
Shell QuickSheet
Version: 1.0.0
Date: 10/30/11

Note: This QuickSheet is relevant to Bourne derived (Bourne, Korn, Bash) lan-
guage issues only. Unix command line utilities are not covered here. Compatibility
varies by implementation and version - many Bourne implementations are simply
links to Korn or Bash. The generic identifier “Korn” assumes Korn88 unless
otherwise specified.
Variables
• Explicit declaration and typing is done with typeset in Korn and declare (or
typeset) in Bash. Explicit declaration is not required, and is not used in Bourne.
• Bash and Korn support function local variables, but have different scoping rules.
Typed variables

typeset declare Description
-a -a (Normal / indexed) array
-A -A Associative array [Bash,Korn93]
-F n Floating point with optional n percision [Korn93]
-i b -i Integer (w/optional base argument b [Korn])
-r -r Make variable read only
-n Reference variable (“pointer” to another var.) [Korn93]
-u -u Convert on assignment to uppercase
-l -l Convert on assignment to lowercase
-T Declare a (compound variable) type [Korn93]

Integer base conversion
HEX=ff ⇐ $HEX is a string containing ff
typeset -i 8 OCT=16#$HEX ⇐ $OCT now holds “8#377”
typeset -i 10 DEC=$OCT ⇐ Leading “8#” is within $OCT, ∴ not required
printf "%x\n" $DEC ⇐ $DEC holds 255, printf prints “ff”

Typed variable example
typeset -r MY CONST VAR=100

Find length of $myvar
length=${#myvar}

Arrays [Bash,Korn]
Declare & fill array
set -A pepboys manny moe jack [Korn]
pepboys=(manny moe jack) [Bash,Korn]

Declaring an array
typeset -a myarray [Bash,Korn] ⇐or⇒ declare -a myarray [Bash]

Access 4th member of array
GETVAL=${myarray[3]} ⇐ Indexes are 0 based

Print out all members of the array
echo ${pepboys[*]}
my cmd "${pepboys[@]}" ⇐ Preserves whitespace

Count the number of members in an array
count=${#myarray[*]}

Append newvalue to an array
myarray=(${myarray[*]} newvalue) ⇐ Specialized indexing will be lost
↪→ Use "${myarray[@]}" to preserve whitespace in array members.
myarray+=(newvalue) [Korn93]

Associative Arrays [Bash,Korn93]
Declare associative array
typeset -A famous people

Fill associative array
aarray=([one]=uno [two]=dos [three]=tres)

Add item to array
famous people[Socrates]=Philosopher

Access item from array
famous skill=${famous people[Hannibal]}

Print out all keys of the array
echo ${!famous people[*]} ⇐or⇒ echo "${!famous people[@]}"

Compound Variables [Korn93]
Declare compound variable with three members: a, b, & c. Explicitly type c.
myvar=(a= b= typeset -i c=)
myvar.c=4 ⇐ Set member c from previous example to 4
B=${myvar.b} ⇐ Access member b from previous example

if / test
↪→ Note: The then and fi clauses in the following examples are omitted for space.
Numeric compare ⇐ (-lt < | -gt > | -ne != | -eq ==)
if (($N > 1)) ⇐or⇒ if (($N == 1)) [Bash,Korn]
if [$N -gt 1] ⇐or⇒ if [$N -eq 1] [Bourne]

String compare⇐ (!= | = | < | >) ⇐ < and > are for sort order compare
if [[$X = $Y]] [Bash,Korn] ⇐ Use single =, but many shells allow ==
if [[$X == $Y]] [Korn93] ⇐ Preferred method for Korn 93, = is allowed
if [$X = $Y] [Bourne] ⇐ [is a builtin or binary, [[is a language construct

Ands / Ors ⇐ (-a && | -o ||)
if [[$A = $B || $C = $D]] [Bash,Korn]
if [$A = $B -o $C = $D] [Bourne]

Test for first parameter (test for potentially empty string)
if [[-z $1]] [Bash,Korn]
if [-z "$1"] ⇐or⇒ if ["$1" = ""] [Bourne]

Check return value from mycmd
if mycmd > /dev/null 2>&1 [Bash,Korn] ⇐ Use $? for Bourne.

