that
maintains the state of the logical unit of
work and names the immediate upstream
coordinator and downstream participants.

recovery pending (RECP)
A condition that prevents SQL access to a
table space that needs to be recovered.

recovery token
An identifier for an element that is used
in recovery (for example, NID or URID).

RECP See recovery pending.

redo A state of a unit of recovery that indicates
that changes are to be reapplied to the
disk media to ensure data integrity.

reentrant code
Executable code that can reside in storage
as one shared copy for all threads.
Reentrant code is not self-modifying and
provides separate storage areas for each
thread. See also threadsafe.

referential constraint
The requirement that nonnull values of a
designated foreign key are valid only if
they equal values of the primary key of a
designated table.

referential cycle
A set of referential constraints such that
each base table in the set is a descendent
of itself. The tables that are involved in a
referential cycle are ordered so that each

DB2 glossary 1045

|
|
|
|
|



table is a descendent of the one before it,
and the first table is a descendent of the
last table.

referential integrity
The state of a database in which all
values of all foreign keys are valid.
Maintaining referential integrity requires
the enforcement of referential constraints
on all operations that change the data in a
table on which the referential constraints
are defined.

referential structure
A set of tables and relationships that
includes at least one table and, for every
table in the set, all the relationships in
which that table participates and all the
tables to which it is related.

refresh age
The time duration between the current
time and the time during which a
materialized query table was last
refreshed.

registry
See registry database.

registry database
A database of security information about
principals, groups, organizations,
accounts, and security policies.

relational database
A database that can be perceived as a set
of tables and manipulated in accordance
with the relational model of data.

relational database management system
(RDBMS)

A collection of hardware and software
that organizes and provides access to a
relational database.

relational schema
See SQL schema.

relationship
A defined connection between the rows of
a table or the rows of two tables. A
relationship is the internal representation
of a referential constraint.

relative byte address (RBA)
The offset of a data record or control
interval from the beginning of the storage
space that is allocated to the data set or
file to which it belongs.

remigration
The process of returning to a current
release of DB2 following a fallback to a
previous release. This procedure
constitutes another migration process.

remote
Any object that is maintained by a remote
DB2 subsystem (that is, by a DB2
subsystem other than the local one). A
remote view, for example, is a view that is
maintained by a remote DB2 subsystem.
Contrast with local.

remote subsystem
Any relational DBMS, except the local
subsystem, with which the user or
application can communicate. The
subsystem need not be remote in any
physical sense, and might even operate
on the same processor under the same
z/OS system.

reoptimization
The DB2 process of reconsidering the
access path of an SQL statement at run
time; during reoptimization, DB2 uses the
values of host variables, parameter
markers, or special registers.

reordered row format
A row format that facilitates improved
performance in retrieval of rows that have
varying-length columns. DB2 rearranges
the column order, as defined in the
CREATE TABLE statement, so that the
fixed-length columns are stored at the
beginning of the row and the
varying-length columns are stored at the
end of the row. Contrast with basic row
format.

REORG pending (REORP)
A condition that restricts SQL access and
most utility access to an object that must
be reorganized.

REORP
See REORG pending.

repeatable read (RR)
The isolation level that provides
maximum protection from other executing
application programs. When an
application program executes with
repeatable read protection, rows that the
program references cannot be changed by
other programs until the program reaches

1046 Administration Guide

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|



a commit point. See also cursor stability,
read stability, and uncommitted read.

repeating group
A situation in which an entity includes
multiple attributes that are inherently the
same. The presence of a repeating group
violates the requirement of first normal
form. In an entity that satisfies the
requirement of first normal form, each
attribute is independent and unique in its
meaning and its name. See also
normalization.

replay detection mechanism
A method that allows a principal to detect
whether a request is a valid request from
a source that can be trusted or whether an
untrustworthy entity has captured
information from a previous exchange
and is replaying the information exchange
to gain access to the principal.

request commit
The vote that is submitted to the prepare
phase if the participant has modified data
and is prepared to commit or roll back.

requester
The source of a request to access data at a
remote server. In the DB2 environment,
the requester function is provided by the
distributed data facility.

resource
The object of a lock or claim, which could
be a table space, an index space, a data
partition, an index partition, or a logical
partition.

resource allocation
The part of plan allocation that deals
specifically with the database resources.

resource control table
A construct of previous versions of the
CICS attachment facility that defines
authorization and access attributes for
transactions or transaction groups.
Beginning in CICS Transaction Server
Version 1.3, resources are defined by
using resource definition online instead of
the resource control table. See also
resource definition online.

resource definition online (RDO)
The recommended method of defining
resources to CICS by creating resource
definitions interactively, or by using a
utility, and then storing them in the CICS

definition data set. In earlier releases of
CICS, resources were defined by using the
resource control table (RCT), which is no
longer supported.

resource limit facility (RLF)
A portion of DB2 code that prevents
dynamic manipulative SQL statements
from exceeding specified time limits. The
resource limit facility is sometimes called
the governor.

resource limit specification table (RLST)
A site-defined table that specifies the
limits to be enforced by the resource limit
facility.

resource manager

v A function that is responsible for
managing a particular resource and that
guarantees the consistency of all
updates made to recoverable resources
within a logical unit of work. The
resource that is being managed can be
physical (for example, disk or main
storage) or logical (for example, a
particular type of system service).

v A participant, in the execution of a
two-phase commit, that has recoverable
resources that could have been
modified. The resource manager has
access to a recovery log so that it can
commit or roll back the effects of the
logical unit of work to the recoverable
resources.

restart pending (RESTP)
A restrictive state of a page set or
partition that indicates that restart
(backout) work needs to be performed on
the object.

RESTP
See restart pending.

result set
The set of rows that a stored procedure
returns to a client application.

result set locator
A 4-byte value that DB2 uses to uniquely
identify a query result set that a stored
procedure returns.

result table
The set of rows that are specified by a
SELECT statement.

retained lock
A MODIFY lock that a DB2 subsystem

DB2 glossary 1047

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|



was holding at the time of a subsystem
failure. The lock is retained in the
coupling facility lock structure across a
DB2 for z/OS failure.

RID See record identifier.

RID pool
See record identifier pool.

right outer join
The result of a join operation that
includes the matched rows of both tables
that are being joined and preserves the
unmatched rows of the second join
operand. See also join, equijoin, full outer
join, inner join, left outer join, and outer
join.

RLF See resource limit facility.

RLST See resource limit specification table.

role A database entity that groups together
one or more privileges and that can be
assigned to a primary authorization ID or
to PUBLIC. The role is available only in a
trusted context.

rollback
The process of restoring data that was
changed by SQL statements to the state at
its last commit point. All locks are freed.
Contrast with commit.

root page
The index page that is at the highest level
(or the beginning point) in an index.

routine
A database object that encapsulates
procedural logic and SQL statements, is
stored on the database server, and can be
invoked from an SQL statement or by
using the CALL statement. The main
classes of routines are procedures and
functions.

row The horizontal component of a table. A
row consists of a sequence of values, one
for each column of the table.

row identifier (ROWID)
A value that uniquely identifies a row.
This value is stored with the row and
never changes.

row lock
A lock on a single row of data.

row-positioned fetch orientation
The specification of the desired placement

of the cursor as part of a FETCH
statement, with respect to a single row
(for example, NEXT, LAST, or ABSOLUTE
n). Contrast with rowset-positioned fetch
orientation.

rowset
A set of rows for which a cursor position
is established.

rowset cursor
A cursor that is defined so that one or
more rows can be returned as a rowset
for a single FETCH statement, and the
cursor is positioned on the set of rows
that is fetched.

rowset-positioned fetch orientation
The specification of the desired placement
of the cursor as part of a FETCH
statement, with respect to a rowset (for
example, NEXT ROWSET, LAST
ROWSET, or ROWSET STARTING AT
ABSOLUTE n). Contrast with
row-positioned fetch orientation.

row trigger
A trigger that is defined with the trigger
granularity FOR EACH ROW.

RRSAF
See Recoverable Resource Manager
Services attachment facility.

RS See read stability.

savepoint
A named entity that represents the state
of data and schemas at a particular point
in time within a unit of work.

SBCS See single-byte character set.

SCA See shared communications area.

scalar function
An SQL operation that produces a single
value from another value and is
expressed as a function name, followed
by a list of arguments that are enclosed in
parentheses.

scale In SQL, the number of digits to the right
of the decimal point (called the precision
in the C language). The DB2 information
uses the SQL definition.

schema
The organization or structure of a
database.

1048 Administration Guide

||
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|



A collection of, and a way of qualifying,
database objects such as tables, views,
routines, indexes or triggers that define a
database. A database schema provides a
logical classification of database objects.

scrollability
The ability to use a cursor to fetch in
either a forward or backward direction.
The FETCH statement supports multiple
fetch orientations to indicate the new
position of the cursor. See also fetch
orientation.

scrollable cursor
A cursor that can be moved in both a
forward and a backward direction.

search condition
A criterion for selecting rows from a table.
A search condition consists of one or
more predicates.

secondary authorization ID
An authorization ID that has been
associated with a primary authorization
ID by an authorization exit routine.

secondary group buffer pool
For a duplexed group buffer pool, the
structure that is used to back up changed
pages that are written to the primary
group buffer pool. No page registration or
cross-invalidation occurs using the
secondary group buffer pool. The z/OS
equivalent is new structure.

secondary index
A nonpartitioning index that is useful for
enforcing a uniqueness constraint, for
clustering data, or for providing access
paths to data for queries. A secondary
index can be partitioned or
nonpartitioned. See also data-partitioned
secondary index (DPSI) and
nonpartitioned secondary index (NPSI).

section
The segment of a plan or package that
contains the executable structures for a
single SQL statement. For most SQL
statements, one section in the plan exists
for each SQL statement in the source
program. However, for cursor-related
statements, the DECLARE, OPEN,
FETCH, and CLOSE statements reference
the same section because they each refer
to the SELECT statement that is named in
the DECLARE CURSOR statement. SQL

statements such as COMMIT,
ROLLBACK, and some SET statements do
not use a section.

security label
A classification of users’ access to objects
or data rows in a multilevel security
environment.″

segment
A group of pages that holds rows of a
single table. See also segmented table
space.

segmented table space
A table space that is divided into
equal-sized groups of pages called
segments. Segments are assigned to tables
so that rows of different tables are never
stored in the same segment. Contrast with
partitioned table space and universal table
space.

self-referencing constraint
A referential constraint that defines a
relationship in which a table is a
dependent of itself.

self-referencing table
A table with a self-referencing constraint.

sensitive cursor
A cursor that is sensitive to changes that
are made to the database after the result
table has been materialized.

sequence
A user-defined object that generates a
sequence of numeric values according to
user specifications.

sequential data set
A non-DB2 data set whose records are
organized on the basis of their successive
physical positions, such as on magnetic
tape. Several of the DB2 database utilities
require sequential data sets.

sequential prefetch
A mechanism that triggers consecutive
asynchronous I/O operations. Pages are
fetched before they are required, and
several pages are read with a single I/O
operation.

serialized profile
A Java object that contains SQL
statements and descriptions of host
variables. The SQLJ translator produces a
serialized profile for each connection
context.

DB2 glossary 1049

|
|
|
|



server The target of a request from a remote
requester. In the DB2 environment, the
server function is provided by the
distributed data facility, which is used to
access DB2 data from remote applications.

service class
An eight-character identifier that is used
by the z/OS Workload Manager to
associate user performance goals with a
particular DDF thread or stored
procedure. A service class is also used to
classify work on parallelism assistants.

service request block
A unit of work that is scheduled to
execute.

session
A link between two nodes in a VTAM
network.

session protocols
The available set of SNA communication
requests and responses.

set operator
The SQL operators UNION, EXCEPT, and
INTERSECT corresponding to the
relational operators union, difference, and
intersection. A set operator derives a
result table by combining two other result
tables.

shared communications area (SCA)
A coupling facility list structure that a
DB2 data sharing group uses for
inter-DB2 communication.

share lock
A lock that prevents concurrently
executing application processes from
changing data, but not from reading data.
Contrast with exclusive lock.

shift-in character
A special control character (X’0F’) that is
used in EBCDIC systems to denote that
the subsequent bytes represent SBCS
characters. See also shift-out character.

shift-out character
A special control character (X’0E’) that is
used in EBCDIC systems to denote that
the subsequent bytes, up to the next
shift-in control character, represent DBCS
characters. See also shift-in character.

sign-on
A request that is made on behalf of an
individual CICS or IMS application

process by an attachment facility to
enable DB2 to verify that it is authorized
to use DB2 resources.

simple page set
A nonpartitioned page set. A simple page
set initially consists of a single data set
(page set piece). If and when that data set
is extended to 2 GB, another data set is
created, and so on, up to a total of 32
data sets. DB2 considers the data sets to
be a single contiguous linear address
space containing a maximum of 64 GB.
Data is stored in the next available
location within this address space without
regard to any partitioning scheme.

simple table space
A table space that is neither partitioned
nor segmented. Creation of simple table
spaces is not supported in DB2 Version
9.1 for z/OS. Contrast with partitioned
table space, segmented table space, and
universal table space.

single-byte character set (SBCS)
A set of characters in which each
character is represented by a single byte.
Contrast with double-byte character set or
multibyte character set.

single-precision floating point number
A 32-bit approximate representation of a
real number.

SMP/E
See System Modification
Program/Extended.

SNA See Systems Network Architecture.

SNA network
The part of a network that conforms to
the formats and protocols of Systems
Network Architecture (SNA).

socket A callable TCP/IP programming interface
that TCP/IP network applications use to
communicate with remote TCP/IP
partners.

sourced function
A function that is implemented by
another built-in or user-defined function
that is already known to the database
manager. This function can be a scalar
function or an aggregate function; it
returns a single value from a set of values

1050 Administration Guide

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|



(for example, MAX or AVG). Contrast
with built-in function, external function,
and SQL function.

source program
A set of host language statements and
SQL statements that is processed by an
SQL precompiler.

source table
A table that can be a base table, a view, a
table expression, or a user-defined table
function.

source type
An existing type that DB2 uses to
represent a distinct type.

space A sequence of one or more blank
characters.

special register
A storage area that DB2 defines for an
application process to use for storing
information that can be referenced in SQL
statements. Examples of special registers
are SESSION_USER and CURRENT
DATE.

specific function name
A particular user-defined function that is
known to the database manager by its
specific name. Many specific user-defined
functions can have the same function
name. When a user-defined function is
defined to the database, every function is
assigned a specific name that is unique
within its schema. Either the user can
provide this name, or a default name is
used.

SPUFI See SQL Processor Using File Input.

SQL See Structured Query Language.

SQL authorization ID (SQL ID)
The authorization ID that is used for
checking dynamic SQL statements in
some situations.

SQLCA
See SQL communication area.

SQL communication area (SQLCA)
A structure that is used to provide an
application program with information
about the execution of its SQL statements.

SQL connection
An association between an application
process and a local or remote application
server or database server.

SQLDA
See SQL descriptor area.

SQL descriptor area (SQLDA)
A structure that describes input variables,
output variables, or the columns of a
result table.

SQL escape character
The symbol that is used to enclose an
SQL delimited identifier. This symbol is
the double quotation mark (″). See also
escape character.

SQL function
A user-defined function in which the
CREATE FUNCTION statement contains
the source code. The source code is a
single SQL expression that evaluates to a
single value. The SQL user-defined
function can return the result of an
expression. See also built-in function,
external function, and sourced function.

SQL ID
See SQL authorization ID.

SQLJ Structured Query Language (SQL) that is
embedded in the Java programming
language.

SQL path
An ordered list of schema names that are
used in the resolution of unqualified
references to user-defined functions,
distinct types, and stored procedures. In
dynamic SQL, the SQL path is found in
the CURRENT PATH special register. In
static SQL, it is defined in the PATH bind
option.

SQL procedure
A user-written program that can be
invoked with the SQL CALL statement.
An SQL procedure is written in the SQL
procedural language. Two types of SQL
procedures are supported: external SQL
procedures and native SQL procedures.
See also external procedure and native
SQL procedure.

SQL processing conversation
Any conversation that requires access of
DB2 data, either through an application or
by dynamic query requests.

SQL Processor Using File Input (SPUFI)
A facility of the TSO attachment
subcomponent that enables the DB2I user

DB2 glossary 1051

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|



to execute SQL statements without
embedding them in an application
program.

SQL return code
Either SQLCODE or SQLSTATE.

SQL routine
A user-defined function or stored
procedure that is based on code that is
written in SQL.

SQL schema
A collection of database objects such as
tables, views, indexes, functions, distinct
types, schemas, or triggers that defines a
database. An SQL schema provides a
logical classification of database objects.

SQL statement coprocessor
An alternative to the DB2 precompiler
that lets the user process SQL statements
at compile time. The user invokes an SQL
statement coprocessor by specifying a
compiler option.

SQL string delimiter
A symbol that is used to enclose an SQL
string constant. The SQL string delimiter
is the apostrophe (’), except in COBOL
applications, where the user assigns the
symbol, which is either an apostrophe or
a double quotation mark (″).

SRB See service request block.

stand-alone
An attribute of a program that means that
it is capable of executing separately from
DB2, without using DB2 services.

star join
A method of joining a dimension column
of a fact table to the key column of the
corresponding dimension table. See also
join, dimension, and star schema.

star schema
The combination of a fact table (which
contains most of the data) and a number
of dimension tables. See also star join,
dimension, and dimension table.

statement handle
In DB2 ODBC, the data object that
contains information about an SQL
statement that is managed by DB2 ODBC.
This includes information such as
dynamic arguments, bindings for
dynamic arguments and columns, cursor
information, result values, and status

information. Each statement handle is
associated with the connection handle.

statement string
For a dynamic SQL statement, the
character string form of the statement.

statement trigger
A trigger that is defined with the trigger
granularity FOR EACH STATEMENT.

static cursor
A named control structure that does not
change the size of the result table or the
order of its rows after an application
opens the cursor. Contrast with dynamic
cursor.

static SQL
SQL statements, embedded within a
program, that are prepared during the
program preparation process (before the
program is executed). After being
prepared, the SQL statement does not
change (although values of variables that
are specified by the statement might
change).

storage group
A set of storage objects on which DB2 for
z/OS data can be stored. A storage object
can have an SMS data class, a
management class, a storage class, and a
list of volume serial numbers.

stored procedure
A user-written application program that
can be invoked through the use of the
SQL CALL statement. Stored procedures
are sometimes called procedures.

string See binary string, character string, or
graphic string.

strong typing
A process that guarantees that only
user-defined functions and operations that
are defined on a distinct type can be
applied to that type. For example, you
cannot directly compare two currency
types, such as Canadian dollars and U.S.
dollars. But you can provide a
user-defined function to convert one
currency to the other and then do the
comparison.

structure

1052 Administration Guide

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|



v A name that refers collectively to
different types of DB2 objects, such as
tables, databases, views, indexes, and
table spaces.

v A construct that uses z/OS to map and
manage storage on a coupling facility.
See also cache structure, list structure,
or lock structure.

