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Note: This QuickSheet is relevant to Bourne derived (Bourne, Korn, Bash) lan-
guage issues only. Unix command line utilities are not covered here. Compatibility
varies by implementation and version - many Bourne implementations are simply
links to Korn or Bash. The generic identifier “Korn” assumes Korn88 unless
otherwise specified.
Variables
• Explicit declaration and typing is done with typeset in Korn and declare (or
typeset) in Bash. Explicit declaration is not required, and is not used in Bourne.
• Bash and Korn support function local variables, but have different scoping rules.
Typed variables

typeset declare Description
-a -a (Normal / indexed) array
-A -A Associative array [Bash,Korn93]
-F n Floating point with optional n percision [Korn93]
-i b -i Integer (w/optional base argument b [Korn] )
-r -r Make variable read only
-n Reference variable (“pointer” to another var.) [Korn93]
-u -u Convert on assignment to uppercase
-l -l Convert on assignment to lowercase
-T Declare a (compound variable) type [Korn93]

Integer base conversion
HEX=ff ⇐ $HEX is a string containing ff
typeset -i 8 OCT=16#$HEX ⇐ $OCT now holds “8#377”
typeset -i 10 DEC=$OCT ⇐ Leading “8#” is within $OCT, ∴ not required
printf "%x\n" $DEC ⇐ $DEC holds 255, printf prints “ff”

Typed variable example
typeset -r MY CONST VAR=100

Find length of $myvar
length=${#myvar}

Arrays [Bash,Korn]
Declare & fill array
set -A pepboys manny moe jack [Korn]
pepboys=(manny moe jack) [Bash,Korn]

Declaring an array
typeset -a myarray [Bash,Korn] ⇐or⇒ declare -a myarray [Bash]

Access 4th member of array
GETVAL=${myarray[3]} ⇐ Indexes are 0 based

Print out all members of the array
echo ${pepboys[*]}
my cmd "${pepboys[@]}" ⇐ Preserves whitespace

Count the number of members in an array
count=${#myarray[*]}

Append newvalue to an array
myarray=( ${myarray[*]} newvalue ) ⇐ Specialized indexing will be lost
↪→ Use "${myarray[@]}" to preserve whitespace in array members.
myarray+=( newvalue ) [Korn93]

Associative Arrays [Bash,Korn93]
Declare associative array
typeset -A famous people

Fill associative array
aarray=( [one]=uno [two]=dos [three]=tres )

Add item to array
famous people[Socrates]=Philosopher

Access item from array
famous skill=${famous people[Hannibal]}

Print out all keys of the array
echo ${!famous people[*]} ⇐or⇒ echo "${!famous people[@]}"

Compound Variables [Korn93]
Declare compound variable with three members: a, b, & c. Explicitly type c.
myvar=( a= b= typeset -i c= )
myvar.c=4 ⇐ Set member c from previous example to 4
B=${myvar.b} ⇐ Access member b from previous example

if / test
↪→ Note: The then and fi clauses in the following examples are omitted for space.
Numeric compare ⇐ ( -lt < | -gt > | -ne != | -eq == )
if (( $N > 1 )) ⇐or⇒ if (( $N == 1 )) [Bash,Korn]
if [ $N -gt 1 ] ⇐or⇒ if [ $N -eq 1 ] [Bourne]

String compare⇐ ( != | = | < | > ) ⇐ < and > are for sort order compare
if [[ $X = $Y ]] [Bash,Korn] ⇐ Use single =, but many shells allow ==
if [[ $X == $Y ]] [Korn93] ⇐ Preferred method for Korn 93, = is allowed
if [ $X = $Y ] [Bourne] ⇐ [ is a builtin or binary, [[ is a language construct

Ands / Ors ⇐ ( -a && | -o || )
if [[ $A = $B || $C = $D ]] [Bash,Korn]
if [ $A = $B -o $C = $D ] [Bourne]

Test for first parameter (test for potentially empty string)
if [[ -z $1 ]] [Bash,Korn]
if [ -z "$1" ] ⇐or⇒ if [ "$1" = "" ] [Bourne]

Check return value from mycmd
if mycmd > /dev/null 2>&1 [Bash,Korn] ⇐ Use $? for Bourne.