Extracting Substrings
${astrvar:offset :length } ⇐ length chars of $astrvar starting at offset
${astrvar:offset } ⇐ Remainder of the chars of $astrvar starting at offset

Shell / set options
-a allexport Export variables on creation or modification
-e errexit Exit script on non-zero return value, throw ERR
-x xtrace Print commands as run with variable expansion
-v verbose Print lines as read from file without variable expansion
-u nounset Check for unset variables
-n noexec Do not execute read commands (Can be used for trigger-lock)

Shell math
Add 1 to variable $VAL, place result in $VAL
VAL=$((VAL + 1)) [Bash,Korn] ⇐ Leading $ not required inside $((...))
VAL=‘expr $VAL + 1‘ [Bourne] ⇐ $((...)) works in most implementations
((VAL++))⇐or⇒ ((VAL += 1))⇐or⇒ ((VAL = VAL + 1)) [Bash,Korn]

Test conditions
-d file file exists as a directory
-e file file exists
-f file file exists as a file
-s file file exists and is larger than 0
-r file file exists and is readable
-w file file exists and is writeable
-x file file exists and is executable
-z string string is empty
↪→ Additional examples are available from the man page for test.
if [[-e /path/to/myfile]] ; then echo "myfile exists." ; fi
if [[-z $1]] ; then echo "Parameter missing." ; fi
↪→ These examples are [Bash,Korn] , while “[” and “test” are [Bourne] .

Command Substitution
VAL=$(mycmd 2> /dev/null) ⇐ Newer version, tends to work in Bourne
VAL=‘mycmd 2> /dev/null‘ ⇐ Older version, works in all
VAL=${ mycmd 2> /dev/null } [Korn93] ⇐ No sub-shell, allows for side effects

Special Variables
$$ - PID of shell (frequently used in temp file naming)
$? - Last return value
$0 - The current shell ⇐ Don’t use $SHELL
$SECONDS - Seconds since shell was started
$RANDOM - A random number ⇐ Use modulus (%) to limit to a range
$@ - All arguments (Also $* - different in seperator)
$LINENO - Current line number of script

Functions
function bash korn func [Bash,Korn]
{ echo "First parameter is $1." ; }
bourne func () [Bourne] ⇐ Supported in all later shells
{ echo "First parameter is $1." ; }

Conditional commands
true && echo "Always print" true || echo "Never print"
false && echo "Never print" false || echo "Always print"
[-e afile] && echo "afile exists."

Pattern matching
?(pattern) - Zero or one instances of pattern
*(pattern) - Zero or more instances of pattern
+(pattern) - One or more instances of pattern
@(pattern) - Exactly one instance of pattern
!(pattern) - Anything not matching pattern
~(E)pattern - pattern is an extended regular expression (egrep)
~(G)pattern - pattern is an basic regular expression (grep)
if [[${STRING} = A@(da|to)m]] ⇐ Match Adam or Atom

Substring pattern extraction / substitution
${var#pattern } - Delete first match from left, return rest
${var##pattern } - Delete all matches from left, return rest
${var%pattern } - Delete last match from right, return rest
${var%%pattern } - Delete all matches from right, return rest
${var/pattern /string } - Replace longest match of first occurrence
${var//pattern /string } - Replace longest match of all occurrences
${var/#pattern /string } - Replace longest match from beginning
${var/%pattern /string } - Replace longest match from end
theaddr=192.168.1.25 ⇐ Assign an address (example assumes class C)
network=${theaddr%.*} ⇐ Delete dot and last octet
thehost=${theaddr##*.} ⇐ Delete all octets followed by dots
echo ${password//~(E)./X} ⇐ Substitute X for every character in $password

Variable substitution
VAR defined VAR undefined VAR undefined

Expression return return set VAR to
${VAR:-string } $VAR string
${VAR:=string } $VAR string string
${VAR:?string } $VAR string to stderr, exit
${VAR:+string } string NULL

Other
my cmd <<EOF
This is text that my cmd will read from stdin as a "here document"
EOF

Call cmd failed function when command fails (by trapping ERR signal) [Bash,Korn]
trap cmd failed ERR⇐ errexit option is not required, but may be appropriate

Pass a variable (compound, array, or other) by reference [Korn93]
my function my var ⇐ Note that my var does not have leading $

Recieve a variable by reference (inside of previously named function) [Korn93]
typeset -n local var=$1 ⇐ Now access $my var as $local var

Output redirection
echo "ERROR: Message." >&2 ⇐ Send output to stderr
acmd 2> /dev/null 1| newcmd ⇐ Capture stdout, ignore stderr

Universal EOL suppression
• Use the more expensive printf until EOL suppression method is determined.
• Can use if-then block instead of || and anonymous function.