Structured Query Language (SQL)
A standardized language for defining and
manipulating data in a relational
database.

structure owner
In relation to group buffer pools, the DB2
member that is responsible for the
following activities:
v Coordinating rebuild, checkpoint, and

damage assessment processing
v Monitoring the group buffer pool

threshold and notifying castout owners
when the threshold has been reached

subcomponent
A group of closely related DB2 modules
that work together to provide a general
function.

subject table
The table for which a trigger is created.
When the defined triggering event occurs
on this table, the trigger is activated.

subquery
A SELECT statement within the WHERE
or HAVING clause of another SQL
statement; a nested SQL statement.

subselect
That form of a query that includes only a
SELECT clause, FROM clause, and
optionally a WHERE clause, GROUP BY
clause, HAVING clause, ORDER BY
clause, or FETCH FIRST clause.

substitution character
A unique character that is substituted
during character conversion for any
characters in the source program that do
not have a match in the target coding
representation.

subsystem
A distinct instance of a relational database
management system (RDBMS).

surrogate pair
A coded representation for a single
character that consists of a sequence of

two 16-bit code units, in which the first
value of the pair is a high-surrogate code
unit in the range U+D800 through
U+DBFF, and the second value is a
low-surrogate code unit in the range
U+DC00 through U+DFFF. Surrogate
pairs provide an extension mechanism for
encoding 917 476 characters without
requiring the use of 32-bit characters.

SVC dump
A dump that is issued when a z/OS or a
DB2 functional recovery routine detects
an error.

sync point
See commit point.

syncpoint tree
The tree of recovery managers and
resource managers that are involved in a
logical unit of work, starting with the
recovery manager, that make the final
commit decision.

synonym
In SQL, an alternative name for a table or
view. Synonyms can be used to refer only
to objects at the subsystem in which the
synonym is defined. A synonym cannot
be qualified and can therefore not be used
by other users. Contrast with alias.

Sysplex
See Parallel Sysplex.

Sysplex query parallelism
Parallel execution of a single query that is
accomplished by using multiple tasks on
more than one DB2 subsystem. See also
query CP parallelism.

system administrator
The person at a computer installation
who designs, controls, and manages the
use of the computer system.

system agent
A work request that DB2 creates such as
prefetch processing, deferred writes, and
service tasks. See also allied agent.

system authorization ID
The primary DB2 authorization ID that is
used to establish a trusted connection. A
system authorization ID is derived from
the system user ID that is provided by an
external entity, such as a middleware
server.

DB2 glossary 1053

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|



system conversation
The conversation that two DB2
subsystems must establish to process
system messages before any distributed
processing can begin.

System Modification Program/Extended (SMP/E)
A z/OS tool for making software changes
in programming systems (such as DB2)
and for controlling those changes.

Systems Network Architecture (SNA)
The description of the logical structure,
formats, protocols, and operational
sequences for transmitting information
through and controlling the configuration
and operation of networks.

table A named data object consisting of a
specific number of columns and some
number of unordered rows. See also base
table or temporary table. Contrast with
auxiliary table, clone table, materialized
query table, result table, and transition
table.

table-controlled partitioning
A type of partitioning in which partition
boundaries for a partitioned table are
controlled by values that are defined in
the CREATE TABLE statement.

table function
A function that receives a set of
arguments and returns a table to the SQL
statement that references the function. A
table function can be referenced only in
the FROM clause of a subselect.

table locator
A mechanism that allows access to trigger
tables in SQL or from within user-defined
functions. A table locator is a fullword
integer value that represents a transition
table.

table space
A page set that is used to store the
records in one or more tables. See also
partitioned table space, segmented table
space, and universal table space.

table space set
A set of table spaces and partitions that
should be recovered together for one of
the following reasons:
v Each of them contains a table that is a

parent or descendent of a table in one
of the others.

v The set contains a base table and
associated auxiliary tables.

A table space set can contain both types
of relationships.

task control block (TCB)
A z/OS control block that is used to
communicate information about tasks
within an address space that is connected
to a subsystem. See also address space
connection.

TB Terabyte. A value of 1 099 511 627 776
bytes.

TCB See task control block.

TCP/IP
A network communication protocol that
computer systems use to exchange
information across telecommunication
links.

TCP/IP port
A 2-byte value that identifies an end user
or a TCP/IP network application within a
TCP/IP host.

template
A DB2 utilities output data set descriptor
that is used for dynamic allocation. A
template is defined by the TEMPLATE
utility control statement.

temporary table
A table that holds temporary data.
Temporary tables are useful for holding
or sorting intermediate results from
queries that contain a large number of
rows. The two types of temporary table,
which are created by different SQL
statements, are the created temporary
table and the declared temporary table.
Contrast with result table. See also created
temporary table and declared temporary
table.

thread See DB2 thread.

threadsafe
A characteristic of code that allows
multithreading both by providing private
storage areas for each thread, and by
properly serializing shared (global)
storage areas.

three-part name
The full name of a table, view, or alias. It

1054 Administration Guide

|
|
|
|
|



consists of a location name, a schema
name, and an object name, separated by a
period.

time A three-part value that designates a time
of day in hours, minutes, and seconds.

timeout
Abnormal termination of either the DB2
subsystem or of an application because of
the unavailability of resources. Installation
specifications are set to determine both
the amount of time DB2 is to wait for
IRLM services after starting, and the
amount of time IRLM is to wait if a
resource that an application requests is
unavailable. If either of these time
specifications is exceeded, a timeout is
declared.

Time-Sharing Option (TSO)
An option in z/OS that provides
interactive time sharing from remote
terminals.

timestamp
A seven-part value that consists of a date
and time. The timestamp is expressed in
years, months, days, hours, minutes,
seconds, and microseconds.

trace A DB2 facility that provides the ability to
monitor and collect DB2 monitoring,
auditing, performance, accounting,
statistics, and serviceability (global) data.

transaction
An atomic series of SQL statements that
make up a logical unit of work. All of the
data modifications made during a
transaction are either committed together
as a unit or rolled back as a unit.

transaction lock
A lock that is used to control concurrent
execution of SQL statements.

transaction program name
In SNA LU 6.2 conversations, the name of
the program at the remote logical unit
that is to be the other half of the
conversation.

transition table
A temporary table that contains all the
affected rows of the subject table in their
state before or after the triggering event
occurs. Triggered SQL statements in the
trigger definition can reference the table
of changed rows in the old state or the

new state. Contrast with auxiliary table,
base table, clone table, and materialized
query table.

transition variable
A variable that contains a column value
of the affected row of the subject table in
its state before or after the triggering
event occurs. Triggered SQL statements in
the trigger definition can reference the set
of old values or the set of new values.

tree structure
A data structure that represents entities in
nodes, with a most one parent node for
each node, and with only one root node.

trigger
A database object that is associated with a
single base table or view and that defines
a rule. The rule consists of a set of SQL
statements that run when an insert,
update, or delete database operation
occurs on the associated base table or
view.

trigger activation
The process that occurs when the trigger
event that is defined in a trigger
definition is executed. Trigger activation
consists of the evaluation of the triggered
action condition and conditional
execution of the triggered SQL statements.

trigger activation time
An indication in the trigger definition of
whether the trigger should be activated
before or after the triggered event.

trigger body
The set of SQL statements that is executed
when a trigger is activated and its
triggered action condition evaluates to
true. A trigger body is also called
triggered SQL statements.

trigger cascading
The process that occurs when the
triggered action of a trigger causes the
activation of another trigger.

triggered action
The SQL logic that is performed when a
trigger is activated. The triggered action
consists of an optional triggered action
condition and a set of triggered SQL
statements that are executed only if the
condition evaluates to true.

DB2 glossary 1055

|
|
|
|
|
|

|
|
|
|
|
|
|



triggered action condition
An optional part of the triggered action.
This Boolean condition appears as a
WHEN clause and specifies a condition
that DB2 evaluates to determine if the
triggered SQL statements should be
executed.

triggered SQL statements
The set of SQL statements that is executed
when a trigger is activated and its
triggered action condition evaluates to
true. Triggered SQL statements are also
called the trigger body.

trigger granularity
In SQL, a characteristic of a trigger, which
determines whether the trigger is
activated:
v Only once for the triggering SQL

statement
v Once for each row that the SQL

statement modifies

triggering event
The specified operation in a trigger
definition that causes the activation of
that trigger. The triggering event is
comprised of a triggering operation
(insert, update, or delete) and a subject
table or view on which the operation is
performed.

triggering SQL operation
The SQL operation that causes a trigger to
be activated when performed on the
subject table or view.

trigger package
A package that is created when a
CREATE TRIGGER statement is executed.
The package is executed when the trigger
is activated.

trust attribute
An attribute on which to establish trust. A
trusted relationship is established based
on one or more trust attributes.

trusted connection
A database connection whose attributes
match the attributes of a unique trusted
context defined at the DB2 database
server.

trusted connection reuse
The ability to switch the current user ID
on a trusted connection to a different user
ID.

trusted context
A database security object that enables the
establishment of a trusted relationship
between a DB2 database management
system and an external entity.

trusted context default role
A role associated with a trusted context.
The privileges granted to the trusted
context default role can be acquired only
when a trusted connection based on the
trusted context is established or reused.

trusted context user
A user ID to which switching the current
user ID on a trusted connection is
permitted.

trusted context user-specific role
A role that is associated with a specific
trusted context user. It overrides the
trusted context default role if the current
user ID on the trusted connection matches
the ID of the specific trusted context user.

trusted relationship
A privileged relationship between two
entities such as a middleware server and
a database server. This relationship allows
for a unique set of interactions between
the two entities that would be impossible
otherwise.

TSO See Time-Sharing Option.

TSO attachment facility
A DB2 facility consisting of the DSN
command processor and DB2I.
Applications that are not written for the
CICS or IMS environments can run under
the TSO attachment facility.

typed parameter marker
A parameter marker that is specified
along with its target data type. It has the
general form:
CAST(? AS data-type)

type 2 indexes
Indexes that are created on a release of
DB2 after Version 7 or that are specified
as type 2 indexes in Version 4 or later.

UCS-2 Universal Character Set, coded in 2 octets,
which means that characters are
represented in 16-bits per character.

UDF See user-defined function.

UDT User-defined data type. In DB2 for z/OS,

1056 Administration Guide

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|



the term distinct type is used instead of
user-defined data type. See distinct type.

uncommitted read (UR)
The isolation level that allows an
application to read uncommitted data. See
also cursor stability, read stability, and
repeatable read.

underlying view
The view on which another view is
directly or indirectly defined.

undo A state of a unit of recovery that indicates
that the changes that the unit of recovery
made to recoverable DB2 resources must
be backed out.

Unicode
A standard that parallels the ISO-10646
standard. Several implementations of the
Unicode standard exist, all of which have
the ability to represent a large percentage
of the characters that are contained in the
many scripts that are used throughout the
world.

union An SQL operation that involves the
UNION set operator, which combines the
results of two SELECT statements. Unions
are often used to merge lists of values
that are obtained from two tables.

unique constraint
An SQL rule that no two values in a
primary key, or in the key of a unique
index, can be the same.

unique index
An index that ensures that no identical
key values are stored in a column or a set
of columns in a table.

unit of recovery (UOR)
A recoverable sequence of operations
within a single resource manager, such as
an instance of DB2. Contrast with unit of
work.

unit of work (UOW)
A recoverable sequence of operations
within an application process. At any
time, an application process is a single
unit of work, but the life of an application
process can involve many units of work
as a result of commit or rollback
operations. In a multisite update
operation, a single unit of work can
include several units of recovery. Contrast
with unit of recovery.

universal table space
A table space that is both segmented and
partitioned. Contrast with partitioned
table space, segmented table space,
partition-by-growth table space, and
range-partitioned table space.

unlock
The act of releasing an object or system
resource that was previously locked and
returning it to general availability within
DB2.

untyped parameter marker
A parameter marker that is specified
without its target data type. It has the
form of a single question mark (?).

updatability
The ability of a cursor to perform
positioned updates and deletes. The
updatability of a cursor can be influenced
by the SELECT statement and the cursor
sensitivity option that is specified on the
DECLARE CURSOR statement.

update hole
The location on which a cursor is
positioned when a row in a result table is
fetched again and the new values no
longer satisfy the search condition. See
also delete hole.

update trigger
A trigger that is defined with the
triggering SQL operation update.

UR See uncommitted read.

user-defined data type (UDT)
See distinct type.

user-defined function (UDF)
A function that is defined to DB2 by
using the CREATE FUNCTION statement
and that can be referenced thereafter in
SQL statements. A user-defined function
can be an external function, a sourced
function, or an SQL function. Contrast
with built-in function.

user view
In logical data modeling, a model or
representation of critical information that
the business requires.

UTF-8 Unicode Transformation Format, 8-bit
encoding form, which is designed for ease
of use with existing ASCII-based systems.
The CCSID value for data in UTF-8

DB2 glossary 1057

|
|
|
|
|

|
|
|
|
|
|



format is 1208. DB2 for z/OS supports
UTF-8 in mixed data fields.

UTF-16
Unicode Transformation Format, 16-bit
encoding form, which is designed to
provide code values for over a million
characters and a superset of UCS-2. The
CCSID value for data in UTF-16 format is
1200. DB2 for z/OS supports UTF-16 in
graphic data fields.

value The smallest unit of data that is
manipulated in SQL.

variable
A data element that specifies a value that
can be changed. A COBOL elementary
data item is an example of a host
variable. Contrast with constant.

variant function
See nondeterministic function.

varying-length string
A character, graphic, or binary string
whose length varies within set limits.
Contrast with fixed-length string.

version
A member of a set of similar programs,
DBRMs, packages, or LOBs.
v A version of a program is the source

code that is produced by precompiling
the program. The program version is
identified by the program name and a
timestamp (consistency token).

v A version of an SQL procedural
language routine is produced by
issuing the CREATE or ALTER
PROCEDURE statement for a native
SQL procedure.

v A version of a DBRM is the DBRM
that is produced by precompiling a
program. The DBRM version is
identified by the same program name
and timestamp as a corresponding
program version.

v A version of an application package is
the result of binding a DBRM within a
particular database system. The
application package version is
identified by the same program name
and consistency token as the DBRM.

v A version of a LOB is a copy of a LOB
value at a point in time. The version
number for a LOB is stored in the
auxiliary index entry for the LOB.

v A version of a record is a copy of the
record at a point in time.

view A logical table that consists of data that is
generated by a query. A view can be
based on one or more underlying base
tables or views, and the data in a view is
determined by a SELECT statement that is
run on the underlying base tables or
views.

Virtual Storage Access Method (VSAM)
An access method for direct or sequential
processing of fixed- and varying-length
records on disk devices.

Virtual Telecommunications Access Method
(VTAM)

An IBM licensed program that controls
communication and the flow of data in an
SNA network (in z/OS).

volatile table
A table for which SQL operations choose
index access whenever possible.

VSAM
See Virtual Storage Access Method.

VTAM
See Virtual Telecommunications Access
Method.

warm start
The normal DB2 restart process, which
involves reading and processing log
records so that data that is under the
control of DB2 is consistent. Contrast with
cold start.

WLM application environment
A z/OS Workload Manager attribute that
is associated with one or more stored
procedures. The WLM application
environment determines the address
space in which a given DB2 stored
procedure runs.

WLM enclave
A construct that can span multiple
dispatchable units (service request blocks
and tasks) in multiple address spaces,
allowing them to be reported on and
managed by WLM as part of a single
work request.

write to operator (WTO)
An optional user-coded service that
allows a message to be written to the
system console operator informing the

1058 Administration Guide

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|



operator of errors and unusual system
conditions that might need to be corrected
(in z/OS).

WTO See write to operator.

WTOR
Write to operator (WTO) with reply.

XCF See cross-system coupling facility.

XES See cross-system extended services.

XML See Extensible Markup Language.

XML attribute
A name-value pair within a tagged XML
element that modifies certain features of
the element.

XML column
A column of a table that stores XML
values and is defined using the data type
XML. The XML values that are stored in
XML columns are internal representations
of well-formed XML documents.

XML data type
A data type for XML values.

XML element
A logical structure in an XML document
that is delimited by a start and an end
tag. Anything between the start tag and
the end tag is the content of the element.

XML index
An index on an XML column that
provides efficient access to nodes within
an XML document by providing index
keys that are based on XML patterns.

XML lock
A column-level lock for XML data. The
operation of XML locks is similar to the
operation of LOB locks.

XML node
The smallest unit of valid, complete
structure in a document. For example, a
node can represent an element, an
attribute, or a text string.

XML node ID index
An implicitly created index, on an XML
table that provides efficient access to XML
documents and navigation among
multiple XML data rows in the same
document.

XML pattern
A slash-separated list of element names,
an optional attribute name (at the end), or

kind tests, that describe a path within an
XML document in an XML column. The
pattern is a restrictive form of path
expressions, and it selects nodes that
match the specifications. XML patterns are
specified to create indexes on XML
columns in a database.

XML publishing function
A function that returns an XML value
from SQL values. An XML publishing
function is also known as an XML
constructor.

XML schema
In XML, a mechanism for describing and
constraining the content of XML files by
indicating which elements are allowed
and in which combinations. XML schemas
are an alternative to document type
definitions (DTDs) and can be used to
extend functionality in the areas of data
typing, inheritance, and presentation.

XML schema repository (XSR)
A repository that allows the DB2 database
system to store XML schemas. When
registered with the XSR, these objects
have a unique identifier and can be used
to validate XML instance documents.

XML serialization function
A function that returns a serialized XML
string from an XML value.

XML table
An auxiliary table that is implicitly
created when an XML column is added to
a base table. This table stores the XML
data, and the column in the base table
points to it.

XML table space
A table space that is implicitly created
when an XML column is added to a base
table. The table space stores the XML
table. If the base table is partitioned, one
partitioned table space exists for each
XML column of data.

X/Open
An independent, worldwide open systems
organization that is supported by most of
the world’s largest information systems
suppliers, user organizations, and
software companies. X/Open’s goal is to
increase the portability of applications by
combining existing and emerging
standards.

DB2 glossary 1059

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|



XRF See Extended Recovery Facility.

XSR See XML schema repository.

zIIP See IBM System z9 Integrated Processor.

z/OS An operating system for the System z
product line that supports 64-bit real and
virtual storage.

z/OS Distributed Computing Environment (z/OS
DCE) A set of technologies that are provided by

the Open Software Foundation to
implement distributed computing.