Extracting Substrings
${astrvar:offset :length } ⇐ length chars of $astrvar starting at offset
${astrvar:offset } ⇐ Remainder of the chars of $astrvar starting at offset

Shell / set options
-a allexport Export variables on creation or modification
-e errexit Exit script on non-zero return value, throw ERR
-x xtrace Print commands as run with variable expansion
-v verbose Print lines as read from file without variable expansion
-u nounset Check for unset variables
-n noexec Do not execute read commands (Can be used for trigger-lock)

Shell math
Add 1 to variable $VAL, place result in $VAL
VAL=$((VAL + 1)) [Bash,Korn] ⇐ Leading $ not required inside $(( ... ))
VAL=‘expr $VAL + 1‘ [Bourne] ⇐ $(( ... )) works in most implementations
(( VAL++ ))⇐or⇒ (( VAL += 1 ))⇐or⇒ (( VAL = VAL + 1 )) [Bash,Korn]

Test conditions
-d file file exists as a directory
-e file file exists
-f file file exists as a file
-s file file exists and is larger than 0
-r file file exists and is readable
-w file file exists and is writeable
-x file file exists and is executable
-z string string is empty
↪→ Additional examples are available from the man page for test.
if [[ -e /path/to/myfile ]] ; then echo "myfile exists." ; fi
if [[ -z $1 ]] ; then echo "Parameter missing." ; fi
↪→ These examples are [Bash,Korn] , while “[” and “test” are [Bourne] .

Command Substitution
VAL=$(mycmd 2> /dev/null) ⇐ Newer version, tends to work in Bourne
VAL=‘mycmd 2> /dev/null‘ ⇐ Older version, works in all
VAL=${ mycmd 2> /dev/null } [Korn93] ⇐ No sub-shell, allows for side effects

Special Variables
$$ - PID of shell (frequently used in temp file naming)
$? - Last return value
$0 - The current shell ⇐ Don’t use $SHELL
$SECONDS - Seconds since shell was started
$RANDOM - A random number ⇐ Use modulus (%) to limit to a range
$@ - All arguments (Also $* - different in seperator)
$LINENO - Current line number of script

Functions
function bash korn func [Bash,Korn]
{ echo "First parameter is $1." ; }
bourne func () [Bourne] ⇐ Supported in all later shells
{ echo "First parameter is $1." ; }

Conditional commands
true && echo "Always print" true || echo "Never print"
false && echo "Never print" false || echo "Always print"
[ -e afile ] && echo "afile exists."

Pattern matching
?(pattern ) - Zero or one instances of pattern
*(pattern ) - Zero or more instances of pattern
+(pattern ) - One or more instances of pattern
@(pattern ) - Exactly one instance of pattern
!(pattern ) - Anything not matching pattern
~(E)pattern - pattern is an extended regular expression (egrep)
~(G)pattern - pattern is an basic regular expression (grep)
if [[ ${STRING} = A@(da|to)m ]] ⇐ Match Adam or Atom

Substring pattern extraction / substitution
${var#pattern } - Delete first match from left, return rest
${var##pattern } - Delete all matches from left, return rest
${var%pattern } - Delete last match from right, return rest
${var%%pattern } - Delete all matches from right, return rest
${var/pattern /string } - Replace longest match of first occurrence
${var//pattern /string } - Replace longest match of all occurrences
${var/#pattern /string } - Replace longest match from beginning
${var/%pattern /string } - Replace longest match from end
theaddr=192.168.1.25 ⇐ Assign an address (example assumes class C)
network=${theaddr%.*} ⇐ Delete dot and last octet
thehost=${theaddr##*.} ⇐ Delete all octets followed by dots
echo ${password//~(E)./X} ⇐ Substitute X for every character in $password

Variable substitution
VAR defined VAR undefined VAR undefined

Expression return return set VAR to
${VAR:-string } $VAR string
${VAR:=string } $VAR string string
${VAR:?string } $VAR string to stderr, exit
${VAR:+string } string NULL

Other
my cmd <<EOF
This is text that my cmd will read from stdin as a "here document"
EOF

Call cmd failed function when command fails (by trapping ERR signal) [Bash,Korn]
trap cmd failed ERR⇐ errexit option is not required, but may be appropriate

Pass a variable (compound, array, or other) by reference [Korn93]
my function my var ⇐ Note that my var does not have leading $

Recieve a variable by reference (inside of previously named function) [Korn93]
typeset -n local var=$1 ⇐ Now access $my var as $local var