printf "Determining method of EOL suppression..."
N=
C=
if ‘echo "X\c" | grep c > /dev/null 2>&1‘ ⇐ Bourne compatible
then ↪→ Using $(...) instead of ‘...‘ may break in Bourne

N=-n
C=

else
N=
C=’\c’

fi
printf "Done.\n"

echo $N "Running my cmd...$C" ⇐ EOL suppressed
true || { echo "Failed." ; exit ; }
echo "Done." ⇐ Normal EOL

Trap ERR
• If/when my cmd returns an non-zero exit value, the script will execute the

error handler function and exit.

function error handler
{

printf "Failed.\n"
echo "ERROR: Command failed. Exiting now." >&2

}

trap error handler ERR ⇐ register error handling function for ERR signal

set -e ⇐ Tell shell to exit on failure

printf "Running my cmd..."
my cmd
printf "Done.\n"

Timer with visual
• This example runs a command multiple times, while displaying a visual indicator,

and then calculates the average time for each run.
• When running a single lengthy process, an alternative is to background the

spinner and have it stop on a flag file.

typeset -i start time=$SECONDS
typeset -i end time=0
typeset -i total time=0
typeset -i count=0
typeset -ir ITERATIONS=25 ⇐ This will be a read-only integer
typeset -F 3 average time ⇐ Will print to 3 decimal places
typeset -F ftemp

printf "." ⇐ printf may not be a builtin! (Use “type” to find out.)
while ((count < ITERATIONS))
do

case $((count % 4)) in
0) printf "\b|" ;;
1) printf "\b/" ;;
2) printf "\b-" ;;
3) printf "\b\\" ;;

esac

my timed cmd > /dev/null 2>&1 ⇐ The timed command
((count++))

done

printf "\b" ⇐ Clean up the spinner

total time=$((SECONDS - start time))
ftemp=$total time ⇐ $ftemp is used as a float “cast” here
average time=$((ftemp / ITERATIONS))

echo Iterations: $ITERATIONS
echo Total time: $total time seconds
echo Average time: $average time seconds

Capture more than one variable of output
• A, B, & C will capture first three space separated items, REST will capture all that

remains. stderr will be ignored.

my cmd 2> /dev/null | read A B C REST
echo "Third item is $C"

Capture more than one variable in loop
From a file
while read A B C REST
do

echo $C
done < afile

From a command
my cmd | while read A B C REST
do

echo $C
done

Compound variable passed by reference
• The compound variable allows us to pass a complex set of parameters as a single

option. This code is Korn 93 only.

function file op
{ ⇐ Parameter checking would be appropriate

echo Running $1 on $2 ⇐ $1 is a string / name of a variable

typeset -n operation=$1 ⇐ operation is a reference to compound var
${operation.command} ${operation.args} $2 ⇐ Run the command
operation.last result=$? ⇐ Save the result
return ${operation.last result} ⇐ Return the result

}

ALLREAD=(command=chmod
args=664
last result=)

ALL RUN=(command=chmod
args=775
last result=)

WFAVOWN=(command=chown
args=wfavorit:wfavorit
last result=)

file op ALLREAD myfile ⇐ Return value can be used here
echo Result: ${ALLREAD.last result} ⇐ or here
file op WFAVOWN myfile

Flow Control
if-then-else block
if true ⇐ See the if / test section for condition examples.
then

echo "Always"
else ⇐or⇒ elif condition ; then

echo "Never"
fi

Switch statement
case $GRADE in

A|B) echo "Good grade" ;& ⇐ “Fall through” to next item [Korn]
C|D) echo "Pass" ;;
"F") echo "Fail" ;;
*) echo "Not Recgonized" ;;

esac
select loop
select CHOICE in Work Sleep Eat Exit
do

echo "${CHOICE}ing."
if ["$CHOICE" = "Exit"] ; then break ; fi ⇐ Leave select loop

done
while loop
while true ⇐or⇒ until false
do

echo "Infinite loop."
if true ; then continue ; fi ⇐ Goto the top of the loop
echo "Never reachable."

done
Iterate over list
for X in 1 2 3
do

echo $X
done

About this QuickSheet
Created by: William Favorite (wfavorite@tablespace.net)
Updates at: http://www.tablespace.net/quicksheet/
Disclaimer: This document is a guide and it includes no express warranties to
the suitability, relevance, or compatibility of its contents with any specific system.
Research any and all commands that you inflict upon your command line.
Distribution: The PDF version is free to redistribute as long as credit to the author
and tablespace.net is retained in the printed and viewable versions. LATEXsource
not distributed at this time.

http://www.tablespace.net/quicksheet/