1060 Administration Guide

||

||



Index

Special characters
_ (underscore)

in DDL registration tables 323
% (percent sign)

in DDL registration tables 323

Numerics
16-KB page size 76
32-KB page size 76
8-KB page size 76

A
abend

AEY9 630
after SQLCODE -923 635
ASP7 630
backward log recovery 669
CICS 460

abnormal termination of application 630
scenario 635
waits 631

CICS transactions 460
current status rebuild 655
disconnects DB2 470
DXR122E 621
effects of 524
forward log recovery 663
IMS

U3047 629
U3051 629

IMS, procedure 626
IMS, scenario 629
IRLM

scenario 621
STOP command 445
STOP DB2 444

log
damage 650
lost information 675

log initialization phase 653
page problem 673
restart 652
starting DB2 after 377

abends
VVDS (VSAM volume data set)

destroyed 691
out of space 691

access control
authorization exit routine 792
closed application 332
DB2 subsystem

local 153, 276
process overview 251
RACF 153
remote 154, 282

external DB2 data sets 154
field level 188
internal DB2 data 151

access method services
ALTER command 692
bootstrap data set definition 519
commands

ALTER 32
ALTER ADDVOLUMES 23, 32
ALTER REMOVEVOLUMES 23
DEFINE 32, 673
DEFINE CLUSTER 32
EXPORT 587
IMPORT 140, 673
PRINT 598
REPRO 598, 647

data set management 32
DEFINE command 589
delete damaged BSDS 645
redefining user work file 589
rename damaged BSDS 645
table space re-creation 673

access profile, in RACF 252
accessibility

keyboard xviii
shortcut keys xviii

active log
data set

changing high-level qualifier 133, 135
changing high-level qualifier for 132
copying with IDCAMS REPRO statement 520
effect of stopped 640
offloading 501
VSAM linear 755

data sets
changing high-level qualifier 136

dual logging 502
offloading 503
problems 637
recovery procedure 637
truncation 503
writing 502

active logs
data sets

changing high-level qualifier 134, 135, 136
out-of-space conditions 637

ADD VOLUMES clause of ALTER STOGROUP statement 89
address space

started-task 254
stored procedures 255

ADMIN_COMMAND_DB2 stored procedure 873
ADMIN_COMMAND_DSN stored procedure 885
ADMIN_COMMAND_UNIX stored procedure 887
ADMIN_DB_BROWSE stored procedure 891
ADMIN_DB_DELETE stored procedure 894
ADMIN_DS_LIST stored procedure 897
ADMIN_DS_RENAME stored procedure 902
ADMIN_DS_SEARCH stored procedure 905
ADMIN_DS_WRITE stored procedure 908
ADMIN_INFO_HOST stored procedure 912
ADMIN_INFO_SSID stored procedure 915
ADMIN_INFO_SYSPARM stored procedure 917
ADMIN_JOB_CANCEL stored procedure 921
ADMIN_JOB_FETCH stored procedure 923

© Copyright IBM Corp. 1982, 2009 1061



ADMIN_JOB_QUERY stored procedure 926
ADMIN_JOB_SUBMIT stored procedure 930
ADMIN_TASK_ADD 390
ADMIN_TASK_ADD stored procedure

SQL codes 412
ADMIN_TASK_LIST function 398

SQL codes 412
ADMIN_TASK_REMOVE 407
ADMIN_TASK_REMOVE stored procedure

SQL codes 412
ADMIN_TASK_STATUS function 403

SQL codes 412
ADMIN_UTL_SCHEDULE stored procedure 933
ADMIN_UTL_SORT stored procedure 942
administrative authority 174
administrative task scheduler

adding a task 385
ADMIN_TASK_ADD 390
ADMIN_TASK_REMOVE 407
architecture 413

data sharing environment 416
data sharing

synchronization 409
data sharing environment

specifying 390
disabling tracing 410
enabling tracing 410
executing stored procedures 423, 424
JCL jobs 424
lifecycle 414
listing scheduled tasks 398
listing task status 402
multi-threaded execution of tasks 421
overview 385
protecting resources 419
protecting the interface 419
recovering the task list 411
removing tasks 406
sample schedule definitions 387
scheduled tasks 385
scheduling capabilities 385
secure execution of tasks 420
security 417
starting 408
stopping 409
stored procedures

ADMIN_TASK_ADD stored procedure 412
ADMIN_TASK_REMOVE stored procedure 412
SQL codes 412

task execution 421
task execution in a data sharing environment 425
task lists

SYSIBM.ADMIN_TASKS table 416
troubleshooting 410, 411
Unicode restrictions 424
user roles 418
user-defined table functions

ADMIN_TASK_LIST function 412
ADMIN_TASK_STATUS function 412
SQL codes 412

administrative tasks
scheduling 385

alias
ownership 203
qualified name 203

ALL
clause of GRANT statement 167

ALL PRIVILEGES clause
GRANT statement 171

allocating space
table 32

allocating storage
dictionary 85
index 79
table 76

already-verified acceptance option 290
ALTER command

access method services 692
ALTER command, access method services

FOR option 32
TO option 32

ALTER DATABASE statement
options 87
usage 87

ALTER FUNCTION statement
usage 131

ALTER INDEX statement 59
ALTER privilege

description 167
ALTER PROCEDURE statement 129
ALTER STOGROUP statement 88
ALTER TABLE statement

AUDIT clause 355
default column value 96
description 94

ALTER TABLESPACE statement
description 89

ALTERIN privilege
description 170

altering
materialized query table 115
tables 94
XML objects 131

APF-authorized programs
entering DB2 commands 370

APPL statement
options

SECACPT 289
application environment

status 485
application errors

backing out
without a quiesce point 625

application plan
controlling use of DDL 321, 332
inoperative, when privilege is revoked 198
invalidated

dropping a table 121
dropping a view 124
dropping an index 128
when privilege is revoked 198

privileges
explicit 171

retrieving catalog information 229
application plans

dependent objects 122
application program

internal integrity reports 361
recovery procedures

CICS 630
IMS 629

running
batch 382
CICS transactions 382

1062 Administration Guide



application program (continued)
running (continued)

error recovery procedure 624
RRSAF (Resource Recovery Services attachment

facility) 384
security measures in 210

application programmer
description 180
privileges 191

application programs
coding SQL statements

error checking IMS 381
running

CAF (call attachment facility) 383
IMS 381
TSO 379

application registration table (ART) 322
archive log

BSDS 519
data set

changing high-level qualifier 133, 135
changing high-level qualifier for 132
description 505
offloading 501
types 505

data sets
changing high-level qualifier 136

deleting 508
dual logging 506
dynamic allocation of data sets 505
multivolume data sets 507
recovery procedure 642
retention period 508
SMS 507
writing 503

ARCHIVE LOG command
cancels offloads 510
use 510

archive log data sets
locating 516

archive logs
data sets

changing high-level qualifier 134, 135, 136
tapes

setting limits 512
ARCHIVE privilege

description 169
archiving

disks 507
tapes 506

ASUSER 318
attachment request

come-from check 292
definition 289
translating IDs 290, 305
using secondary IDs 293

attribute names 7
attributes

data types 7
values 8

AUDIT
clause of ALTER TABLE statement 355
clause of CREATE TABLE statement 355
option of START TRACE command 351

audit trace
class descriptions 349
controlling 352

audit trace (continued)
records 352

audit trace record 350
auditing

access attempts 350
authorization IDs 354
classes of events 349, 351
in sample security plan

attempted access 164
payroll data 159
payroll updates 162

reporting trace records 352
security measures in force 354
table access 355

authority
administrative 174
controlling access to

CICS 382
DB2 catalog and directory 179
DB2 commands 371
DB2 functions 371
IMS application program 381

description 151, 167
explicitly granted 174
hierarchy 174
level SYS for z/OS command group 368
levels 371
types

DBADM 178
DBCTRL 179
DBMAINT 179
installation SYSADM 176
installation SYSOPR 178
PACKADM 177
SYSADM 177
SYSCTRL 178
SYSOPR 178

authorization 798
data definition statements, to use 321
exit routines. 781
view 798

authorization access
finding 381

authorization ID
auditing 354
dynamic SQL, determining 217
exit routine input parameter 786
inbound from remote location 282
initial

connection processing 277
sign-on processing 279

package execution 207
primary

connection processing 277, 278
exit routine input 786
privileges exercised by 180
sign-on processing 279, 280

retrieving catalog information 227
role

privileges exercised by 180
routine, determining 216
secondary

attachment requests 293
connection processing 278
exit routine output 787, 808
identifying RACF groups 258
ownership held by 204

Index 1063



authorization ID (continued)
secondary (continued)

privileges exercised by 180
sign-on processing 281

SQL
changing 166
exit routine output 787, 808
privileges exercised by 180

translating
inbound IDs 290
outbound IDs 305

automatic
data management 560
deletion of archive log data sets 508
restart function of z/OS 529

automatic rebind 797
role 797

availability
recovering

data sets 572
page sets 572

recovery planning 553

B
backup

data set using DFSMShsm 560
database

DSN1COPY 617
image copies 574
planning 553

moving data 581
system procedures 553

BACKUP SYSTEM utility 30, 31, 732
DB2 subsystem

recovering 618
backward log recovery phase

failure during 669
restart 528

base table
distinctions from temporary tables 47

base tables
creating 45

basic direct access method (BDAM) 505
basic sequential access method (BSAM) 505
batch message processing (BMP) program 467
batch processing

TSO 381
BDAM (basic direct access method) 505
BIND PACKAGE subcommand of DSN

options
DISABLE 211
ENABLE 211
OWNER 205

privileges for remote bind 211
BIND PLAN subcommand of DSN

options
DISABLE 211
ENABLE 211
OWNER 205

BIND privilege
description 171

BINDADD privilege
description 169

BINDAGENT
RACF 797
role 797

BINDAGENT privilege
description 169
naming plan or package owner 205

binding
privileges needed 183

bit data
altering subtype 119

blank
column with a field procedure 828

BMP (batch message processing) program
connecting from dependent regions 467

bootstrap data set (BSDS) 169
changing high-level qualifier 134, 136

BSAM (basic sequential access method)
reading archive log data sets 505

BSDS (bootstrap data set)
archive log information 519
changing high-level qualifier 133, 135, 136
changing high-level qualifier of 132
changing log inventory 520
defining 520
dual copies 519
dual recovery 647
dual-BSDS mode 520
failure symptoms 650
managing 519
recovery procedure 645
recovery scenario 672
restart use 524
restoring from the archive log 647
single recovery 647
stand-alone log services role 766

BSDS privilege
description 169

buffer pool attributes
altering 437

buffer pools
controlling 427
logging 501
monitoring 437

BUFFERPOOL clause 38
BUFFERPOOL privilege

description 172
built-in functions for encryption 335

C
cache for authorization IDs 209
CAF (call attachment facility)

application programs
running 383
submitting 383

CANCEL THREAD command 482
CICS threads 460
controlling DB2 connections 481
disconnecting from TSO 455

capturing changed data
altering a table for 118

catalog
point-in-time recovery 591
recovery 591

catalog alias
defining 133

catalog and directory
recovery 591

catalog definitions
consistency after recovery 615

1064 Administration Guide



catalog tables
frequency of image copies 558, 559
retrieving information about

multiple grants 227
plans and packages 229
privileges 225
routines 229

SYSCOLAUTH 225
SYSCOLUMNS

column description of a value 826
updated by DROP TABLE 121

SYSCONTEXT 225
SYSCONTEXTAUTHIDS 225
SYSCOPY

discarding records 566
holds image copy information 564
image copy in log 750
used by RECOVER utility 556

SYSCTXTTRUSTATTRS 225
SYSDBAUTH 225
SYSINDEXES

dropping a table 122
SYSINDEXPART

space allocation information 36
SYSPACKAUTH 225
SYSPLANAUTH

plan authorization 225
SYSPLANDEP 122
SYSRESAUTH 225
SYSROUTINES

using SECURITY column of 264
SYSSTOGROUP 22
SYSSTRINGS

establishing conversion procedure 822
SYSSYNONYMS 121
SYSTABAUTH

authorization information 225
dropping a table 122

SYSTABLEPART
table spaces associated with storage group 89

SYSTABLES
updated by DROP TABLE 121

SYSUSERAUTH 225
SYSVIEWDEP

view dependencies 122
SYSVOLUMES 22
views of 230

catalog, DB2
authority for access 179
DSNDB06 database 564
recovery procedure 690

CD-ROM, books on 1005
CDB (communications database)

backing up 555
changing high-level qualifier 136
updating tables 292

CHANGE command of IMS
purging residual recovery entries 461

change log inventory utility
changing

BSDS 442, 520
control of data set access 344

change number of sessions (CNOS) 701
CHANGE SUBSYS command of IMS 466
CHARACTER data type

altering 119

CHECK utilities
CHECK DATA 359
CHECK INDEX 359
CHECK LOB 359

CHECK-pending status 68
checkpoint

log records 749, 754
queue 534

checkpoint frequency
changing 511

CI (control interval)
description 505

CICS
commands

accessing databases 456
DSNC DISPLAY PLAN 458
DSNC DISPLAY TRANSACTION 458
DSNC STOP 460
response destination 370
used in DB2 environment 365

connecting
disconnecting applications 460

connecting to
controlling 461
thread 458

connecting to DB2
authorization IDs 382
connection processing 277
controlling 456
disconnecting applications 496
sample authorization routines 281
security 153, 251
sign-on processing 279
supplying secondary IDs 277

disconnecting from DB2 460
DSNC DISCONNECT command 460
dynamic plan selection

exit routine 840
facilities 840

diagnostic trace 494
indoubt units of recovery 457
language interface module (DSNCLI)

running CICS applications 382
operating

entering DB2 commands 369
identify outstanding indoubt units 546
terminates AEY9 635

planning
environment 382

programming
applications 382

recovery procedures 630
application failure 630
attachment facility failure 635
CICS not operational 631
DB2 connection failure 632
indoubt resolution failure 632

restarting 457
starting a connection 457
two-phase commit 537

CICS transaction invocation stored procedure 840
CLONE keyword 619
clone table 54
clone tables

backup and recovery 619
closed application

controlling access 321, 332

Index 1065



closed application (continued)
definition 321

CNOS (change number of sessions)
failure 701

coding
exit routines

general rules 840
parameters 842

cold start
bypassing the damaged log 650
recovery operations during 534
special situations 675

collection, package
administrator 180
privileges on 169

column
adding to a table 95
altering

default value 96
dropping from a table 120

column description of a value 826
column value descriptor (CVD) 828
come-from check 292
command prefix

messages 372
multi-character 368
usage 368

command recognition character (CRC) 368
commands 365

entering 365
operator 365, 371
prefixes 373

commit
two-phase process 537

common SQL API
XML message documents 953

communications database (CDB) 283, 296
communications failure

scenario 735
Complete mode

common SQL API 951
COMPRESS clause

described 38
conditional restart

control record
backward log recovery failure 670
current status rebuild failure 662
forward log recovery failure 668
log initialization failure 662
wrap-around queue 534

description 530
excessive loss of active log data, restart procedure 676
total loss of log, restart procedure 675

connection
controlling CICS 456
controlling IMS 461
DB2

controlling commands 456
exit routine 277
exit routine. 781
IDs

cited in message DSNR007I 526
outstanding unit of recovery 526
used by IMS 381
used to identify a unit of recovery 624

processing 277

connection (continued)
requests

exit point 783
initial primary authorization ID 277
invoking RACF 277
local 276

VTAM 253
connection exit routine

debugging 790
default 277, 278
description 781
performance considerations 790
sample

location 782
provides secondary IDs 278, 788

secondary authorization ID 278
using 277
writing 781

connection processing
choosing for remote requests 289
initial primary authorization ID 277, 787
invoking RACF 277
supplying secondary IDs 278
usage 276
using exit routine 277

connections
displaying

IMS activity 468
lost

on restart 545
monitoring 478

consistency groups 728
continuous operation

recovering table spaces and data sets 572
recovery planning 553

control interval
sizing 21

control interval (CI) 501
control intervals (CI)

reading 766
control region, IMS 467
conversation acceptance option 289, 290
conversation-level security 289
conversion procedure

description 822
writing 822

coordinator
in multi-site update 539

copy pools 31
SMS construct 30

COPY privilege
description 169

COPY utility 597
backing up 617
copying data from table spaces 574
DFSMSdss concurrent copy 576, 586
restoring data 617

COPY-pending status
resetting 68

copying
a DB2 subsystem 142
a package, privileges for 183, 211
a relational database 141

correlation ID
CICS 632
duplicate 463, 632
identifier for connections from TSO 454

1066 Administration Guide



correlation ID (continued)
IMS 463
outstanding unit of recovery 526
RECOVER INDOUBT command 459, 465, 473

CRC (command recognition character) 368
CREATE DATABASE statement

privileges required 184
usage 19

CREATE FUNCTION statement
usage 73

CREATE GLOBAL TEMPORARY TABLE statement
distinctions from base tables 47

CREATE IN privilege
description 169

CREATE INDEX statement 59
privileges required 184
USING clause 36

CREATE PROCEDURE statement 72
CREATE STOGROUP statement 22

privileges required 184
VOLUMES(’*’) attribute 22, 28

CREATE TABLE statement 39
AUDIT clause 355
example 45
privileges required 184
test table 69

CREATE TABLESPACE statement
creating a table space explicitly 37
DEFINE NO clause 23, 37
defining table space explicitly 38
DSSIZE option 36
privileges required 184
USING STOGROUP clause 23, 37

CREATE VIEW statement
privileges required 184

CREATEALIAS privilege
description 169

created temporary table
distinctions from base tables 47

created temporary tables 46
creating 46

CREATEDBA privilege
description 169

CREATEDBC privilege
description 169

CREATEIN privilege
description 170

CREATESG privilege
description 169

CREATETAB privilege
description 169

CREATETMTAB privilege
description 169

CREATETS privilege
description 169

cron format 396
current status rebuild

phase of restart 526
current status rebuild phase

failure recovery 652
Customer Information Control System (CICS) 281, 365
CVD (column value descriptor) 828, 830

D
data

access control
description 151
field-level 188
using option of START DB2 376

backing up 617
checking consistency of updates 359
coding

conversion procedures 822
date and time exit routines 819
edit exit routines 812
field procedures 825

compressing 84
consistency

ensuring 355
verifying 358, 361

definition control support 321
encrypting 812
loading into tables 65
moving 141
recovering 516
restoring 617

prior point in time 578
DATA CAPTURE clause

ALTER TABLE statement 118
data class

assigning data sets to 36
SMS construct 36

data compression 84
dictionary

description 85
estimating disk storage 85
estimating virtual storage 86

edit routine 812
effect on log records 749
Huffman 812
logging 501

data consistency
maintaining 537
point-in-time recoveries 607

data definition control support
bypassing 331
controlling by

application name 324
application name with exceptions 325
object name 327
object name with exceptions 328

description 321
registration tables 321
restarting 331
stopping 331

Data Facility Product (DFSMSdfp) 140
Data Facility Storage Management Subsystem (DFSMS)

concurrent copy 576
copying data 576
recovery 576

data mirroring 727
disaster recovery 727
recovery 730

data pages
types of changes 752

data set
adding groups to control 344
changing high-level qualifier 132
control over creating 346
controlling access 344

Index 1067



data set (continued)
DB2-managed

extending 25
primary space allocation 24, 25
secondary space allocation 24, 25

generic profiles 344
managing 32

access method services 32
migrating to DFSMShsm 28
reasons for using DB2 20
using DFSMShsm 28
with DB2 storage groups 20
your own 32

moving
without utilities 143

naming 34
naming convention 32
number 32
partition of

partitioned partitioning index 32
partitioned secondary index 32
partitioned table space 32

recovering
using non-DB2 dump 598

renaming 569
Data Set Services (DFSMSdss) 140
data sets

adding 692, 695
backing up using DFSMS 576
copying 574
DB2-managed

extending 23
extension failures 23
nonpartitioned spaces 23
partitioned spaces 23
primary space allocation 27
secondary space allocation 27

extending 692
managing 20
moving 142

with utilities 143
recovering dropped 602
table spaces

deferring allocation 23
data sharing members

read requests 770
data type

altering 120
implications 99

codes for numeric data 849
subtypes 119

data types
specifying 7

database
access thread

failure 699
altering 87

design 87
backup

planning 553
balancing 357
creating 19
DSNDB07 (work file database). 574
implementing 19
page set control log records 755
privileges

administrator 180, 190

database (continued)
privileges (continued)

description 169
ownership 173

recovery
description 572
failure scenarios 684
planning 553
RECOVER TOCOPY 605
RECOVER TOLOGPOINT 605
RECOVER TORBA 605

stopping 436
database controller privileges 190
database design

implementing 19
database exception table

log records
exception states 750
image copies of special table spaces 750

database exception table (DBET)
log records 755

database objects 3
databases

access threads
security failure 702

backing up
copying data 574

controlling 427
controlling access 475
designing

logical data modeling 3
physical data modeling 3

dropping 20
monitoring 429
starting 427, 428
status information 429

DataRefresher 71
DATE FORMAT field of panel DSNTIPF 819
date routine

DATE FORMAT field at installation 819
description 819
LOCAL DATE LENGTH field at installation 819
writing 819

datetime
exit routine for. 819
format

table 819
DB2

checking
inbound remote IDs 289

data sharing environment
restarting 529

starting 375, 665
stopping 375

DB2 books online 1005
DB2 catalog

changing high-level qualifier 136
DB2 coded format for numeric data 849
DB2 commands

authority 371
authorized for SYSOPR 371
commands

RECOVER INDOUBT 550
STOP DDF 491
STOP DDF MODE(SUSPEND) 476

description 365
destination of responses 370

1068 Administration Guide



DB2 commands (continued)
DSN session 380
entering from

APF-authorized programs 370
CICS 369
IFI application program 370
IMS 368
TSO 369
z/OS 368

monitoring connections 478
RESET INDOUBT 551
START DATABASE 428
START DB2 376
START DDF 475
STOP DATABASE 428
STOP DDF 492
users authorized to enter 371