Output redirection
echo "ERROR: Message." >&2 ⇐ Send output to stderr
acmd 2> /dev/null 1| newcmd ⇐ Capture stdout, ignore stderr

Universal EOL suppression
• Use the more expensive printf until EOL suppression method is determined.
• Can use if-then block instead of || and anonymous function.

printf "Determining method of EOL suppression..."
N=
C=
if ‘echo "X\c" | grep c > /dev/null 2>&1‘ ⇐ Bourne compatible
then ↪→ Using $(...) instead of ‘...‘ may break in Bourne

N=-n
C=

else
N=
C=’\c’

fi
printf "Done.\n"

echo $N "Running my cmd...$C" ⇐ EOL suppressed
true || { echo "Failed." ; exit ; }
echo "Done." ⇐ Normal EOL

Trap ERR
• If/when my cmd returns an non-zero exit value, the script will execute the

error handler function and exit.

function error handler
{

printf "Failed.\n"
echo "ERROR: Command failed. Exiting now." >&2

}

trap error handler ERR ⇐ register error handling function for ERR signal

set -e ⇐ Tell shell to exit on failure

printf "Running my cmd..."
my cmd
printf "Done.\n"

Timer with visual
• This example runs a command multiple times, while displaying a visual indicator,

and then calculates the average time for each run.
• When running a single lengthy process, an alternative is to background the

spinner and have it stop on a flag file.

typeset -i start time=$SECONDS
typeset -i end time=0
typeset -i total time=0
typeset -i count=0
typeset -ir ITERATIONS=25 ⇐ This will be a read-only integer
typeset -F 3 average time ⇐ Will print to 3 decimal places
typeset -F ftemp

printf "." ⇐ printf may not be a builtin! (Use “type” to find out.)
while (( count < ITERATIONS ))
do

case $(( count % 4 )) in
0) printf "\b|" ;;
1) printf "\b/" ;;
2) printf "\b-" ;;
3) printf "\b\\" ;;

esac

my timed cmd > /dev/null 2>&1 ⇐ The timed command
(( count++ ))

done

printf "\b" ⇐ Clean up the spinner

total time=$(( SECONDS - start time ))
ftemp=$total time ⇐ $ftemp is used as a float “cast” here
average time=$(( ftemp / ITERATIONS ))

echo Iterations: $ITERATIONS
echo Total time: $total time seconds
echo Average time: $average time seconds

Capture more than one variable of output
• A, B, & C will capture first three space separated items, REST will capture all that

remains. stderr will be ignored.

my cmd 2> /dev/null | read A B C REST
echo "Third item is $C"

Capture more than one variable in loop
From a file
while read A B C REST
do

echo $C
done < afile

From a command
my cmd | while read A B C REST
do

echo $C
done

Compound variable passed by reference
• The compound variable allows us to pass a complex set of parameters as a single

option. This code is Korn 93 only.

function file op
{ ⇐ Parameter checking would be appropriate

echo Running $1 on $2 ⇐ $1 is a string / name of a variable

typeset -n operation=$1 ⇐ operation is a reference to compound var
${operation.command} ${operation.args} $2 ⇐ Run the command
operation.last result=$? ⇐ Save the result
return ${operation.last result} ⇐ Return the result

}

ALLREAD=( command=chmod
args=664
last result= )

ALL RUN=( command=chmod
args=775
last result= )

WFAVOWN=( command=chown
args=wfavorit:wfavorit
last result= )

file op ALLREAD myfile ⇐ Return value can be used here
echo Result: ${ALLREAD.last result} ⇐ or here
file op WFAVOWN myfile

Flow Control
if-then-else block
if true ⇐ See the if / test section for condition examples.
then

echo "Always"
else ⇐or⇒ elif condition ; then

echo "Never"
fi

Switch statement
case $GRADE in

A|B) echo "Good grade" ;& ⇐ “Fall through” to next item [Korn]
C|D) echo "Pass" ;;
"F") echo "Fail" ;;
*) echo "Not Recgonized" ;;

esac
select loop
select CHOICE in Work Sleep Eat Exit
do

echo "${CHOICE}ing."
if [ "$CHOICE" = "Exit" ] ; then break ; fi ⇐ Leave select loop

done
while loop
while true ⇐or⇒ until false
do

echo "Infinite loop."
if true ; then continue ; fi ⇐ Goto the top of the loop
echo "Never reachable."

done
Iterate over list
for X in 1 2 3
do

echo $X
done
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