DB2 DataPropagator
altering a table for 118

DB2 decoded procedure for numeric data 849
DB2 Information Center for z/OS solutions 1005
DB2 restart recovery 614
DB2 storage groups

changing high-level qualifier 138
creating 22

DB2 subsystem
recovering 614, 618

BACKUP SYSTEM utility 618
RESTORE SYSTEM utility 618, 619

recovery 749
DB2 system

recovering 604, 614
restoring 604

DB2-defined extents 94
DB2-managed data sets

enlarging 694
DB2-managed objects

changing 138
DB2I (DB2 Interactive)

description 379
used to connect from TSO 453

DBA (database administrator)
description 180
sample privileges 190

DBADM authority
description 178

DBCTRL authority
description 179

DBD01 directory table space
quiescing 586
recovery after conditional restart 583
recovery information 564

DBMAINT authority
description 179

DBMSs
monitoring 451

DDF
stopping 493

FORCE option 492
QUIESCE option 492

DDF (distributed data facility)
controlling connections 475
resuming 476
suspending 476

DDL
performing 318

DDL registration tables
preparing for recovery 555

DDL, controlling usage of 321
DECLARE GLOBAL TEMPORARY TABLE statement

distinctions from base tables 47
declared temporary table

distinctions from base tables 47
declared temporary tables 46

creating 46
DECRYPT_BIT 336, 338
DECRYPT_CHAR 336, 338
DECRYPT_DB 336, 338
decryption 335
default database 38
default database (DSNDB04)

changing high-level qualifier 136
DEFINE CLUSTER command, access method services

defining extents 32
example of use 32
LINEAR option 32
REUSE option 32
SHAREOPTIONS 32

DEFINE command of access method services
re-creating table space 673

DEFINE command, access method services
FOR option 32
TO option 32

DEFINE NO clause
CREATE INDEX statement 59
described 42

definer, description 212
DELETE

command of access method services 673
statement

validation routine 816
DELETE CLUSTER command 35
DELETE privilege

description 167
deleting

archive logs 508
denormalizing tables 15
dependent regions

disconnecting 468
descriptions 765
DFSLI000 (IMS language interface module) 381
DFSMS (Data Facility Storage Management Subsystem)

archive log data sets 507
DFSMSdfp (Data Facility Product) 140
DFSMSdss (Data Set Services) 140
DFSMSdss RESTORE command

RECOVER utility 30
DFSMShsm

assigning indexes to data classes 28
assigning table spaces to data classes 28
FRBACKUP PREPARE command 732
migrating data sets 28
recalling archive logs 29
using with BACKUP SYSTEM utility 30

DFSMShsm (Data Facility Hierarchical Storage Manager)
advantages 28
backup 560
moving data sets 140
recovery 560

DFSMSsms
using with BACKUP SYSTEM utility 31

DFSxxxx messages 372

Index 1069



diagnostic information
obtaining 487

dictionary 85
disk requirements 85

directory
authority for access 179
changing high-level qualifier 136
frequency of image copies 558, 559
order of recovering

I/O errors 690
point-in-time recovery 591
recovery 591
SYSLGRNX table

discarding records 566
records log RBA ranges 564

disability xviii
DISABLE option

limits plan and package use 211
disaster recovery

archive logs 704, 709
data mirroring 727
image copies 704, 709
preparation 567
rolling disaster 727
scenario 703
using a tracker site 718

disconnecting
applications 460, 461
CICS from DB2, command 456

discretionary access checking 234
disk

altering storage group assignment 88
disk storage

estimating 74
requirements 74

disk requirements 85
disk storage

estimating 74
space requirements 74

DISPLAY command of IMS
SUBSYS option 461

DISPLAY DATABASE command
displaying logical page list entries 434
LPL option 434
SPACENAM option 431
status checking 360

DISPLAY DATABASE report
STATUS column 429

DISPLAY DDF command
displaying connections 476

DISPLAY FUNCTION SPECIFIC command
displaying statistics about external user-defined

functions 439
DISPLAY LOCATION command

displaying connection information 478
DISPLAY OASN command

IMS 626
DISPLAY OASN command of IMS

displaying RREs 466
DISPLAY privilege

description 169
DISPLAY PROCEDURE command

example 483
DISPLAY THREAD command

DETAIL keyword 451
displaying IMS threads 464
example 484

DISPLAY THREAD command (continued)
extensions to control DDF connections

DETAIL option 449
LOCATION option 447

issuing 484
LUWID keyword 450
options

DETAIL 449
LOCATION 447
TYPE (INDOUBT) 632

output 446
showing IMS threads 468

DISPLAY TRACE command
AUDIT option 352

DISPLAY UTILITY command
data set control log record 749

DISPLAY WLM command 485
DISPLAYDB privilege

description 169
displaying

indoubt units of recovery 465, 632
information about

originating threads 454
parallel threads 454

postponed units of recovery 466
distinct type

privileges of ownership 173
DISTINCT TYPE privilege, description 172
distributed data

controlling connections 475
recovery 554

distributed environment
DB2 subsystem restart 679
restart conditions 679

DL/I
loading data 71

down-level detection
controlling 686
DSNTIPN panel 686

down-level page sets
recovering 686

DRDA access
security mechanisms 282

DROP
statement

TABLE 121
DROP privilege

description 169
DROP statement 20, 58, 73, 74

TABLESPACE 92
DROPIN privilege

description 170
dropping

columns from a table 120
privileges needed for package 183
table spaces 92
tables 121
views 124
volumes from a storage group 88

DSN command
TSO 380

DSN command of TSO
command processor

connecting from TSO 453
invoked by TSO batch work 382

END subcommand 455

1070 Administration Guide



DSN commands
running TSO applications 379

DSN message prefix 372
DSN1CHKR utility

control of data set access 344
DSN1COPY utility 597

control of data set access 344
resetting log RBA 682
restoring data 617

DSN1LOGP output 660
DSN1LOGP utility

control of data set access 344
example 658
extracting log records 749
limitations 682
printing log records 749
shows lost work 650

DSN1PRNT utility
description 344

DSN3@ATH connection exit routine. 782
DSN3@SGN sign-on exit routine. 782
DSN8EAE1 exit routine 812
DSN8HUFF edit routine 812
DSNACICS stored procedure 853
DSNC command of CICS

destination 370
prefix 373

DSNC DISCONNECT command of CICS
terminate DB2 threads 456

DSNC DISPLAY command
TRANSACTION option 458

DSNC DISPLAY command of CICS
description 456
DSNC DISPLAY PLAN 458

DSNC STOP command of CICS
stop DB2 connection to CICS 456

DSNC STRT command of CICS
example 457
processing 458
start DB2 connection to CICS 456

DSNC transaction code
entering DB2 commands 369

DSNCLI (CICS language interface module)
running CICS applications 382

DSNDAIDL mapping macro 786
DSNDB01 database

authority for access 179
DSNDB04 default database 38
DSNDB06 database

authority for access 179
changing high-level qualifier 136

DSNDB07
extending data set for 696

DSNDB07 database. 574
DSNDDTXP mapping macro 820
DSNDEDIT mapping macro 813
DSNDEXPL mapping macro 842
DSNDFPPB mapping macro 828
DSNDROW mapping macro 848
DSNDRVAL mapping macro 816
DSNDSLRB mapping macro 766
DSNDSLRF mapping macro 772
DSNDXAPL parameter list 800
DSNELI (TSO language interface module) 379
DSNJSLR macro

stand-alone CLOSE 774
stand-alone sample program 775

DSNLEUSR
Encrypting inbound IDs 292
Encrypting outbound IDs 307
Encrypting passwords 307

DSNLEUSR stored procedure 861
DSNMxxx messages 372
DSNTEJ1S job 63, 64
DSNTIJEX job

exit routines 782
DSNTIJIC job

improving recovery of inconsistent data 569
DSNTIPA panel

WRITE TO OPER field 504
DSNTIPL panel

BACKOUT DURATION field 532
LIMIT BACKOUT field 532

DSNTIPN panel
LEVEL UPDATE FREQ field 686

DSNTIPS panel
DEFER ALL field 532
RESTART ALL field 532

DSNX@XAC access control authorization exit routine 792
DSNZPxxx

subsystem parameters module
specifying an alternate 376

DSNZPxxx module
ARCHWTOR option 504

DSSIZE clause, CREATE TABLESPACE statement 38
dual logging

active log 502
archive logs 506
synchronization 503

dual-BSDS mode
restoring 520

dump
caution about using disk dump and restore 572

dynamic plan selection in CICS
exit routine. 840

dynamic SQL
authorization 217
example 220
privileges required 183, 184

dynamic SQL statements 219
attribute values 219

DYNAMICRULES
description 217
example 220

DYNAMICRULES(BIND) 797
role 797

E
EA-enabled page sets 36
EA-enabled partitioned table spaces

example 42
edit procedure, changing 119
edit routine

description 356, 812
ensuring data accuracy 356
row formats 843
specified by EDITPROC option 812
writing 812

EDITPROC clause
exit points 813
specifies edit exit routine 812

ENABLE
option of BIND PLAN subcommand 211

Index 1071



ENCRYPT 336, 338
encrypting

AES 308
data 812
DES 308
passwords from workstation 308
passwords on attachment requests 290, 307

encryption 335
built-in functions for 335
column level 336
data 335
defining columns for 335
non-character values 339
password hints 337, 338
performance recommendations 339
predicate evaluation 339
value level 338
with viewsl 337

END
subcommand of DSN

disconnecting from TSO 455
enlarging data set for work file database 696
Enterprise Storage Server

backup 576
entities

attribute names 7
attributes 7, 8

entity attributes
values

default 9
domain 8
null 9

entity normalization 9
first normal form 10
fourth normal form 13
second normal form 10
third normal form 11

entity relationships
business rules 6
many-to-many relationships 6
many-to-one relationships 6
one-to-many relationships 6
one-to-one relationships 6

environment, operating
CICS 382
IMS 381

ERRDEST option
DSNC MODIFY 456

error
application program 624
SQL query 359

error pages
displaying 435

escape character
example 327
in DDL registration tables 323

exception status
resetting 586

EXECUTE privilege
after BIND REPLACE 210
description 167, 171
effect 205

exit parameter list (EXPL) 842
exit point

authorization routines 783
connection routine 783
conversion procedure 823

exit point (continued)
date and time routines 820
edit routine 813
field procedure 827
sign-on routine 783
validation routine 816

exit routine
authorization control 792
determining if active 811
general considerations 840
writing 781

exit routine. 849
EXPL (exit parameter list) 842
EXPORT command of access method services 140, 587
Extended Remote Copy (XRC) 733
EXTENDED SECURITY field of panel DSNTIPR 285
external security profile

trusted context 317

F
failure symptoms

abend shows
log problem during restart 669
restart failed 663

BSDS 650
CICS

attachment abends 632
task abends 635
waits 631

log 650
lost log information 675
message

DFH2206 630
DFS555 629
DSNB207I 684
DSNJ 672
DSNJ001I 646
DSNJ004I 639
DSNJ100 672
DSNJ103I 642
DSNJ105I 639
DSNJ106I 640
DSNJ107 672
DSNJ114I 642
DSNM002I 626
DSNM3201I 631
DSNP007I 692
DSNP012I 691
DSNU086I 689, 690

message by identifier
DSNM004I 626
DSNM005I 628

no processing is occurring 621
subsystem termination 635

fast copy function
Enterprise Storage Server FlashCopy 576
RVA SnapShot 576

fast log apply
use during RECOVER processing 571

field decoding operation
definition 825
input 836
output 836

field definition operation
definition 825
input 832

1072 Administration Guide



field definition operation (continued)
output 832

field description of a value 826
field encoding operation

definition 825
input 834
output 834

field procedure
changing 119
description 356, 825
ensuring data accuracy 356
specified by the FIELDPROC clause 827
writing 825

field procedure information block (FPIB) 829
field procedure parameter list (FPPL) 828
field procedure parameter value list (FPPVL) 828
field value descriptor (FVD) 828
field-level access control 188
FIELDPROC clause

ALTER TABLE statement 827
CREATE TABLE statement 827

FlashCopy backup
incremental 31

FlashCopy backups 614
FORCE option

START DATABASE command 428
STOP DB2 command 470, 531

foreign keys
adding 104
dropping 105

format
column 848
data passed to FPPVL 830
data set names 32
message 372
row 848
value descriptors 823, 831

forward log recovery
phase of restart 527
scenario 663

forward-log recovery
failure 664

FPIB (field procedure information block) 829
FPPL (field procedure parameter list) 828
FPPVL (field procedure parameter value list) 828, 830
FREE PACKAGE subcommand of DSN

privileges needed 183
FREE PLAN subcommand of DSN

privileges needed 184
FREEPAGE clause

described 38
function

table
ADMIN_TASK_LIST function 398
ADMIN_TASK_STATUS function 403

FUNCTION privilege, description 169
function, user-defined 212
FVD (field value descriptor) 828, 830

G
general-use programming information, described 1015
GET_CONFIG stored procedure 954

filtering output 953
GET_MESSAGE stored procedure 974

filtering output 953
GET_SYSTEM_INFO stored procedure 982

GET_SYSTEM_INFO stored procedure (continued)
filtering output 953

GETHINT 337
global transaction

definition 547
GRANT statement

examples 188, 193
format 188
privileges required 184

granting privileges and authorities 188
GROUP DD statement for stand-alone log services OPEN

request 767
GUPI symbols 1015

H
heuristic damage 544
heuristic decision 544
Hierarchical Storage Manager (DFSMShsm) 140
HMIGRATE command of DFSMShsm (Hierarchical Storage

Manager) 140
HRECALL command of DFSMShsm (Hierarchical Storage

Manager) 140
Huffman compression.

exit routine 812

I
I/O error

catalog 690
directory 690
occurrence 519

I/O errors
table spaces 689

ICOPY status
clearing 594

identity column
altering attributes 120
loading data 66

identity columns
conditional restart 531

IEFSSNxx member of SYS1.PARMLIB
IRLM 442

IFCID (instrumentation facility component identifier)
0330 503, 637
identifiers by number

0306 764
0314 811

IFI (instrumentation facility interface)
decompressing log data 764

IFI application program
entering DB2 commands 370

IMAGCOPY privilege
description 169

image copies
catalogs 559
directory 559

image copy
catalog 558
directory 558
frequency vs. recovery speed 558
incremental

frequency 558
making after loading a table 68
recovery speed 558

implementor, description 212

Index 1073



IMPORT command of access method services 140, 673
IMS

/DISPLAY SUBSYS command
LTERM authorization ID 469

commands
/DISPLAY SUBSYS command 469
CHANGE SUBSYS 461, 466
DISPLAY OASN 466
DISPLAY SUBSYS 461
response destination 370
START SUBSYS 461
STOP SUBSYS 461, 470
TRACE SUBSYS 461
used in DB2 environment 365

connecting to DB2
attachment facility 467
authorization IDs 381
connection ID 381
connection processing 277
controlling 461
dependent region connections 467
disconnecting applications 470
security 153, 251
sign-on processing 279
supplying secondary IDs 277

facilities
message format 372

indoubt units of recovery 545
language interface module (DFSLI000)

link-editing 381
loops 626
LTERM authorization ID

message-driven regions 381
used with GRANT 371

operating
entering DB2 commands 368
tracing 494

planning
environment 381

programming
error checking 381

recovery 628
resolution of indoubt units of recovery 545

recovery procedures 625, 626
running programs

batch work 381
thread 464
threads 463
waits 626

IMS /DISPLAY command
SUBSYS option 469

IMS commands
DISPLAY OASN 626
START REGION 468
STOP REGION 468

IMS threads
displaying 464

IMS.PROCLIB library
connecting from dependent regions 467

IN clause 42
inconsistent data

identifying 658
recovering 570

indefinite wait condition
recovering 701

index
altering

add column 126
clustering 127
dropping 128
redefining 128
varying-length columns 127

creating 59
estimating storage 79
ownership 203
privileges of ownership 173
space

storage allocated 36
version numbers

recycling 129
index page size

choosing 61
INDEX privilege

description 167
index space data sets, deferred allocation of 59
index spaces

starting 428
index-based partitions

redefining 692
index-controlled partitioning 51

creating tables 54
scenario 144

indexes
altering 125
coding index definitions 59
compression 63
copying 574
creating implicitly 60
estimating storage space 80
implementing 58
index space data sets, deferred allocation of 59
large objects 59
naming 59
reasons to use 18
rebalancing partitioned table spaces 93
reorganizing 128
sequence of entries 59
structure

index tree 79
leaf pages 79
root page 79
subpages 79

versions 62
indoubt thread

displaying information 447
indoubt threads

recovering 550
resetting status 551
resolving 733

indoubt units of recovery 626, 628
displaying 472
Resource Recovery Services (RRS) 472

information center consultant 180
informational COPY-pending status

clearing 594
INSERT privilege

description 167
INSERT statement 70

example 69
load data 65

1074 Administration Guide



installation
macros

automatic IRLM start 444
installation SYSADM authority

privileges 176
use of RACF profiles 346

installation SYSOPR authority
privilege 178
use of RACF profiles 346

instrumentation facility interface (IFI)
READA request 762
reading log records 762, 763
READS request 762, 763

integrated catalog facility
changing alias name for DB2 data sets 132

integrated catalog facility catalog VVDS failure
recovery 691

integrity
reports 361

Interactive System Productivity Facility (ISPF) 379
internal resource lock manager (IRLM) 442
invalid LOBs

recovering 688
invoker, description 212
IRLM (internal resource lock manager)

controlling 442
diagnostic trace 495
element name

global mode 445
local mode 445

failure 621
monitoring connection 443
recovery procedure 621
starting

automatically 444
manually 444

starting automatically 376
stopping 445

J
JAR 202, 203

privileges of ownership 173
Java class for a routine 202, 203

privileges of ownership 173
Java class privilege

description 172
JCL jobs

scheduled execution 424

K
key

adding 103
foreign 103
parent 103
unique 103

L
language interface modules

DSNCLI
usage 382

large objects (LOBs)
indexes 59

LCID (log control interval definition) 757

leaf pages
description 79
index 79

library 1005
LOAD privilege

description 168
LOAD utility

availability of tables 66
CCSID option 66
delimited files 66
estimating storage 78
loading DB2 tables 66
LOG option 594
moving data 140
restricted status 68

loading
data

DL/I 71
sequential data sets 66

tables 65
loading data

inserting a single row 69
inserting multiple rows 69

loading tables 65
considerations for INSERT 70

LOB (large object)
recovering invalid 688

LOB clause, CREATE TABLESPACE statement 38
LOB table spaces

recovering 583
removing pending states 597

LOBs
estimating storage 77

local attachment request 289
LOCAL DATE LENGTH

field of panel DSNTIPF 819
LOCAL TIME LENGTH

field of panel DSNTIPF 819
LOCKSIZE clause 38
log

buffer
retrieving log records 508

changing BSDS inventory 520
checkpoint records 754
deciding how long to keep 516
dual

archive logs 519
synchronization 503
to minimize restart effort 672

excessive loss 675
failure

recovery procedure 637, 642
symptoms 650
total loss 675

implementing logging 507
operation 360
record structure

control interval definition (LCID) 757
database page set control records 755
format 757
header (LRH) 756
type codes 759

truncation 658
use

exit routine 837
forward recovery 527
managing 499

Index 1075



log (continued)
use (continued)

record retrieval 508
recovery scenario 672
restarting 524

log activity
stand-alone 770

log capture exit routine
contents of log 749
reading log records 777
writing 837

log capture exit routine.
description 837

log CLOSE requests
stand-alone 774

log control interval definition 755
log data

reading 764
log GET request

stand-alone 772
log initialization phase

failure 653
failure recovery 652

log RBA
data sharing environment 514
non-data sharing environment 514
range 513
resetting 513, 514
value 513

log record header (LRH) 756
log record sequence number (LRSN) 749
log records

active
gathering into a buffer 762

contents 749
creating 501
effects of data compression 749
extracting 749
interpreting 762
logical 755
physical 755
printing 749
qualifying 765
reading 749, 766, 777

instrumentation facility interface (IFI) 762, 763
segments 755
subtype codes 760
types 749
unit of recovery 751

log services
stand-alone 775

logging attribute
changing 90

logical data modeling 3
example 5
recommendations 5

logical database design
Unified Modeling Language 13

logical page list
displaying 434

logical page list (LPL) 433, 434, 533
logs

backward recovery 528
establishing hierarchy 501
initialization phase 525
managing 559
restarting 528

lost work after failure
identifying 658

LPL (logical page list)
deferred restart 533
recovering pages

methods 434
running utilities on objects 434

LRH (log record header) 756
LRSN statement of stand-alone log services OPEN

request 771

M
mandatory access checking

definition 234
dominance 234

mapping macro
DSNDAIDL 786
DSNDDTXP 820
DSNDEDIT 813
DSNDEXPL 842
DSNDFPPB 828
DSNDROW 848
DSNDRVAL 816
DSNDSLRB 766
DSNDSLRF 772

mass delete
validation routine 816

materialized query table
changing 115
changing attributes 117
changing definition of 117
changing to a base table 117
registering 115
registering an existing table as 116

materialized query tables
creating 50

media failures
recovering from 724

message
DSNJ106I 665
format

DB2 372
IMS 372

prefix for DB2 372
receiving subsystem 372
z/OS abend

IEC030I 644
IEC031I 644
IEC032I 644

message by identifier
$HASP373 375
DFS058 462
DFS058I 470
DFS3602I 628
DFS3613I 462
DFS554I 629
DFS555A 629
DFS555I 629
DSN1150I 670
DSN1151I 625
DSN1157I 658, 670
DSN1160I 658, 670
DSN1162I 625, 658, 670
DSN1213I 678
DSN2001I 632
DSN2025I 635

1076 Administration Guide



message by identifier (continued)
DSN2034I 632
DSN2035I 632
DSN2036I 632
DSN3100I 375, 378, 635
DSN3104I 378, 635
DSN3201I 631
DSN9032I 475
DSNB204I 684
DSNB207I 684
DSNB232I 686
DSNC012I 460
DSNC016I 546
DSNC025I 460
DSNI006I 434
DSNI021I 434
DSNJ001I 375, 504, 525, 650, 652
DSNJ002I 504
DSNJ003I 504, 647
DSNJ004I 504, 639
DSNJ005I 504
DSNJ007I 656
DSNJ008E 504
DSNJ012I 656, 665
DSNJ072E 507
DSNJ099I 375
DSNJ100I 645, 646, 650, 672
DSNJ103I 642, 656, 665
DSNJ104I 642, 656
DSNJ105I 639
DSNJ106I 640, 656, 665
DSNJ107I 645, 650, 672
DSNJ108I 645
DSNJ110E 503, 637
DSNJ111E 503, 637
DSNJ113E 656, 665, 671
DSNJ114I 642
DSNJ115I 642
DSNJ1191 650
DSNJ119I 672
DSNJ120I 525, 645, 646
DSNJ124I 640
DSNJ125I 520
DSNJ126I 645
DSNJ127I 375
DSNJ128I 644
DSNJ130I 525
DSNJ139I 504
DSNJ311E 509
DSNJ312I 509
DSNJ317I 509
DSNJ318I 509
DSNJ319I 509
DSNL001I 475
DSNL002I 492
DSNL003I 475
DSNL004I 475
DSNL005I 492
DSNL006I 492
DSNL009I 481
DSNL010I 481
DSNL030I 702
DSNL080I 476
DSNL200I 478
DSNL432I 492
DSNL433I 492
DSNL500I 701

message by identifier (continued)
DSNL501I 697, 701
DSNL502I 697, 701
DSNL700I 698
DSNL701I 699
DSNL702I 699
DSNL703I 699
DSNL704I 699
DSNL705I 699
DSNM001I 462, 469
DSNM002I 469, 470, 626, 635
DSNM003I 462, 469
DSNM004I 545, 626
DSNM005I 467, 545, 628
DSNP001I 692
DSNP007I 692
DSNP012I 691
DSNR001I 375
DSNR002I 375, 650
DSNR003I 375, 516, 625, 668, 670
DSNR004I 375, 526, 527, 650, 652, 663
DSNR005I 375, 527, 650, 652, 669
DSNR006I 375, 528, 650
DSNR007I 375, 526, 527
DSNR031I 527
DSNT360I 429, 431, 432, 435
DSNT361I 429, 431, 432, 435
DSNT362I 429, 431, 432, 435
DSNT392I 435, 750
DSNT397I 431, 432, 435
DSNU086I 689, 690
DSNU561I 696
DSNU563I 696
DSNV086E 635
DSNV400I 509
DSNV401I 458, 465, 466, 509, 632
DSNV402I 369, 447, 468, 509
DSNV404I 454, 469
DSNV406I 458, 465, 466, 632
DSNV408I 458, 459, 465, 473, 536, 632
DSNV414I 459, 465, 473, 632
DSNV415I 459, 465, 473, 632
DSNV431I 459
DSNV435I 535
DSNX940I 483
DSNY001I 375
DSNY002I 378
DSNZ002I 375
DXR105E 445
DXR117I 444
DXR1211 445
DXR122E 621
DXR1651 445
EDC3009I 691
IEC161I 684

message identifiers 365
message processing program (MPP) 467
MIGRATE command of DFSMShsm (Hierarchical Storage

Manager) 140
mixed data

altering subtype 119
MODIFY irlmproc,ABEND command of z/OS

stopping IRLM 445
MODIFY utility

retaining image copies 569
MONITOR1 privilege

description 169

Index 1077



MONITOR2 privilege
description 169

monitoring
CAF connections 454
connections activity 468
databases 429
DSNC commands 458
IRLM 443
threads 458
TSO connections 454
user-defined functions 439

moving
table

different page size 123
moving data set

without utilities 143
moving data sets 142

with utilities 143
moving DB2 data 141

tools 140
MPP (message processing program), connection control 467
MSGQUEUE attribute

unsolicited CICS messages 373
multi-character command prefix 368
multi-site update

example 540
process 539

multilevel security
advantages 231
constraints 233
DB2 resource classes 236
definition 231
edit procedures 233
field procedures 233
global temporary tables 233
hierarchies for objects 236
implementing 236
in a distributed environment 248
mandatory access checking 234
row-level granularity 238
security category 232
security label 231
security level 232
SNA support 251
SQL statements 238
TCP/IP support 248
triggers 234
using utilities with 247
validation procedures 233
views 240

multivolume archive log data sets 507
MxxACT DD statement for stand-alone log services OPEN

request 767
MxxARCHV DD statement for stand-alone log services OPEN

request 767
MxxBSDS DD statement for stand-alone log services OPEN

request 767

N
naming convention

VSAM data sets 32
NetView

monitoring errors in the network 490
network ID (NID) 632
NID (network ID)

indoubt threads 626

NID (network ID) (continued)
thread identification 463
unique value assigned by IMS 463
use with CICS 632

NOT LOGGED 90
NOT NULL clause

CREATE TABLE statement
requires presence of data 356

null value
effect on storage space 844

numeric
data

format in storage 849

O
OASN (originating sequence number)

indoubt threads 626
part of the NID 463

object
controlling access to 230
ownership 173, 204

object ownership
trusted context 203

object registration table (ORT) 322
objects

not logged
recovering 593

recovering dropped objects 598
offloading

active log 503
messages 504
trigger events 503

offloading process
interruptions 505

online 1005
online books 1005
online utilities

changing 441
monitoring 441

operating 379
operation

description 427
log 360

originating sequence number (OASN) 463
output, unsolicited

operational control 373
overflow pointer 752
OWNER

qualifies names in plan or package 202
ownership

changing 204
ownership of objects

establishing 173, 203
privileges 173

P
PACKADM authority

description 177
package

administrator 180, 189
authorization to execute SQL in 207
controlling use of DDL 321, 332
inoperative, when privilege is revoked 198

1078 Administration Guide



package (continued)
invalidated

dropping a view 124
dropping an index 128
when privilege is revoked 198
when table is dropped 121

list
privilege needed to include package 183
privileges needed to bind 211

privileges
description 152, 202
explicit 171
for copying 211
of ownership 173, 206
remote bind 211

retrieving catalog information 229
routine 212

page
16-KB 76
32-KB 76
8-KB 76
number of records

description 76
page errors

logical 433
physical 433

page set
altering 94
control records 755

page sets
copying 574

page size
choosing 40
choosing for LOBs 41

pages
index size 79
root 79

parent keys
adding 104
dropping 105

partial recovery. 605
participant

in multi-site update 539
partition

adding 107, 113
altering 108
boundary

changing 109
rotating 110

partition boundary
reverting to previous 112

partition-by-growth table spaces
recovering 584

partition-by-growth universal table spaces
example 42

partitioned table spaces
recovering indexes

COPY utility 585
RECOVER utility 585

partitioning methods
differences 51

partitions
extending the boundary 112
index-controlled

redefining 692
redefining

index-based partitioning 695

partitions (continued)
table-controlled

redefining 692
partner LU

trusting 290
verifying by VTAM 289

PassTicket
configuring to send 307

password
changing expired ones when using DRDA 285
encrypting, for inbound IDs 290
encrypting, from workstation 308
RACF, encrypted 307
requiring, for inbound IDs 290
sending, with attachment request 307

pattern character
examples 327
in DDL registration tables 323

PCTFREE clause 38
performance

affected by
cache for authorization IDs 209
secondary authorization IDs 180

phases of execution
restart 524

physical data modeling 3
physical database design 15
plan

privileges
of ownership 173, 206

PLAN option 458
plan selection exit routine

description 840
writing 840

plan, application 171
POE 295
point in time 578
point of consistency

description 499
IMS 537
multiple system 537

point-in-time recoveries
data consistency 607

point-in-time recovery 604
catalog and directory 591
description 605
planning 606
RECOVER utility 580
subsystem 685

populating
tables 65

port of entry 288, 295
RACF APPCPORT class 260
RACF SERVAUTH class 260

postponed units of recovery
displaying 473
Resource Recovery Services (RRS) 473

postponed-abort unit of recovery 542
power failure recovery procedure, z/OS 621
primary authorization ID 166
primary space allocation

example 27
PRINT

command of access method services 598
print log map utility 516

before fall back 673
control of data set access 344

Index 1079



print log map utility (continued)
prints contents of BSDS 442

prior point of consistency
recovery 585

priority
setting for stored procedures 497

PRIQTY clause, CREATE TABLESPACE statement 42
privilege

CREATEIN 265
description 167
distinct type 266
executing an application plan 152, 202
exercised by type of ID 180
exercised through a plan or package 205, 211
explicitly granted 167
granting 151, 186, 195, 198, 199
implicitly held 173, 204, 318
JAR file 267
needed for various roles 180
ownership 173
remote bind 211
remote users 187
retrieving catalog information 225, 230
revoking 196
routine plans, packages 212
stored procedure 267
trusted context 318
types 167
used in different jobs 180

privilege selection, sample security plan 156
PROCEDURE privilege 169
process

description 151
processing

attachment requests 286, 302
connection requests 277, 282
sign-on requests 279, 281

product-sensitive programming information, described 1015
production binder

description 180
privileges 192

programming interface information, described 1015
protocols

SNA 286
TCP/IP 293

PSB name, IMS 381
PSPI symbols 1015
PSRCP (page set recovery pending) status 68
PSTOP transaction type 467
PUBLIC AT ALL LOCATIONS clause

GRANT statement 187
PUBLIC clause

GRANT statement 186
PUBLIC identifier 186
PUBLIC* identifier 187

Q
QSAM (queued sequential access method) 505
qualified objects

ownership 203
QUALIFIER

qualifies names in plan or package 202
queued sequential access method (QSAM) 505
QUIESCE option

STOP DB2 command 470, 531

R
RACF

BINDAGENT 797
role 797

RACF (Resource Access Control Facility)
authorizing

access to data sets 154, 344, 346
access to protected resources 254
access to SERVER resource class 262
group access 258
IMS access profile 258
SYSADM and SYSOPR authorities 258

checking
connection processing 277, 282
inbound remote IDs 289
sign-on processing 279, 281

defining
access profiles 252
DB2 resources 252, 270
protection for DB2 270
remote user IDs 257
started procedure table 257
user ID for DB2 started tasks 254

description 153
PassTickets 307
passwords, encrypted 307
typical external security system 251
when supplying secondary authorization ID 279, 281

RACF access control module 851
range-partitioned universal table spaces

example 42
RBA (relative byte address) 749

range shown in messages 504
RDO (resource definition online)

MSGQUEUE attribute 373
STATSQUEUE attribute 373
STATUSQUEUE attribute 456

re-creating
tables 123

REBIND PACKAGE subcommand of DSN
options

OWNER 205
REBIND PLAN subcommand of DSN

options
OWNER 205

rebinding
after creating an index 128
after dropping a view 124

REBUILD INDEX utility 59
REBUILD-pending status 68

description for indexes 555
record

performance considerations 76
size 76

RECORDING MAX field of panel DSNTIPA
preventing frequent BSDS wrapping 671

RECOVER BSDS command
copying BSDS 520

RECOVER INDOUBT command
free locked resources 632
recovering indoubt threads 550

RECOVER privilege
description 169

RECOVER TABLESPACE utility
recovers data modified after shutdown 673

RECOVER utility 580, 732
cannot use with work file table space 574

1080 Administration Guide



RECOVER utility (continued)
catalog and directory tables 591
data inconsistency 569
deferred objects during restart 530
DFSMS concurrent copies 576
DFSMSdss RESTORE command 30
functions 572
kinds of objects 572
messages issued 572
object-level recoveries 577
options

TOCOPY 605
TOLOGPOINT 605
TOLOGPOINT in application program error 624
TORBA 605

problem on DSNDB07 590
recovery cycle, establishing 722
running in parallel 571
use of fast log apply during processing 571

RECOVER-pending status
clearing 595

RECOVERDB privilege
description 168

recovery
BSDS 647
catalog and directory 591
communications failure 735
correcting a heuristic decision

scenario 746
data set

using DFSMS 576
using DFSMShsm 560
using non-DB2 dump and restore 598

database
active log 749
using RECOVER TOCOPY 605
using RECOVER TOLOGPOINT 605
using RECOVER TORBA 605

databases
using backup copies 555

DB2 outage
cold start 740

DB2 subsystem 749
disk failures 622
distributed data

planning 554
down-level page sets 686
dropped data sets 602
dropped objects 598
dropped table 598
dropped table space 600
FlashCopy backups 614
identifying objects 585
implications 593
IMS outage with cold start

scenario 739
IMS-related failures

during indoubt resolution 626, 628
inconsistent data 570
indexes 555
indexes on tables

partitioned table spaces 585
indoubt threads 733
indoubt units of recovery

CICS 459, 632
IMS 465

integrated catalog facility catalog VVDS failure 691

recovery (continued)
invalid LOBs 688
LOB table spaces 583
making catalog definitions consistent 615
media 572
minimizing outages 561
moving data 581
multiple systems environment 543
operation 556
planning 606
point in time 685
point-in-time 605
prior point in time 578
prior point of consistency 585
procedures 621
reducing time 558
reporting information 565
restart 587
scenario 740
segmented table spaces 582
subsystem 685
system procedures 553
table space

COPY utility 597
dropped 600
DSN1COPY utility 597
point in time 586
QUIESCE 586
RECOVER TOCOPY 605
RECOVER TOLOGPOINT 605
RECOVER TORBA 605

table spaces 689
work file table space 590
XML table spaces 583

recovery cycle
RECOVER, establishing with 722

recovery log
record formats 757

RECOVERY option of REPORT utility 624
recovery procedures 692

application program error 624
CICS-related failures

application failure 630
attachment facility failure 635
manually recovering indoubt units of recovery 632
not operational 631

DB2-related failures
active log failure 637
archive log failure 642
BSDS 645
catalog or directory I/O errors 690
database failures 684
subsystem termination 635
table space I/O errors 689

IMS-related failures 624
application failure 629
control region failure 626

integrated catalog facility catalog
VVDS failure 692

IRLM failure 621
out-of-disk-space 692
restart 650
z/OS failure 621

recovery scenarios
DB2 cold start 745
failure

current status rebuild phase 652

Index 1081



recovery scenarios (continued)
failure (continued)

log initialization phase 652
making heuristic decisions 737
starting 375

RECP (RECOVERY-pending) status 68
redo log records 750
REFERENCES privilege

description 167
referential constraint

adding to existing table 102
data consistency 358
recovering from violating 696

referential structure, maintaining consistency for recovery 569
registers 770
registration table

application registration table (ART) 322
ART column 322
object registration table (ORT) 322
ORT column 322

registration tables for DDL
adding columns 333
CREATE statements 331
escape character 323
examples 324, 328
function 332
pattern characters 323
updating 333

relative byte address (RBA) 504, 513, 749
remote DBMS

indoubt units of recovery
resolving 549

remote logical unit, failure 701
remote request 289, 296
REORG privilege

description 168
REORG TABLESPACE utility

REBALANCE option 93
REORG UNLOAD EXTERNAL 140
REORG utility

examples 118
LOG option 594
moving data 140

REPAIR privilege
description 168

REPAIR utility
resolving inconsistent data 682

REPORT utility
options

RECOVERY 624
TABLESPACESET 624

table space recovery 565
REPRO command of access method services 598, 647
RESET INDOUBT command

resetting indoubt threads 551
residual recovery entries 467
residual recovery entry (RRE) 466
Resource Access Control Facility (RACF) 277
resource definition online (RDO) 373
resource limit facility (governor)

preparing for recovery 555
resource manager

resolving indoubt units of recovery 547
Resource Recovery Services (RRS)

controlling connections 471
indoubt units of recovery 472
postponed units of recovery 473

Resource Recovery Services attachment facility (RRSAF)
disconnecting 474
RACF profile 262
stored procedures 262

resource translation table (RTT) 467
resources

defining to RACF 252
restart 530

automatic 529
backward log recovery

failure during 669
phase 528

cold start situations 675
conditional

control record governs 530
excessive loss of active log data 676
total loss of log 675

current status rebuild
phase 526

current status rebuild phase
failure recovery 652

data object availability 533
deferring processing

objects 533
effect of lost connections 545
forward log recovery

failure during 663
phase 527

implications
table spaces 530

log initialization phase 525
failure recovery 652

multiple systems environment 543
normal 524
preparing for recovery 587
recovery operations for 534
resolving inconsistencies after 679
unresolvable

BSDS problems during 672
log data set problems during 672

restart processing
deferring 532
limiting 665

restarting
DB2 523, 531

RESTORE phase of RECOVER utility 572
RESTORE SYSTEM

recovery cycle, establishing 720
RESTORE SYSTEM utility 30, 604, 619, 732

DB2 subsystem
recovering 618

restoring
databases 604
DB2 system 604

restoring data 578
return areas

specifying 764
return codes 770
REVOKE statement

cascading effect 194
delete a view 196, 197
examples 194, 198, 199
format 194
invalidates a plan or package 198
privileges required 184
revoking SYSADM authority 198, 199

1082 Administration Guide



RFMTTYPE
BRF 845
RRF 845

role 797
automatic rebind 797
BINDAGENT 797
DYNAMICRULES(BIND) 797
RACF 797

roles 166
rollback

maintaining consistency 542
unit of recovery 500

rolling disaster 727
root page

description 79
indexes 79

route codes for messages 370
routine

example, authorization 213
plans, packages 212
retrieving information about authorization IDs 229

routine privileges 169
row

formats for exit routines 843
validating 815

row format conversion
table spaces 847

row-level security
security label column 238
using SQL statements 238

ROWID column
inserting 70
loading data 66

RRDF (Remote Recovery Data Facility)
altering a table for 118

RRE (residual recovery entry)
detect 466
logged at IMS checkpoint 545
not resolved 545
purge 466

RRSAF (Recoverable Resource Manager Services attachment
facility)

application program
authorization 208

RRSAF (Resource Recovery Services attachment facility)
application program

running 384
RRSAF connections

displaying 474
monitoring 474

RTT (resource translation table)
transaction type 467

RUN
DSN subcommand 379

RVA (RAMAC Virtual Array)
backup 576

S
sample exit routine

connection
location 782
processing 788
supplies secondary IDs 278

edit 812
sign-on

location 782

sample exit routine (continued)
sign-on (continued)

processing 788
uses secondary IDs 281

sample library 64
sample security plan

new application 188, 193
SBCS data

altering subtype 119
scheduled tasks

checking status 402
defining 387
listing 398
removing 385, 406

schema 265
authorization to process 63
creating 63
privileges 170
processing 63
processor 63

schema definition
authorization to process 64
processing 64

schemas
implementing 63

SDSNLOAD library
loading 467

SDSNSAMP library
processing schema definitions 64

SECACPT option of APPL statement 289
secondary authorization ID 166
secondary space allocation

example 27
SECQTY clause, CREATE TABLESPACE statement 42
Secure Socket Layer

configure 341
requester 343
server 342

secure port
define 342

security
access to

DB2 data sets 344
administrator privileges 180
CICS 153, 251
closed application 332
DB2 149
DB2 Version 9.1 149
DDL control registration tables 321
IMS 153, 251
measures in application program 210
measures in force 354
mechanisms 282
solution 149
system, external 251

security administrator 180
security category

definition 232
SECURITY DB2 264
security label

definition 231
security label column 238
security level

definition 232
SECURITY USER 264
segmented table spaces

example 42

Index 1083



segmented table spaces (continued)
recovering 582

SELECT privilege
description 167

SELECT statement
example

SYSIBM.SYSPLANDEP 122
SYSIBM.SYSTABLEPART 89
SYSIBM.SYSVIEWDEP 122

sequence
privileges of ownership 173

SET ARCHIVE command
description 365

SET CURRENT SQLID statement 166
SET ENCRYPTION PASSWORD 336
shortcut keys

keyboard xviii
sign-on

exit point 783
exit routine. 781
processing 280
requests 784

sign-on exit routine
debugging 790
default 280, 281
description 781
performance considerations 790
sample 281

location 782
provides secondary IDs 788

secondary authorization ID 281
using 280
writing 781

sign-on processing
choosing for remote requests 289
initial primary authorization ID 279
invoking RACF 279
requests 276
usage 276
using exit routine 280
using secondary IDs 281

SIGNON-ID option of IMS 381
SMF (System Management Facility)

trace record
auditing 348

SMS (Storage Management Subsystem) 507
SMS archive log data sets 507
SNA

mechanisms 282
protocols 286

softcopy publications 1005
software protection 353
sorting sequence, altering by a field procedure 825
space attributes 89

specifying 107
SPACENAM option

DISPLAY DATABASE command 431
SPUFI

disconnecting 455
SQL authorization ID 166
SQL CREATE AUXILIARY TABLE statement 59
SQL transaction

unit of recovery 499
SSL

configure 341
requester 343
server 342

SSL (continued)
secure port

define 342
SSM (subsystem member)

error options 467
specified on EXEC parameter 467

SSR command of IMS
entering 368
prefix 373

stand-alone utilities
recommendation 442

START DATABASE command
example 428
problem on DSNDB07 590
SPACENAM option 428

START DB2 command
entered from z/OS console 375
mode identified by reason code 470
PARM option 376
restart 530

START DDF command 475
START FUNCTION SPECIFIC command

starting user-defined functions 439
START REGION command

IMS 468
START SUBSYS command of IMS 461
START TRACE command

AUDIT option 351
controlling data 494
gathering active log records 762

STARTDB privilege
description 168

started procedures table in RACF 257
started-task address space 254
starting

audit trace 351
databases 427
DB2 375, 665

after an abend 377
process 375

IRLM
process 444

table space or index space having restrictions 428
user-defined functions 439

starting DB2
wait state 377

static SQL
privileges required 184

STATS privilege
description 168

STATSQUEUE attribute
unsolicited CICS messages 373

status
CHECK-pending 68
COPY-pending

resetting 68
REBUILD-pending 68

STOGROUP privilege
description 172

STOP DATABASE command 436
example 437
problem on DSNDB07 590
SPACENAM option 428

STOP DDF command
description 491
FORCE option 492
QUIESCE option 492

1084 Administration Guide



STOP FUNCTION SPECIFIC command
stopping user-defined functions 440

STOP REGION command
IMS 468

STOP SUBSYS command of IMS 461, 470
STOP TRACE command

AUDIT option 352
description 494

STOP transaction type 467
STOPALL privilege

description 169
STOPDB privilege

description 168
stopping

audit trace 351
data definition control 331
databases 436
DB2 375, 378
IRLM 445
user-defined functions 440

storage
LOBs 77
managing

using DFSMShsm 28
space of dropped table, reclaiming 121

storage group
control interval sizing 21

storage group, DB2
adding volumes 88
altering 88
changing to SMS-managed 88
managing

deferring allocation 20
defining data sets 20
deleting data sets 20
extending data sets 20
moving data sets 20
reusing data sets 20

privileges of ownership 173
storage groups

implementing 20
letting SMS manage 88
managing with SMS 22

stored procedure 264, 265, 266, 268
address space 255
altering 129
authorization 261
authorizations 212
commands 482
DSNACICS 853
example, authorization 213
privileges

of ownership 173
trusted context 268

stored procedures 262, 264
ADMIN_COMMAND_DB2 873
ADMIN_COMMAND_DSN 885
ADMIN_COMMAND_UNIX 887
ADMIN_DB_BROWSE 891
ADMIN_DB_DELETE 894
ADMIN_DS_LIST 897
ADMIN_DS_RENAME 902
ADMIN_DS_SEARCH 905
ADMIN_DS_WRITE 908
ADMIN_INFO_HOST 912
ADMIN_INFO_SSID 915
ADMIN_INFO_SYSPARM 917

stored procedures (continued)
ADMIN_JOB_CANCEL 921
ADMIN_JOB_FETCH 923
ADMIN_JOB_QUERY 926
ADMIN_JOB_SUBMIT 930
ADMIN_TASK_ADD 390
ADMIN_TASK_REMOVE 407
ADMIN_UTL_SCHEDULE 933
ADMIN_UTL_SORT 942
common SQL API 949

Complete mode 951
XML input document 951
XML output document 952
XML parameter documents 950

creating 72
debugging 487
diagnostic information 487
displaying information 482
displaying statistics 483
dropping 73
DSNLEUSR 861
external

migrating 489
external SQL

migrating 489
GET_CONFIG 954

filtering output 953
GET_MESSAGE 974

filtering output 953
GET_SYSTEM_INFO 982

filtering output 953
implementing 71
migrating 488
native SQL

migrating 488
overall process 71
roadmap 71
scheduling execution 423
setting priority 497
SQLCODE -430 996
troubleshooting 996
WLM 263

STOSPACE privilege
description 169

string conversion exit routine. 822
subsystem

controlling access 154, 251
termination scenario 635

subsystem messages
CICS 373
unsolicited 373

subtypes 119
synonym

privileges of ownership 173
syntax diagram

how to read xix
SYS1.LOGREC data set 635
SYS1.PARMLIB library

specifying IRLM in IEFSSNxx member 442
SYSADM authority

description 177
revoking 198, 199

SYSCOPY
catalog table, retaining records in 566

SYSCTRL authority
description 178

Index 1085



SYSIBM.IPNAMES table of CDB
remote request processing 298
translating outbound IDs 298

SYSIBM.LOCATIONS table
PORT option

specify 343
SECURE option

specify 343
SYSIBM.LUNAMES table of CDB

accepting inbound remote IDs 283, 296
remote request processing 283, 296
sample entries 290
translating inbound IDs 290
translating outbound IDs 283, 296

SYSIBM.USERNAMES table of CDB
managing inbound remote IDs 289
remote request processing 283, 296
sample entries for inbound translation 291
sample entries for outbound translation 305
translating inbound and outbound IDs 283, 296

SYSLGRNX directory table
REPORT utility information 565
table space

retaining records 566
SYSOPR authority

description 178
usage 371

system
management functions, controlling 493
privileges 169

system administrator
description 180
privileges 189

System Management Facility (SMF) 348
system operator 180
system programmer 181
system-level backups 578

moving data 581
object-level recoveries 577

system-wide points of consistency 568

T
table

altering
adding a column 95
data type 98

auditing 355
changing page size 123
creating

clone 54
description 47

dropping
implications 121

estimating storage 76
ownership 203
populating

loading data into 65
privileges 167, 173
qualified name 203
re-creating 123
registration, for DDL 321, 332
retrieving

IDs allowed to access 227
plans and packages that can access 229

types 47

table check constraints
adding 106
dropping 106

table space
altering 89
changing space allocation 91
creating

explicitly 37
EA-enabled 36
loading data into 65
privileges of ownership 173
quiescing 586
recovery 689
recovery of dropped 600
versions 100, 101

recycling version numbers 102
table space definitions, examples of 42
table spaces

applying schema changes 101
coding guidelines 38
copying 574
data sets

deferring allocation 23
defining

explicitly 38
implicitly 39

dropping 92
general naming guidelines for 38
implementing 37
logging attribute 594
naming guidelines 38
not logged 530
page size recommendations 38
partitioned

inserting rows 114
re-creating 92
rebalancing data 93
recovering 582, 593
reordered row format

converting 846
reorganizing 101
row format

converting 847
starting 428

table-based partitions
redefining 692

table-controlled partitioning
automatic conversion to 52
creating tables 51
description 51
scenario 144
using nullable partitioning columns 53

tables
adding XML columns 115
altered

recovering indexes 584
altering 94

data type 97
exchanging data 55
implementing 45
loading

considerations for INSERT 70
INSERT statement 68
inserting a single row 69
inserting multiple rows 69
LOAD utility 65

naming guidelines 45

1086 Administration Guide



tables (continued)
recovering 592
recovering dropped 598

TABLESPACE privilege
description 172

TABLESPACESET option of REPORT utility 624
takeover site

setting 725, 726
TCP/IP

authorizing DDF to connect 270
failure, recovering from 700
protocols 293

temporary tables
creating 46
types 46

TERM UTILITY command
situations to avoid 570

terminal monitor program (TMP) 382
terminating

DB2 523
abend 524
normal 523
normal restart 524
scenario 635

termination
multiple systems 541
types 523

thread
CICS

access to DB2 458
termination

CICS 456
IMS 464, 470

threads
allied 475
attachment in IMS 463
database access

description 475
displaying 450

CICS 458
IMS 468

monitoring 445, 458
types 446

TIME FORMAT field of panel DSNTIPF 819
time routine

description 819
writing 819

TMP (terminal monitor program)
DSN command processor 453
sample job 382
TSO batch work 382

TOCOPY option
RECOVER utility 605

TOLOGPOINT option
RECOVER utility 605

TORBA option
RECOVER utility 605

trace
controlling

IMS 494
diagnostic

CICS 494
IRLM 495

TRACE privilege
description 169

TRACE SUBSYS command of IMS 461

traces
types 493

tracker site 718
characteristics 718
converting

takeover site 725, 726
disaster recovery, in 718
maintaining 724
recovering

RECOVER utility 726
RESTORE SYSTEM utility 725

recovery cycle, establishing
with RESTORE SYSTEM 720

setting up 719
transaction

CICS
accessing 458
DSNC codes 369
entering 382

IMS
connecting to DB2 461
thread termination 464

transaction manager
recovering distributed transactions 547

transaction types 467
transactions

IMS 381
thread attachment 463

translating
inbound authorization IDs 290, 292
outbound authorization IDs 305

troubleshooting
stored procedures 996

truncation
active log 503, 658

trusted connection 311
create

local 313
requester 313
server 314

reuse 315
roles 166
trusted context 311

trusted context 268, 311, 318
BINDAGENT 797
define 312

ASUSER 318
external security profile 317
object ownership 203
package ownership 206
plan ownership 206
RACF 797
role 797
roles 166
stored procedure 268
trusted connection 317

TSO
application programs

conditions 379
running 379

background execution 382
connections

controlling 453
DB2 453
disconnecting from DB2 455
monitoring 454

DSN command 380

Index 1087



TSO (continued)
DSNELI language interface module

link editing 379
entering DB2 commands 369

TSO application program
controlling access 380

two-phase commit
CICS 537
coordinator 537
IMS 537
participant 537
process 537

U
undo log records 750
Unified Modeling Language 13
unique keys

adding 104
unit of recovery

description 499
ID 757
in-abort

backward log recovery 528
description 542
excluded in forward log recovery 527

in-commit
description 542
included in forward log recovery 527

indoubt
causes inconsistent state 523
definition 377
description 542
displaying 465, 632
included in forward log recovery 527
recovering CICS 459
recovering IMS 465
recovery in CICS 632
resolving 545, 546, 547

inflight
backward log recovery 528
description 542
excluded in forward log recovery 527

log records 750, 751
postponed

displaying 466
postponed-abort 542
rollback 542
rolling back 500
SQL transaction 499

unit of recovery ID (URID) 757
units of work

determining status 550
UNLOAD utility

delimited files 66
unqualified objects, ownership 202
unsolicited output

CICS 370, 373
IMS 370
operational control 373
subsystem messages 373

UPDATE privilege
description 167

updating
registration tables for DDL 333

URID (unit of recovery ID). 757

USAGE privilege
distinct type 172
Java class 172
sequence 172

USE OF privileges 172
user analyst 180
user-defined data sets

adding volumes to 693
extending 693

user-defined function
controlling

START FUNCTION SPECIFIC command 438
dropping 74
example, authorization 213
monitoring 439
privileges of ownership 173
starting 439

user-defined functions
altering 131
creating 73
implementing 73
stopping 440

user-managed data sets
changing high-level qualifier 138
deleting 35
enlarging 694
extending 35
name format 32
requirements 32
specifying data class 36

USING STOGROUP clause 42
utilities

access status needed 440
controlling 440
executing

running on objects with pages in LPL 434
internal integrity reports 361
starting 440

utility jobs
running

at time of failure 716

V
validating

connections from remote application 282
existing rows with a new VALIDPROC 118
rows of a table 815

validation routine
altering assignment 118
checking existing table rows 118
description 356
ensuring data accuracy 356
row formats 843
writing 815

validation routine.
description 815

VALIDPROC clause
ALTER TABLE statement 118
exit points 816
specifies edit exit routine 816

value
descriptors in field procedures 830

VARCHAR
data type

subtypes 119
VARY WLM command 485

1088 Administration Guide



verifying VTAM partner LU 289
view 798

altering 124
INSTEAD OF trigger 124

authorization 798
creating

on catalog tables 230
dropping 124

deleted by REVOKE 196, 197
INSTEAD OF trigger 124

implementing 55
name

qualified name 203
names 57
privileges

effect of revoking table privileges 196, 197
ownership 203
table privileges for 188

using DELETE 57
using INSERT 57
using UPDATE 57

views
creating 56
dependent objects 122
dropping 58
reasons to use 17

virtual storage access method (VSAM) 501
volume serial number 519
VSAM (virtual storage access method)

control interval
block size 505
log records 501
processing 598

volume data set (VVDS) 692
volume data set (VVDS) recovery procedure 691

VTAM
failure, recovering from 700

VTAM (Virtual Telecommunications Access Method)
APPL statement 289
controlling connections 253, 288
conversation-level security 289
partner LU verification 289
password

choosing 288
VVDS (VSAM volume data set)

recovering 691
VVDS recovery 691

W
wait state

during startup 377
WebSphere Application Server

indoubt units of recovery 547
WLM

stored procedures 262, 263, 264
WLM application environment

changing startup procedure 485
quiescing 485
refreshing 485
restarting 485
stopping 485

WLM REFRESH command 264
WLM_REFRESH stored procedure 485
work

submitting 379

work file database
changing high-level qualifier 137

migrated installation 137
new installation 137

extending 696
problems 574
starting 427

work file databases
enlarging 692

work file table space
error range recovery 590

WQAxxx qualification fields 765
write error page range (WEPR) 433
write-down control 235

X
XML column

loading data 66
XML columns

adding 115
XML input document

common SQL API 951
XML input documents

versioning 950
XML message documents

versioning 950
XML objects

altering implicit 131
XML output document

common SQL API 952
XML output documents

versioning 950
XML parameter documents

versioning 950
XML table spaces

recovering 583
removing pending states 597

XRC (Extended Remote Copy) 733
XRF (extended recovery facility)

CICS toleration 554
IMS toleration 554

Z
z/OS

command group authorization level (SYS) 368, 371
commands

DISPLAY WLM 485
MODIFY irlmproc 445
STOP irlmproc 445

entering DB2 commands 368, 371
IRLM commands control 365
power failure recovery procedure 621

Index 1089



1090 Administration Guide





����

Program Number: 5635-DB2

Printed in USA

SC18-9840-05



Sp
in
e
in
fo
rm
at
io
n:

DB
2

Ve
rs

io
n

9.
1

fo
rz

/O
S

Ad
m

in
is

tra
tio

n
Gu

id
e

�
�

�


	Contents
	About this information
	Who should read this information
	DB2 Utilities Suite
	Terminology and citations
	Accessibility features for DB2 Version 9.1 for z/OS
	How to send your comments
	How to read syntax diagrams

	Part 1. Designing a database
	Chapter 1. Database objects and relationships
	Logical database design with the entity-relationship model
	Modeling your data
	Recommendations for logical data modeling
	Practical examples of data modeling
	Entities for different types of relationships
	Entity attributes
	Attribute names
	Data types of attributes
	Appropriate values for attributes

	Entity normalization

	Logical database design with Unified Modeling Language
	Physical database design
	Denormalization of tables
	Views as a way to customize what data users see
	Indexes on table columns


	Chapter 2. Implementing your database design
	Implementing DB2 databases
	Creating DB2 databases
	Dropping DB2 databases

	Implementing DB2 storage groups
	Advantages of storage groups
	Control interval sizing

	Creating DB2 storage groups
	Enabling SMS to control DB2 storage groups
	Deferring allocation of DB2-managed data sets
	How DB2 extends data sets
	DB2 space allocation
	Primary space allocation
	Secondary space allocation
	Example of primary and secondary space allocation

	Managing DB2 data sets with DFSMShsm
	Migrating to DFSMShsm
	How archive logs are recalled by DFSMShsm
	The RECOVER utility and the DFSMSdss RESTORE command
	Considerations for using the BACKUP SYSTEM utility and DFSMShsm
	Incremental system-level backups

	Managing your own data sets
	Defining data sets
	Extending user-managed data sets
	Deleting user-managed data sets

	Defining index space storage
	Creating EA-enabled table spaces and index spaces

	Implementing DB2 table spaces
	Creating a table space explicitly
	Guidelines and recommendations for table spaces
	General naming guidelines for table spaces
	Coding guidelines for explicitly defined table spaces
	Coding guidelines for implicitly defined table spaces
	Recommendations for page size
	Recommendations for LOB page size

	Examples of table space definitions

	Implementing DB2 tables
	Creating base tables
	Guidelines for table names
	Creating temporary tables
	Creating created temporary tables
	Creating declared temporary tables
	Distinctions between DB2 base tables and temporary tables

	Creating materialized query tables
	Creating tables that use table-controlled partitioning
	Differences between partitioning methods
	Automatic conversion to table-controlled partitioning
	Nullable partitioning columns

	Creating tables that use index-controlled partitioning
	Creating a clone table
	Exchanging data between a base table and clone table


	Implementing DB2 views
	Creating DB2 views
	Guidelines for view names
	How DB2 inserts and updates data through views
	Dropping DB2 views

	Implementing DB2 indexes
	Creating DB2 indexes
	Guidelines for defining indexes
	How DB2 implicitly creates an index
	Recommendations for index page size
	Index versions
	Compressing indexes

	Implementing DB2 schemas
	Creating a schema by using the schema processor
	Processing schema definitions

	Loading data into DB2 tables
	Loading data with the LOAD utility
	How the LOAD utility loads DB2 tables
	Restricted status after LOAD

	Loading data by using the INSERT statement
	Inserting a single row
	Inserting multiple rows
	Implications of using an INSERT statement to load tables

	Loading data from DL/I

	Implementing DB2 stored procedures
	Creating stored procedures
	Dropping stored procedures

	Implementing DB2 user-defined functions
	Creating user-defined functions
	Deleting user-defined functions

	Estimating disk storage for user data
	General approach to estimating storage
	Calculating the space required for a table
	Calculations for record lengths and pages
	Estimating storage for LOBs
	Estimating storage when using the LOAD utility

	Calculating the space required for an index
	Levels of index pages
	Estimating storage from the number of index pages


	Saving space with data compression
	Compressing data
	Calculating the space that is required for a dictionary
	Calculating disk requirements for a dictionary
	Calculating virtual storage requirements for a dictionary



	Chapter 3. Altering your database design
	Altering DB2 databases
	ALTER DATABASE options

	Altering DB2 storage groups
	Letting SMS manage your DB2 storage groups
	Adding or removing volumes from a DB2 storage group

	Altering table spaces
	Changing the logging attribute
	The NOT LOGGED attribute

	Changing the space allocation for user-managed data sets
	Dropping, re-creating, or converting a table space
	Rebalancing data in partitioned table spaces
	Altering a page set to contain DB2-defined extents

	Altering DB2 tables
	Adding a new column to a table
	Specifying a default value when altering a column
	Altering the data type of a column
	What happens to the column
	What happens to an index on the column
	Table space versions

	Altering a table for referential integrity
	Adding referential constraints to existing tables
	Adding parent keys and foreign keys
	Dropping parent keys and foreign keys

	Adding or dropping table check constraints
	Adding a partition
	Altering partitions
	Changing the boundary between partitions
	Rotating partitions
	Extending the boundary of the last partition
	Inserting rows at the end of a partition

	Adding XML columns
	Altering materialized query tables
	Registering an existing table as a materialized query table
	Changing a materialized query table to a base table
	Changing the attributes of a materialized query table
	Changing the definition of a materialized query table

	Altering the assignment of a validation routine
	Altering a table to capture changed data
	Changing an edit procedure or a field procedure
	Altering the subtype of a string column
	Altering the attributes of an identity column
	Changing data types by dropping and re-creating the table
	Implications of dropping a table
	Objects that depend on the dropped table
	Re-creating a table

	Moving a table to a table space of a different page size

	Altering DB2 views
	Altering views by using the INSTEAD OF trigger

	Altering DB2 indexes
	Adding a column to an index when you add the column to a table
	Altering how varying-length index columns are stored
	Altering the clustering of an index
	Dropping and redefining a DB2 index
	Reorganizing indexes
	Recycling index version numbers

	Altering stored procedures
	Altering user-defined functions
	Altering implicitly created XML objects
	Changing the high-level qualifier for DB2 data sets
	Defining a new integrated catalog alias
	Changing the qualifier for system data sets
	Changing the load module to reflect the new qualifier
	Stopping DB2 when no activity is outstanding
	Renaming system data sets with the new qualifier
	Updating the BSDS with the new qualifier
	Establishing a new xxxxMSTR cataloged procedure
	Starting DB2 with the new xxxxMSTR and load module

	Changing qualifiers for other databases and user data sets
	Changing your work database to use the new high-level qualifier
	Changing user-managed objects to use the new qualifier
	Changing DB2-managed objects to use the new qualifier


	Tools for moving DB2 data
	Moving DB2 data
	Moving a DB2 data set
	Moving data without REORG or RECOVER
	Moving DB2-managed data with REORG, RECOVER, or REBUILD

	Scenario: Moving from index-controlled to table-controlled partitioning


	Part 2. Security and auditing
	Chapter 4. Getting started with DB2 security
	DB2 security solutions
	What′s new in DB2 Version 9.1 security?
	DB2 data access control
	ID-based access control within DB2
	Role-based access control within DB2
	Ownership-based access control within DB2
	Access control through multilevel security
	Access control through exit routines

	DB2 subsystem access control
	Managing access requests from local applications
	Managing access requests from remote applications

	Data set protection
	RACF for data protection
	Data encryption

	Scenario: Securing data access at Spiffy Computer
	Determining security objectives
	Securing manager access to employee data
	Creating views of employee data
	Granting managers the SELECT privilege
	Managing distributed access
	Auditing manager access

	Securing access to payroll operations and management
	Creating views of payroll operations
	Securing compensation accounts with update tables
	Securing compensation updates with other measures
	Granting privileges to payroll operations and management
	Auditing payroll operations and management

	Managing access privileges of other authorities
	Managing access by the DBADM authority
	Managing access by the SYSADM authority
	Managing access by object owners
	Managing access by other users



	Chapter 5. Managing access through authorization IDs or roles
	Authorization IDs and roles
	Authorization IDs
	Roles in a trusted context

	Privileges and authorities
	Explicit privileges
	Explicit collection privileges
	Explicit database privileges
	Explicit package privileges
	Explicit plan privileges
	Explicit routine privileges
	Explicit schema privileges
	Explicit system privileges
	Explicit table and view privileges
	Explicit usage privileges
	Explicit use privileges

	Implicit privileges through object ownership
	Administrative authorities
	Installation SYSADM
	SYSADM
	SYSCTRL
	Installation SYSOPR
	SYSOPR
	DBADM
	DBCTRL
	DBMAINT
	PACKADM

	Utility authorities for DB2 catalog and directory
	Privileges by authorization ID and authority
	Privileges required for common job roles and tasks
	Checking access authorization for data definition statements
	Privileges required for handling plans and packages
	Privileges required for using dynamic SQL statements


	Managing explicit privileges
	Granting privileges to a role
	Granting privileges to the PUBLIC ID
	Granting privileges to remote users
	Granting privileges through views
	Granting privileges with the GRANT statement
	Granting privileges to secondary IDs
	Granting privileges to user groups
	Granting privileges for binding plans
	Granting privileges for rebinding plans and packages
	Granting privileges for accessing distributed data

	Revoking privileges with the REVOKE statement
	Revoking privileges granted by multiple IDs
	Revoking privileges granted by all IDs
	Revoking privileges granted by a role
	Revoking all privileges from a role
	Revoking privileges for views
	Revoking privileges for materialized query tables
	Revoking privileges for plans or packages
	Revoking the SYSADM authority from IDs with the installation SYSADM authority
	Restrictions on privilege revocation


	Managing implicit privileges
	Managing implicit privileges through object ownership
	Ownership of objects with unqualified names
	Ownership of objects with qualified names
	Ownership of objects within a trusted context
	Changing object ownership
	Granting implicit privileges of object ownership

	Managing implicit privileges through plan or package ownership
	Establishing or changing plan or package ownership
	Establishing plan and package ownership in a trusted context
	How DB2 resolves unqualified names
	Validating authorization for executing plans or packages
	Caching authorization IDs for better performance
	Authorizing plan or package access through applications

	Managing implicit privileges through routines
	Privileges required for executing routines
	Granting privileges through routines
	Authorization behaviors for dynamic SQL statements


	Retrieving privilege records in the DB2 catalog
	Catalog tables with privilege records
	Retrieving all authorization IDs or roles with granted privileges
	Retrieving multiple grants of the same privilege
	Retrieving all authorization IDs or roles with the DBADM authority
	Retrieving all IDs or roles with access to the same table
	Retrieving all IDs or roles with access to the same routine
	Retrieving tables or views accessible by an ID
	Retrieving plans or packages with access to the same table
	Retrieving privilege information through views

	Implementing multilevel security with DB2
	Multilevel security
	Security labels
	Determining the security label of a user
	Security levels
	Security categories
	Users and objects in multilevel security
	Global temporary tables with multilevel security
	Materialized query tables with multilevel security
	Constraints in a multilevel-secure environment
	Field, edit, and validation procedures in a multilevel-secure environment
	Triggers in a multilevel-secure environment

	Mandatory access checking
	Dominance relationships between security labels
	Write-down control
	Granting write-down privileges

	Implementing multilevel security at the object level
	Implementing multilevel security with row-level granularity
	Creating tables with multilevel security
	Adding multilevel security to existing tables
	Removing tables with multilevel security
	Caching security labels

	Restricting access to the security label column
	Managing data in a multilevel-secure environment
	Using the SELECT statement with multilevel security
	Using the INSERT statement with multilevel security
	Using the UPDATE statement with multilevel security
	Using the MERGE statement with multilevel security
	Using the DELETE statement with multilevel security
	Using the TRUNCATE statement with multilevel security
	Using utilities with multilevel security

	Implementing multilevel security in a distributed environment
	Configuring TCP/IP with multilevel security
	Configuring SNA with multilevel security



	Chapter 6. Managing access through RACF
	Establishing RACF protection for DB2
	Defining DB2 resources to RACF
	Naming protected access profiles
	Enabling RACF checking for the DSNR and SERVER classes
	Enabling partner LU verification

	Permitting RACF access
	Defining RACF user IDs for DB2-started tasks
	Adding RACF groups
	Granting users and groups access
	Granting authorization on DB2 commands
	Permitting access from remote requesters

	Managing authorization for stored procedures
	Authorizing IDs for using RRSAF
	Specifying WLM-established server address spaces for stored procedures
	Managing authorizations for creation of stored procedures in WLM environments
	Authorizing users to refresh WLM environments
	Controlling stored procedure access to non-DB2 resources by using RACF
	Granting the CREATEIN privilege on schemas for stored procedures
	Granting privileges for using distinct types
	Granting privileges for using JAR files
	Granting privileges for executing stored procedures and stored procedure packages
	Controlling remote execution of stored procedures by using trusted contexts

	Protecting connection requests that use the TCP/IP protocol
	Establishing Kerberos authentication through RACF

	Implementing DB2 support for enterprise identity mapping
	Configuring the z/OS LDAP server
	Setting up RACF for the z/OS LDAP server
	Setting up the EIM domain controller
	Adding the SAF user mapping plug-in data set to LNKLIST

	Managing connection requests from local applications
	Processing of connection requests
	Using secondary IDs for connection requests
	Processing of sign-on requests
	Using secondary IDs for sign-on requests
	Using sample connection and sign-on exit routines for CICS transactions

	Managing connection requests from remote applications
	Security mechanisms for DRDA and SNA
	Security mechanisms for DB2 for z/OS as a requester
	Security mechanisms for DB2 for z/OS as a server

	Communications database for the server
	SYSIBM.LUNAMES columns
	SYSIBM.USERNAMES columns

	Enabling change of user passwords
	Authorization failure code
	Managing inbound SNA-based connection requests
	Processing of remote attachment requests
	Controlling LU attachments to the network
	Verifying partner LUs
	Accepting remote attachment requests
	Managing inbound IDs through DB2
	Managing inbound IDs through RACF
	Authenticating partner LUs
	Encrypting passwords
	Authenticating users through Kerberos
	Translating inbound IDs
	Associating inbound IDs with secondary IDs

	Managing inbound TCP/IP-based connection requests
	Processing of TCP/IP-based connection requests

	Managing denial-of-service attacks
	Managing outbound connection requests
	Communications database for the requester
	Processing of outbound connection requests

	Translating outbound IDs
	Sending passwords
	Sending RACF-encrypted passwords
	Sending RACF PassTickets
	Sending encrypted passwords from DB2 for z/OS clients
	Sending encrypted passwords from workstation clients



	Chapter 7. Managing access through trusted contexts
	Trusted contexts
	Trusted connections
	Defining trusted contexts
	Creating local trusted connections
	Establishing remote trusted connections by DB2 for z/OS requesters
	Establishing remote trusted connections to DB2 for z/OS servers
	Switching users of a trusted connection
	Reusing a local trusted connection through the DSN command processor and DB2I
	Reusing a remote trusted connection by DB2 for z/OS requesters
	Reusing a remote trusted connection through DB2 for z/OS servers
	Reusing a local trusted connection through RRSAF
	Reusing a local trusted connection through the SQL CONNECT statement

	Defining external security profiles
	Enabling users to perform actions on behalf of others
	Performing tasks on objects for other users

	Chapter 8. Managing access through data definition control
	Data definition statements
	Data definition control support
	Registration tables
	Installing data definition control support
	Enabling data definition control
	Controlling data definition by application name
	Controlling data definition by application name with exceptions
	Controlling data definition by object name
	Controlling data definition by object name with exceptions

	Registering object sets
	Disabling data definition control
	Managing registration tables and indexes
	Creating registration tables and indexes
	Naming registration tables and indexes
	Dropping registration tables and indexes
	Creating table spaces for registration tables
	Adding columns to registration tables
	Updating registration tables


	Chapter 9. Protecting data through encryption and RACF
	Encrypting your data through DB2 built-in functions
	Defining columns for encrypted data
	Defining column-level encryption
	Creating views with column-level encryption
	Using password hints with column-level encryption

	Defining value-level encryption
	Using password hints with value-level encryption
	Encrypting non-character values

	Using predicates for encrypted data
	Optimizing performance of encrypted data

	Encrypting your data with Secure Socket Layer support
	AT-TLS configuration
	Configuring the DB2 server for SSL
	Configuring the DB2 requester for SSL

	Protecting data sets through RACF
	Adding groups to control DB2 data sets
	Creating generic profiles for data sets
	Authorizing DB2 IDs to use data set profiles
	Enabling DB2 IDs to create data sets


	Chapter 10. Auditing access to DB2
	Determining active security measures
	DB2 audit trace
	Authorization IDs traced by auditing
	Audit classes
	Audit trace reports
	Audit trace records
	Limitations of the audit trace
	Starting the audit trace
	Stopping the audit trace
	Collecting audit trace records
	Formatting audit trace records
	Auditing in a distributed data environment

	Additional sources of audit information
	Determining ID privileges and authorities
	Auditing specific IDs or roles
	Auditing specific tables
	Ensuring data accuracy and integrity
	Ensuring data presence and uniqueness
	Protecting data integrity
	Tracking data changes
	Checking for lost and incomplete transactions

	Ensuring data consistency
	Using referential integrity for data consistency
	Using locks for data consistency
	Checking data consistency
	Checking data consistency with SQL queries
	Checking data consistency with the CHECK utilities
	Checking data consistency with the DISPLAY DATABASE command
	Checking data consistency with the REPORT utility
	Checking data consistency with the operation log
	Checking data consistency with internal integrity reports



	Part 3. Operation and recovery
	Chapter 11. DB2 basic operational concepts
	Recommendations for entering commands
	DB2 operator commands
	Where DB2 commands are entered
	Where command responses go
	Authorities for DB2 commands
	DB2 message identifiers
	Unsolicited DB2 messages
	Operational control options


	Chapter 12. Starting and stopping DB2
	Starting DB2
	Messages at start
	Options at start
	Restricting access to data
	Ending the wait state at startup
	Restart options after an abend

	Stopping DB2

	Chapter 13. Submitting work to DB2
	Submitting work by using DB2I
	Running TSO application programs
	DSN subcommands for TSO environments
	Sources that DB2 checks to find authorization access for an application program

	Running IMS application programs
	Running CICS application programs
	Running batch application programs
	Running application programs using CAF
	Running application programs using RRSAF

	Chapter 14. Scheduling administrative tasks
	Interacting with the administrative task scheduler
	Adding a task
	Scheduling capabilities of the administrative task scheduler
	Defining task schedules
	Choosing an administrative task scheduler in a data sharing environment
	ADMIN_TASK_ADD
	UNIX cron format

	Listing scheduled tasks
	ADMIN_TASK_LIST

	Listing the last execution status of scheduled tasks
	ADMIN_TASK_STATUS

	Removing a scheduled task
	ADMIN_TASK_REMOVE

	Manually starting the administrative task scheduler
	Manually stopping the administrative task scheduler
	Synchronization between administrative task schedulers in a data sharing environment
	Troubleshooting the administrative task scheduler
	Enabling tracing for administrative task scheduler problem determination
	Recovering the administrative task scheduler task list
	Problem executing a task
	Problem in user-defined table functions
	Problems in stored procedures


	Architecture of the administrative task scheduler
	The lifecycle of the administrative task scheduler
	Task lists of the administrative task scheduler
	Architecture of the administrative task scheduler in a data sharing environment

	Security guidelines for the administrative task scheduler
	User roles in the administrative task scheduler
	Protection of the interface of the administrative task scheduler
	Protection of the resources of the administrative task scheduler
	Secure execution of tasks in the administrative task scheduler

	Execution of scheduled tasks in the administrative task scheduler
	Multi-threading in the administrative task scheduler
	Scheduling execution of a stored procedure
	How the administrative task scheduler executes a stored procedure

	How the administrative task scheduler works with Unicode
	Scheduled execution of a JCL job
	Execution of scheduled tasks in a data sharing environment


	Chapter 15. Monitoring and controlling DB2 and its connections
	Controlling DB2 databases and buffer pools
	Starting databases
	Starting an object with a specific status
	Starting a table space or index space that has restrictions

	Monitoring databases
	Obtaining information about application programs
	Identifying who and what are using an object
	Determining which programs are holding locks on an object

	Obtaining information about and handling pages in error
	Characteristics of pages that are in error
	Displaying the logical page list
	Removing pages from the logical page list
	Displaying a write error page range

	Using the STOP DATABASE command to make objects available
	Commands to stop databases

	Altering buffer pools
	Monitoring buffer pools

	Controlling user-defined functions
	Starting user-defined functions
	Monitoring user-defined functions
	Stopping user-defined functions

	Controlling DB2 utilities
	Starting online utilities
	Monitoring and changing online utilities
	Controlling DB2 stand-alone utilities
	Stand-alone utilities


	Controlling the IRLM
	z/OS commands that operate on IRLM
	Starting the IRLM
	Stopping the IRLM

	Monitoring threads
	Types of threads
	Output of the DISPLAY THREAD command
	Displaying information about threads
	Displaying information by location
	Displaying information for non-DB2 locations
	Displaying conversation-level information about threads
	Displaying threads by LUWID
	Displaying threads by type

	Monitoring all DBMSs in a transaction

	Controlling connections
	Controlling TSO connections
	Connecting to DB2 from TSO
	Monitoring TSO and CAF connections
	Disconnecting from DB2 while under TSO

	Controlling CICS connections
	Connecting from CICS
	Restarting CICS
	Defining CICS threads
	Monitoring CICS threads
	Disconnecting CICS applications
	Disconnecting from CICS

	Controlling IMS connections
	Connections to the IMS control region
	IMS thread attachment
	Duplicate IMS correlation IDs
	Displaying IMS attachment facility threads
	Terminating IMS attachment facility threads
	Displaying IMS-DB2 indoubt units of recovery
	Recovering IMS-DB2 indoubt units of recovery
	Displaying postponed IMS-DB2 units of recovery
	Resolving IMS residual recovery entries
	Controlling IMS dependent region connections
	Monitoring activity on connections from DB2
	Monitoring activity of connections from IMS
	Disconnecting from IMS

	Controlling RRS connections
	Abnormal termination involving DB2 and RRS
	Displaying RRS indoubt units of recovery
	Recovering RRS indoubt units of recovery manually
	Displaying RRS postponed units of recovery
	Monitoring and displaying RRSAF connections
	Disconnecting RRSAF applications from DB2

	Controlling connections to remote systems
	Starting DDF
	Suspending DDF server activity
	Resuming DDF server activity
	Displaying information about DDF work
	Canceling dynamic SQL from a client application
	Canceling threads
	Monitoring and controlling stored procedures
	Monitoring DDF problems by using NetView
	Stopping DDF


	Controlling traces
	Types of DB2 traces
	Diagnostic traces for attachment facilities
	Controlling the DB2 trace
	Diagnostic trace for the IRLM

	Controlling the resource limit facility (governor)
	Changing subsystem parameter values
	Setting the priority of stored procedures

	Chapter 16. Managing the log and the bootstrap data set
	How database changes are made
	Units of recovery and points of consistency
	How DB2 rolls back work
	How the initial DB2 logging environment is established
	How DB2 creates log records
	How DB2 writes the active log
	How DB2 writes (offloads) the archive log
	What triggers an offload
	Role of the operator in the offload process
	Messages that are returned during offloading
	Effects of interruptions and errors on the offload process
	Archive log data sets
	How dual archive logging works
	Tips for archiving
	Automatic archive log deletion


	How DB2 retrieves log records
	Managing the log
	Quiescing activity before offloading
	Archiving the log
	Canceling log offloads

	Dynamically changing the checkpoint frequency
	Setting limits for archive log tape units
	Monitoring the system checkpoint
	Displaying log information

	Resetting the log RBA
	Log RBA range
	Resetting the log RBA value in a data sharing environment
	Resetting the log RBA value in a non-data sharing environment

	Canceling and restarting an offload
	Displaying the status of an offload
	Discarding archive log records
	Locating archive log data sets
	Management of the bootstrap data set
	Restoring dual-BSDS mode
	BSDS copies with archive log data sets
	Recommendations for changing the BSDS log inventory


	Chapter 17. Restarting DB2 after termination
	Methods of restarting
	Types of termination
	Normal termination
	Abnormal terminations (abends)

	Normal restart and recovery
	Phase 1: Log initialization
	Phase 2: Current status rebuild
	Phase 3: Forward log recovery
	Phase 4: Backward log recovery

	Automatic restart
	Restart in a data sharing environment
	Restart implications for table spaces that are not logged
	Conditional restart
	Restart considerations for identity columns


	Terminating DB2 normally
	Restarting automatically
	Deferring restart processing
	Deferral of restart

	Performing conditional restart
	Options for recovery operations after conditional restart
	Conditional restart records

	Resolving postponed units of recovery
	RECOVER POSTPONED command
	Recovering from an error during RECOVER POSTPONED processing


	Chapter 18. Maintaining consistency across multiple systems
	Multiple system consistency
	Two-phase commit process
	Commit coordinator and multiple participants
	Illustration of multi-site update
	Termination for multiple systems
	Consistency after termination or failure
	Normal restart and recovery for multiple systems
	Multiple-system restart with conditions
	Heuristic decisions about whether to commit or abort an indoubt thread

	Resolving indoubt units of recovery
	Resolution of IMS indoubt units of recovery
	Resolution of CICS indoubt units of recovery
	Resolution of RRS indoubt units of recovery
	Resolving WebSphere Application Server indoubt units of recovery
	Resolving remote DBMS indoubt units of recovery
	Determining the coordinator′s commit or abort decision
	Recovering indoubt threads
	Resetting the status of an indoubt thread


	Chapter 19. Backing up and recovering your data
	Plans for backup and recovery
	Plans for recovery of distributed data
	Plans for extended recovery facility toleration
	Plans for recovery of indexes
	Preparation for recovery: a scenario
	Events that occur during recovery
	Complete recovery cycles
	A recovery cycle example when using image copies
	How DFSMShsm affects your recovery environment

	Tips for maximizing data availability during backup and recovery
	Decide on the level of availability you need
	Practice for recovery
	Minimize preventable outages
	Determine the required backup frequency
	Minimize the elapsed time of RECOVER jobs
	Minimize the elapsed time for COPY jobs
	Determine the right characteristics for your logs
	Minimize DB2 restart time

	Where to find recovery information
	How to report recovery information
	How to discard SYSCOPY and SYSLGRNX records
	Preparations for disaster recovery
	System-wide points of consistency

	Recommendations for more effective recovery from inconsistency
	Actions to take to aid in successful recovery of inconsistent data
	Actions to avoid in recovery of inconsistent data

	How to recover multiple objects in parallel
	Automatic fast log apply during RECOVER
	Recovery of page sets and data sets
	Recovery of the work file database
	Page set and data set copies
	System-level backups for object-level recoveries

	Recovery of data to a prior point in time
	Point-in-time recovery with system-level backups
	Point-in-time recovery using the RECOVER utility
	Implications of moving data sets after a system-level backup
	Recovery of table spaces
	Recovery of indexes
	Preparing to recover to a prior point of consistency

	Preparing to recover an entire DB2 subsystem to a prior point in time using image copies or object-level backups
	Creating essential disaster recovery elements
	Resolving problems with a user-defined work file data set
	Resolving problems with DB2-managed work file data sets
	Recovering error ranges for a work file table space
	Recovery of error ranges for a work file table space

	Recovering after a conditional restart of DB2
	Recovery of the catalog and directory

	Regenerating missing identity column values
	Recovery of tables that contain identity columns

	Recovering a table space and all of its indexes
	Recovery implications for objects that are not logged

	Removing various pending states from LOB and XML table spaces
	Restoring data by using DSN1COPY
	Backing up and restoring data with non-DB2 dump and restore
	Recovering accidentally dropped objects
	How to avoid accidentally dropping objects
	Recovering an accidentally dropped table
	Recovering an accidentally dropped table space

	Recovering your DB2 system to a given point in time by using the RESTORE SYSTEM utility
	Options for restoring data to a prior point in time

	Recovering by using DB2 restart recovery
	Recovering by using FlashCopy backups
	Making catalog definitions consistent with your data after recovery to a prior point in time
	Recovery of catalog and directory tables

	Performing remote site recovery from a disaster at a local site
	Recovering with the BACKUP SYSTEM and RESTORE SYSTEM utilities
	Recovering without using the BACKUP SYSTEM utility

	Backup and recovery involving clone tables
	Data restore of an entire system


	Chapter 20. Recovering from different DB2 for z/OS problems
	Recovering from IRLM failure
	Recovering from z/OS or power failure
	Recovering from disk failure
	Recovering from application errors
	Backing out incorrect application changes (with a quiesce point)
	Backing out incorrect application changes (without a quiesce point)

	Recovering from IMS-related failures
	Recovering from IMS control region failure
	Recovering from IMS indoubt units of recovery
	Recovering IMS indoubt units of work that need to be rolled back

	Recovering from IMS application failure
	Recovering from a DB2 failure in an IMS environment

	Recovering from CICS-related failure
	Recovering from CICS application failures
	Recovering DB2 when CICS is not operational
	Recovering DB2 when the CICS attachment facility cannot connect to DB2
	Recovering CICS indoubt units of recovery
	Recovering from CICS attachment facility failure

	Recovering from subsystem termination
	Recovering from temporary resource failure
	Recovering from active log failures
	Recovering from being out of space in active logs
	Recovering from a write I/O error on an active log data set
	Recovering from a loss of dual active logging
	Recovering from I/O errors while reading the active log

	Recovering from archive log failures
	Recovering from allocation problems with the archive log
	Recovering from write I/O errors during archive log offload
	Recovering from read I/O errors on an archive data set during recovery
	Recovering from insufficient disk space for offload processing

	Recovering from BSDS failures
	Recovering from an I/O error on the BSDS
	Recovering from an error that occurs while opening the BSDS
	Recovering from unequal timestamps on BSDSs
	Recovering the BSDS from a backup copy

	Recovering from BSDS or log failures during restart
	Recovering from failure during log initialization or current status rebuild
	Failure during log initialization phase
	Description of failure during current status rebuild
	Restarting DB2 by truncating the log

	Recovering from a failure during forward log recovery
	Forward-log recovery failure
	Starting DB2 by limiting restart processing

	Recovering from a failure during backward log recovery
	Backward log recovery failure
	Bypassing backout before restarting

	Recovering from a failure during a log RBA read request
	Recovering from unresolvable BSDS or log data set problem during restart
	Falling back to a prior shutdown point

	Recovering from a failure resulting from total or excessive loss of log data
	Recovering from a total loss of the log
	Recovering from an excessive loss of active log data

	Resolving inconsistencies resulting from a conditional restart
	Inconsistencies in a distributed environment
	Resolving inconsistencies


	Recovering from DB2 database failure
	Recovering a DB2 subsystem to a prior point in time
	Recovering from a down-level page set problem
	Recovering from a problem with invalid LOBs
	Recovering from table space I/O errors
	Recovering from DB2 catalog or directory I/O errors
	Recovering from integrated catalog facility failure
	Recovering VSAM volume data sets that are out of space or destroyed
	Recovering from out-of-disk-space or extent limit problems
	Extending a data set
	Enlarging a fully extended user-managed data set
	Enlarging a fully extended DB2-managed data set
	Adding a data set
	Redefining a partition (index-based partitioning)
	Redefining a partition (table-based partitioning)
	Enlarging a fully extended data set for the work file database


	Recovering from referential constraint violation
	Recovering from distributed data facility failure
	Recovering from conversation failure
	Recovering from communications database failure
	Recovering from a problem with a communications database that is incorrectly defined

	Recovering from database access thread failure
	Recovering from VTAM failure
	Recovering from TCP/IP failure
	Recovering from remote logical unit failure
	Recovering from an indefinite wait condition
	Recovering database access threads after security failure

	Performing remote-site disaster recovery
	Recovering from a disaster by using system-level backups
	Restoring data from image copies and archive logs
	Restoring data in a non-data sharing environment
	Restoring data in a data sharing environment
	What to do about utilities that were in progress at time of failure

	Recovering from disasters by using a tracker site
	Characteristics of a tracker site
	Setting up a tracker site
	Establishing a recovery cycle by using RESTORE SYSTEM LOGONLY
	Establishing a recovery cycle by using the RECOVER utility
	Media failures during LOGONLY recovery
	Maintaining a tracker site
	Making the tracker site be the takeover site

	Using data mirroring for disaster recovery
	Role of data mirroring in recovery from a rolling disaster
	Role of consistency groups in recovery
	Recovering in a data mirroring environment
	Managing DFSMShsm default settings when using the BACKUP SYSTEM, RESTORE SYSTEM, and RECOVER utilities
	Recovering with Extended Remote Copy


	Scenarios for resolving problems with indoubt threads
	Scenario: Recovering from communication failure
	Scenario: Making a heuristic decision about whether to commit or abort an indoubt thread
	Scenario: Recovering from an IMS outage that results in an IMS cold start
	Scenario: Recovering from a DB2 outage at a requester that results in a DB2 cold start
	Scenario: What happens when the wrong DB2 subsystem is cold started
	Scenario: Correcting damage from an incorrect heuristic decision about an indoubt thread


	Chapter 21. Reading log records
	Contents of the log
	Unit of recovery log records
	Database exception table records
	Typical unit of recovery log records
	Types of changes to data

	Checkpoint log records
	Database page set control records
	Other exception information

	The physical structure of the log
	Physical and logical log records
	The log record header
	The log control interval definition (LCID)
	Log record type codes
	Log record subtype codes
	Interpreting data change log records

	Reading log records with IFI
	Gathering active log records into a buffer
	Reading specific log records (IFCID 0129)
	Reading complete log data (IFCID 0306)
	Specifying the return area
	Qualifying log records


	Reading log records with OPEN, GET, and CLOSE
	JCL DD statements for DB2 stand-alone log services
	Data sharing members that participate in a read
	Registers and return codes
	Stand-alone log OPEN request
	Stand-alone log GET request
	Stand-alone log CLOSE request
	Sample application that uses stand-alone log services

	Reading log records with the log capture exit routine

	Part 4. Appendixes
	Appendix A. Exit routines
	Connection routines and sign-on routines
	Specifying connection and sign-on routines
	Sample connection and sign-on routines
	When connection and sign-on routines are taken
	Exit parameter list for connection and sign-on routines
	Authorization ID parameter list for connection and sign-on routines
	Input values for connection routines
	Input values for sign-on routines
	Expected output for connection and sign-on routines
	Processing in sample connection and sign-on routines
	Performance considerations for connection and sign-on routines
	Debugging connection and sign-on routines
	Session variables in connection and sign-on routines

	Access control authorization exit routines
	Specifying access control authorization routines
	The default access control authorization routine
	When access control authorization routines are taken
	Considerations for access control authorization routines
	When DB2 cannot provide an ACEE
	Authorization IDs and ACEEs
	Invalid and inoperative plans and packages
	Automatic rebind with DB2 roles
	DB2 roles for the DYNAMICRULES(BIND) Option
	Using DB2 roles for BINDAGENT
	View authorization
	Dropping views
	Caching of EXECUTE on plans, packages, and routines
	Caching of dynamic SQL statements
	Resolution of user-defined functions
	Creating materialized query tables

	Parameter list for access control authorization routines
	Expected output for access control authorization routines
	Handling return codes
	Handling reason codes
	Exception processing

	Debugging access control authorization routines
	Determining whether the access control authorization routine is active

	Edit routines
	Specifying edit routines
	When edit routines are taken
	Parameter list for edit routines
	Incomplete rows and edit routines
	Expected output for edit routines

	Validation routines
	Specifying validation routines
	When validation routines are taken
	Parameter list for validation routines
	Incomplete rows and validation routines
	Expected output for validation routines

	Date and time routines
	Specifying date and time routines
	When date and time routines are taken
	Parameter list for date and time routines
	Expected output for date and time routines

	Conversion procedures
	Specifying conversion procedures
	When conversion procedures are taken
	Parameter list for conversion procedures
	Expected output for conversion procedures

	Field procedures
	Field definition for field procedures
	Specifying field procedures
	When field procedures are taken
	Control blocks for execution of field procedures
	Parameter list (FPPL) for field procedures
	Work area for field procedures
	Information block (FPIB) for field procedures
	Parameter value list (FPPVL) for field procedures
	Value descriptor for field procedures

	Field-definition (function code 8)
	Field-encoding (function code 0)
	Field-decoding (function code 4)

	Log capture routines
	Specifying log capture routines
	When log capture routines are taken
	Parameter list for log capture routines

	Routines for dynamic plan selection in CICS
	Routine for the CICS transaction invocation stored procedure
	General guidelines for writing exit routines
	Coding rules for exit routines
	Modifying exit routines
	Execution environment for exit routines
	Registers at invocation for exit routines
	Parameter list for exit routines

	Row formats for edit and validation routines
	Column boundaries for edit and validation routines
	Null values for edit procedures, field procedures, and validation routines
	Fixed-length rows for edit and validation routines
	Varying-length rows for edit and validation routines
	Varying-length rows with nulls for edit and validation routines
	EDITPROCs and VALIDPROCs for handling basic and reordered row formats
	Converting basic row format table spaces with edit and validation routines to reordered row format
	Converting basic row format table spaces with edit routines to reordered row format
	Converting basic row format table spaces with validation routines to reordered row format
	Row format conversion for table spaces

	Dates, times, and timestamps for edit and validation routines
	Parameter list for row format descriptions
	DB2 codes for numeric data in edit and validation routines

	RACF access control module

	Appendix B. Stored procedures for administration
	DSNACICS stored procedure
	The DSNACICX user exit routine

	DSNLEUSR stored procedure
	DSNAIMS stored procedure
	DSNAIMS2 stored procedure
	ADMIN_COMMAND_DB2 stored procedure
	ADMIN_COMMAND_DSN stored procedure
	ADMIN_COMMAND_UNIX stored procedure
	ADMIN_DS_BROWSE stored procedure
	ADMIN_DS_DELETE stored procedure
	ADMIN_DS_LIST stored procedure
	ADMIN_DS_RENAME stored procedure
	ADMIN_DS_SEARCH stored procedure
	ADMIN_DS_WRITE stored procedure
	ADMIN_INFO_HOST stored procedure
	ADMIN_INFO_SSID stored procedure
	ADMIN_INFO_SYSPARM stored procedure
	ADMIN_JOB_CANCEL stored procedure
	ADMIN_JOB_FETCH stored procedure
	ADMIN_JOB_QUERY stored procedure
	ADMIN_JOB_SUBMIT stored procedure
	ADMIN_UTL_SCHEDULE stored procedure
	ADMIN_UTL_SORT stored procedure
	Common SQL API stored procedures
	Versioning of XML documents
	XML input documents
	Complete mode for returning valid XML input documents

	XML output documents
	XPath expressions for filtering output

	XML message documents
	GET_CONFIG stored procedure
	GET_MESSAGE stored procedure
	GET_SYSTEM_INFO stored procedure

	Troubleshooting DB2 stored procedures

	Information resources for DB2 for z/OS and related products
	How to obtain DB2 information
	How to use the DB2 library
	Notices
	Programming Interface Information
	General-use Programming Interface and Associated Guidance Information
	Product-sensitive Programming Interface and Associated Guidance Information

	Trademarks

	Glossary
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z


